コード例 #1
0
ファイル: relic_pp_map.c プロジェクト: cryptobiu/libscapi
void pp_map_weilp_k12(fp12_t r, ep_t p, ep2_t q) {
	ep_t _p[1], t0[1];
	ep2_t _q[1], t1[1];
	fp12_t r0, r1;
	bn_t n;

	ep_null(_p[0]);
	ep_null(t0[1]);
	ep2_null(_q[0]);
	ep2_null(t1[1]);
	fp12_null(r0);
	fp12_null(r1);
	bn_null(n);

	TRY {
		ep_new(_p[0]);
		ep_new(t0[0]);
		ep2_new(_q[0]);
		ep2_new(t1[0]);
		fp12_new(r0);
		fp12_new(r1);
		bn_new(n);

		ep_norm(_p[0], p);
		ep2_norm(_q[0], q);
		ep_curve_get_ord(n);
		bn_sub_dig(n, n, 1);
		fp12_set_dig(r0, 1);
		fp12_set_dig(r1, 1);

		if (!ep_is_infty(_p[0]) && !ep2_is_infty(_q[0])) {
			pp_mil_lit_k12(r0, t0, _p, _q, 1, n);
			pp_mil_k12(r1, t1, _q, _p, 1, n);
			fp12_inv(r1, r1);
			fp12_mul(r0, r0, r1);
			fp12_inv(r1, r0);
			fp12_inv_uni(r0, r0);
		}
		fp12_mul(r, r0, r1);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		ep_free(_p[0]);
		ep_free(t0[0]);
		ep2_free(_q[0]);
		ep2_free(t1[0]);
		fp12_free(r0);
		fp12_free(r1);
		bn_free(n);
	}
}
コード例 #2
0
ファイル: relic_fpx_util.c プロジェクト: Gesine/relic
void fp12_write_bin(uint8_t *bin, int len, fp12_t a, int pack) {
	fp12_t t;

	fp12_null(t);

	TRY {
		fp12_new(t);

		if (pack) {
			if (len != 8 * FP_BYTES) {
				THROW(ERR_NO_BUFFER);
			}
			fp12_pck(t, a);
			fp2_write_bin(bin, 2 * FP_BYTES, a[0][1], 0);
			fp2_write_bin(bin + 2 * FP_BYTES, 2 * FP_BYTES, a[0][2], 0);
			fp2_write_bin(bin + 4 * FP_BYTES, 2 * FP_BYTES, a[1][0], 0);
			fp2_write_bin(bin + 6 * FP_BYTES, 2 * FP_BYTES, a[1][2], 0);
		} else {
			if (len != 12 * FP_BYTES) {
				THROW(ERR_NO_BUFFER);
			}
			fp6_write_bin(bin, 6 * FP_BYTES, a[0]);
			fp6_write_bin(bin + 6 * FP_BYTES, 6 * FP_BYTES, a[1]);
		}
	} CATCH_ANY {
		THROW(ERR_CAUGHT);
	} FINALLY {
		fp12_free(t);
	}
}
コード例 #3
0
ファイル: relic_pp_map.c プロジェクト: cryptobiu/libscapi
/**
 * Compute the final lines for optimal ate pairings.
 *
 * @param[out] r			- the result.
 * @param[out] t			- the resulting point.
 * @param[in] q				- the first point of the pairing, in G_2.
 * @param[in] p				- the second point of the pairing, in G_1.
 * @param[in] a				- the loop parameter.
 */
static void pp_fin_k12_oatep(fp12_t r, ep2_t t, ep2_t q, ep_t p) {
	ep2_t q1, q2;
	fp12_t tmp;

	fp12_null(tmp);
	ep2_null(q1);
	ep2_null(q2);

	TRY {
		ep2_new(q1);
		ep2_new(q2);
		fp12_new(tmp);
		fp12_zero(tmp);

		fp2_set_dig(q1->z, 1);
		fp2_set_dig(q2->z, 1);

		ep2_frb(q1, q, 1);
		ep2_frb(q2, q, 2);
		ep2_neg(q2, q2);

		pp_add_k12(tmp, t, q1, p);
		fp12_mul_dxs(r, r, tmp);
		pp_add_k12(tmp, t, q2, p);
		fp12_mul_dxs(r, r, tmp);
	} CATCH_ANY {
		THROW(ERR_CAUGHT);
	} FINALLY {
		fp12_free(tmp);
		ep2_free(q1);
		ep2_free(q2);
	}
}
コード例 #4
0
ファイル: relic_pp_map.c プロジェクト: cryptobiu/libscapi
/**
 * Compute the Miller loop for pairings of type G_2 x G_1 over the bits of a
 * given parameter.
 *
 * @param[out] r			- the result.
 * @param[out] t			- the resulting point.
 * @param[in] q				- the first pairing argument in affine coordinates.
 * @param[in] p				- the second pairing argument in affine coordinates.
 * @param[in] n 			- the number of pairings to evaluate.
 * @param[in] a				- the loop parameter.
 */
static void pp_mil_k12(fp12_t r, ep2_t *t, ep2_t *q, ep_t *p, int m, bn_t a) {
	fp12_t l;
	ep_t _p[m];
	int i, j;

	if (m == 0) {
		return;
	}

	fp12_null(l);

	TRY {
		fp12_new(l);

		for (j = 0; j < m; j++) {
			ep_null(_p[j]);
			ep_new(_p[j]);
#if EP_ADD == BASIC
			ep_neg(_p[j], p[i]);
#else
			fp_add(_p[j]->x, p[j]->x, p[j]->x);
			fp_add(_p[j]->x, _p[j]->x, p[j]->x);
			fp_neg(_p[j]->y, p[j]->y);
#endif
			ep2_copy(t[j], q[j]);
		}

		fp12_zero(l);

		/* Precomputing. */
		pp_dbl_k12(r, t[0], t[0], _p[0]);
		if (bn_get_bit(a, bn_bits(a) - 2)) {
			for (j = 0; j < m; j++) {
				pp_add_k12(l, t[j], q[j], p[j]);
				fp12_mul_dxs(r, r, l);
			}
		}

		for (i = bn_bits(a) - 3; i >= 0; i--) {
			fp12_sqr(r, r);
			for (j = 0; j < m; j++) {
				pp_dbl_k12(l, t[j], t[j], _p[j]);
				fp12_mul_dxs(r, r, l);
				if (bn_get_bit(a, i)) {
					pp_add_k12(l, t[j], q[j], p[j]);
					fp12_mul_dxs(r, r, l);
				}
			}
		}
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		fp12_free(l);
		for (j = 0; j < m; j++) {
			ep_free(_p[j]);
		}
	}
}
コード例 #5
0
ファイル: relic_pp_map.c プロジェクト: cryptobiu/libscapi
/**
 * Compute the Miller loop for pairings of type G_1 x G_2 over the bits of a
 * given parameter.
 *
 * @param[out] r			- the result.
 * @param[out] t			- the resulting point.
 * @param[in] p				- the first pairing argument in affine coordinates.
 * @param[in] q				- the second pairing argument in affine coordinates.
 * @param[in] n 			- the number of pairings to evaluate.
 * @param[in] a				- the loop parameter.
 */
static void pp_mil_lit_k12(fp12_t r, ep_t *t, ep_t *p, ep2_t *q, int m, bn_t a) {
	fp12_t l;
	ep2_t _q[m];
	int j;

	fp12_null(l);

	TRY {
		fp12_new(l);
		for (j = 0; j < m; j++) {
			ep2_null(_q[j]);
			ep2_new(_q[j]);
			ep_copy(t[j], p[j]);
			ep2_neg(_q[j], q[j]);
		}

		fp12_zero(l);
		for (int i = bn_bits(a) - 2; i >= 0; i--) {
			fp12_sqr(r, r);
			for (j = 0; j < m; j++) {
				pp_dbl_lit_k12(l, t[j], t[j], _q[j]);
				fp12_mul(r, r, l);
				if (bn_get_bit(a, i)) {
					pp_add_lit_k12(l, t[j], p[j], q[j]);
					fp12_mul(r, r, l);
				}
			}
		}
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		fp12_free(l);
		for (j = 0; j < m; j++) {
			ep2_free(_q[j]);
		}
	}
}
コード例 #6
0
ファイル: relic_pp_map.c プロジェクト: cryptobiu/libscapi
void pp_map_sim_weilp_k12(fp12_t r, ep_t *p, ep2_t *q, int m) {
	ep_t _p[m], t0[m];
	ep2_t _q[m], t1[m];
	fp12_t r0, r1;
	bn_t n;
	int i, j;

	fp12_null(r0);
	fp12_null(r1);
	bn_null(r);

	TRY {
		fp12_new(r0);
		fp12_new(r1);
		bn_new(n);
		for (i = 0; i < m; i++) {
			ep_null(_p[i]);
			ep_null(t0[i]);
			ep2_null(_q[i]);
			ep2_null(t1[i]);
			ep_new(_p[i]);
			ep_new(t0[i]);
			ep2_new(_q[i]);
			ep2_new(t1[i]);
		}

		j = 0;
		for (i = 0; i < m; i++) {
			if (!ep_is_infty(p[i]) && !ep2_is_infty(q[i])) {
				ep_norm(_p[j], p[i]);
				ep2_norm(_q[j++], q[i]);
			}
		}

		ep_curve_get_ord(n);
		bn_sub_dig(n, n, 1);
		fp12_set_dig(r0, 1);
		fp12_set_dig(r1, 1);

		if (j > 0) {
			pp_mil_lit_k12(r0, t0, _p, _q, j, n);
			pp_mil_k12(r1, t1, _q, _p, j, n);
			fp12_inv(r1, r1);
			fp12_mul(r0, r0, r1);
			fp12_inv(r1, r0);
			fp12_inv_uni(r0, r0);
		}
		fp12_mul(r, r0, r1);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		fp12_free(r0);
		fp12_free(r1);
		bn_free(n);
		for (i = 0; i < m; i++) {
			ep_free(_p[i]);
			ep_free(t0[i]);
			ep2_free(_q[i]);
			ep2_free(t1[i]);
		}
	}
}
コード例 #7
0
ファイル: relic_pp_map.c プロジェクト: cryptobiu/libscapi
/**
 * Compute the Miller loop for pairings of type G_2 x G_1 over the bits of a
 * given parameter represented in sparse form.
 *
 * @param[out] r			- the result.
 * @param[out] t			- the resulting point.
 * @param[in] q				- the vector of first arguments in affine coordinates.
 * @param[in] p				- the vector of second arguments in affine coordinates.
 * @param[in] n 			- the number of pairings to evaluate.
 * @param[in] s				- the loop parameter in sparse form.
 * @paramin] len			- the length of the loop parameter.
 */
static void pp_mil_sps_k12(fp12_t r, ep2_t *t, ep2_t *q, ep_t *p, int m, int *s,
		int len) {
	fp12_t l;
	ep_t _p[m];
	ep2_t _q[m];
	int i, j;

	if (m == 0) {
		return;
	}

	fp12_null(l);

	TRY {
		fp12_new(l);
		fp12_zero(l);

		for (j = 0; j < m; j++) {
			ep_null(_p[j]);
			ep2_null(_q[j]);
			ep_new(_p[j]);
			ep2_new(_q[j]);
			ep2_copy(t[j], q[j]);
			ep2_neg(_q[j], q[j]);
#if EP_ADD == BASIC
			ep_neg(_p[j], p[j]);
#else
			fp_add(_p[j]->x, p[j]->x, p[j]->x);
			fp_add(_p[j]->x, _p[j]->x, p[j]->x);
			fp_neg(_p[j]->y, p[j]->y);
#endif
		}

		pp_dbl_k12(r, t[0], t[0], _p[0]);
		for (j = 1; j < m; j++) {
			pp_dbl_k12(l, t[j], t[j], _p[j]);
			fp12_mul_dxs(r, r, l);
		}
		if (s[len - 2] > 0) {
			for (j = 0; j < m; j++) {
				pp_add_k12(l, t[j], q[j], p[j]);
				fp12_mul_dxs(r, r, l);
			}
		}
		if (s[len - 2] < 0) {
			for (j = 0; j < m; j++) {
				pp_add_k12(l, t[j], _q[j], p[j]);
				fp12_mul_dxs(r, r, l);
			}
		}

		for (i = len - 3; i >= 0; i--) {
			fp12_sqr(r, r);
			for (j = 0; j < m; j++) {
				pp_dbl_k12(l, t[j], t[j], _p[j]);
				fp12_mul_dxs(r, r, l);
				if (s[i] > 0) {
					pp_add_k12(l, t[j], q[j], p[j]);
					fp12_mul_dxs(r, r, l);
				}
				if (s[i] < 0) {
					pp_add_k12(l, t[j], _q[j], p[j]);
					fp12_mul_dxs(r, r, l);
				}
			}
		}
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		fp12_free(l);
		for (j = 0; j < m; j++) {
			ep_free(_p[j]);
			ep2_free(_q[j]);
		}
	}
}
コード例 #8
0
ファイル: relic_pp_exp.c プロジェクト: Gesine/relic
/**
 * Computes the final exponentiation of a pairing defined over a Barreto-Naehrig
 * curve.
 *
 * @param[out] c			- the result.
 * @param[in] a				- the extension field element to exponentiate.
 */
static void pp_exp_bn(fp12_t c, fp12_t a) {
	fp12_t t0, t1, t2, t3;
	int l = MAX_TERMS + 1, b[MAX_TERMS + 1];
	bn_t x;

	fp12_null(t0);
	fp12_null(t1);
	fp12_null(t2);
	fp12_null(t3);
	bn_null(x);

	TRY {
		fp12_new(t0);
		fp12_new(t1);
		fp12_new(t2);
		fp12_new(t3);
		bn_new(x);

		/*
		 * New final exponentiation following Fuentes-Castañeda, Knapp and
		 * Rodríguez-Henríquez: Fast Hashing to G_2.
		 */
		fp_param_get_var(x);
		fp_param_get_sps(b, &l);

		/* First, compute m = f^(p^6 - 1)(p^2 + 1). */
		fp12_conv_cyc(c, a);

		/* Now compute m^((p^4 - p^2 + 1) / r). */
		/* t0 = m^2x. */
		fp12_exp_cyc_sps(t0, c, b, l);
		fp12_sqr_cyc(t0, t0);
		/* t1 = m^6x. */
		fp12_sqr_cyc(t1, t0);
		fp12_mul(t1, t1, t0);
		/* t2 = m^6x^2. */
		fp12_exp_cyc_sps(t2, t1, b, l);
		/* t3 = m^12x^3. */
		fp12_sqr_cyc(t3, t2);
		fp12_exp_cyc_sps(t3, t3, b, l);

		if (bn_sign(x) == BN_NEG) {
			fp12_inv_uni(t0, t0);
			fp12_inv_uni(t1, t1);
			fp12_inv_uni(t3, t3);
		}

		/* t3 = a = m^12x^3 * m^6x^2 * m^6x. */
		fp12_mul(t3, t3, t2);
		fp12_mul(t3, t3, t1);

		/* t0 = b = 1/(m^2x) * t3. */
		fp12_inv_uni(t0, t0);
		fp12_mul(t0, t0, t3);

		/* Compute t2 * t3 * m * b^p * a^p^2 * [b * 1/m]^p^3. */
		fp12_mul(t2, t2, t3);
		fp12_mul(t2, t2, c);
		fp12_inv_uni(c, c);
		fp12_mul(c, c, t0);
		fp12_frb(c, c, 3);
		fp12_mul(c, c, t2);
		fp12_frb(t0, t0, 1);
		fp12_mul(c, c, t0);
		fp12_frb(t3, t3, 2);
		fp12_mul(c, c, t3);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		fp12_free(t0);
		fp12_free(t1);
		fp12_free(t2);
		fp12_free(t3);
		bn_free(x);
	}
}
コード例 #9
0
ファイル: relic_pp_exp.c プロジェクト: Gesine/relic
/**
 * Computes the final exponentiation of a pairing defined over a
 * Barreto-Lynn-Scott curve.
 *
 * @param[out] c			- the result.
 * @param[in] a				- the extension field element to exponentiate.
 */
static void pp_exp_b12(fp12_t c, fp12_t a) {
	fp12_t t[10];
	bn_t x;
	int l = MAX_TERMS + 1, b[MAX_TERMS + 1];

	bn_null(x);

	TRY {
		for (int i = 0; i < 10; i++) {
			fp12_null(t[i]);
			fp12_new(t[i]);
		}
		bn_new(x);

		fp_param_get_var(x);
		fp_param_get_sps(b, &l);

		/* First, compute m^(p^6 - 1)(p^2 + 1). */
		fp12_conv_cyc(c, a);

		/* v0 = f^-1. */
		fp12_inv_uni(t[0], c);

		/* v1 = f^-2. */
		fp12_sqr_cyc(t[1], t[0]);

		/* v2 = f^x. */
		fp12_exp_cyc_sps(t[2], c, b, l);

		if (bn_sign(x) == BN_NEG) {
			fp12_inv_uni(t[2], t[2]);
		}

		/* v3 = f^2x. */
		fp12_sqr_cyc(t[3], t[2]);

		/* v4 = f^(x - 2). */
		fp12_mul(t[4], t[2], t[1]);

		/* v5 = f^(x^2 - 2x). */
		fp12_exp_cyc_sps(t[5], t[4], b, l);

		if (bn_sign(x) == BN_NEG) {
			fp12_inv_uni(t[5], t[5]);
		}

		/* v6 = f^(x^3 - 2x^2). */
		fp12_exp_cyc_sps(t[6], t[5], b, l);

		if (bn_sign(x) == BN_NEG) {
			fp12_inv_uni(t[6], t[6]);
		}

		/* v7 = f^(x^4 - 2x^3 + 2x). */
		fp12_exp_cyc_sps(t[7], t[6], b, l);
		if (bn_sign(x) == BN_NEG) {
			fp12_inv_uni(t[7], t[7]);
		}
		fp12_mul(t[7], t[7], t[3]);

		/* v8 = f^(x^5 - 2x^4 + 2x^2). */
		fp12_exp_cyc_sps(t[8], t[7], b, l);
		if (bn_sign(x) == BN_NEG) {
			fp12_inv_uni(t[8], t[8]);
		}

		/* v7 = f^(x^4 - 2x^3 + 2x - 1)^p. */
		fp12_mul(t[7], t[7], t[0]);
		fp12_frb(t[7], t[7], 1);

		/* v6 = f^(x^3 - 2x^2 + x)^p^2. */
		fp12_mul(t[6], t[6], t[2]);
		fp12_frb(t[6], t[6], 2);

		/* v5 = f^(x^2 - 2x + 1)^p^3. */
		fp12_mul(t[5], t[5], c);
		fp12_frb(t[5], t[5], 1);
		fp12_frb(t[5], t[5], 2);

		/* v4 = f^(2 - x). */
		fp12_inv_uni(t[4], t[4]);

		/* Now compute f * v4 * v5 * v6 * v7 * v8. */
		fp12_mul(c, c, t[4]);
		fp12_mul(c, c, t[5]);
		fp12_mul(c, c, t[6]);
		fp12_mul(c, c, t[7]);
		fp12_mul(c, c, t[8]);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		for (int i = 0; i < 9; i++) {
			fp12_free(t[i]);
		}
		bn_free(x);
	}
}