コード例 #1
0
ファイル: relic_fpx_add_low.c プロジェクト: Gesine/relic
void fp2_norm_low(fp2_t c, fp2_t a) {
	fp2_t t;
	bn_t b;

	fp2_null(t);
	bn_null(b);

	TRY {
		fp2_new(t);
		bn_new(b);

#if FP_PRIME == 158
		fp_dbl(t[0], a[0]);
		fp_dbl(t[0], t[0]);
		fp_sub(t[0], t[0], a[1]);
		fp_dbl(t[1], a[1]);
		fp_dbl(t[1], t[1]);
		fp_add(c[1], a[0], t[1]);
		fp_copy(c[0], t[0]);
#elif defined(FP_QNRES)
		/* If p = 3 mod 8, (1 + i) is a QNR/CNR. */
		fp_neg(t[0], a[1]);
		fp_add(c[1], a[0], a[1]);
		fp_add(c[0], t[0], a[0]);
#else
		switch (fp_prime_get_mod8()) {
			case 3:
				/* If p = 3 mod 8, (1 + u) is a QNR/CNR. */
				fp_neg(t[0], a[1]);
				fp_add(c[1], a[0], a[1]);
				fp_add(c[0], t[0], a[0]);
				break;
			case 5:
				/* If p = 5 mod 8, (u) is a QNR/CNR. */
				fp2_mul_art(c, a);
				break;
			case 7:
				/* If p = 7 mod 8, we choose (2^(lg_4(b-1)) + u) as QNR/CNR. */
				fp2_mul_art(t, a);
				fp2_dbl(c, a);
				fp_prime_back(b, ep_curve_get_b());
				for (int i = 1; i < bn_bits(b) / 2; i++) {
					fp2_dbl(c, c);
				}
				fp2_add(c, c, t);
				break;
			default:
				THROW(ERR_NO_VALID);
				break;
		}
#endif
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		fp2_free(t);
		bn_free(b);
	}
}
コード例 #2
0
ファイル: relic_fpx_add_low.c プロジェクト: jakinyele/relic
void fp2_nord_low(dv2_t c, dv2_t a) {
	dv2_t t;
	bn_t b;

	dv2_null(t);
	bn_null(b);

	TRY {
		dv2_new(t);
		bn_new(b);

#ifdef FP_QNRES
		/* If p = 3 mod 8, (1 + i) is a QNR/CNR. */
		/* (a_0 + a_1 * i) * (1 + i) = (a_0 - a_1) + (a_0 + a_1) * u. */
		dv_copy(t[0], a[1], 2 * FP_DIGS);
		fp_addc_low(c[1], a[0], a[1]);
		fp_subc_low(c[0], a[0], t[0]);
#else
		switch (fp_prime_get_mod8()) {
			case 3:
				/* If p = 3 mod 8, (1 + u) is a QNR, u^2 = -1. */
				/* (a_0 + a_1 * u) * (1 + u) = (a_0 - a_1) + (a_0 + a_1) * u. */
				dv_copy(t[0], a[1], 2 * FP_DIGS);
				fp_addc_low(c[1], a[0], a[1]);
				fp_subc_low(c[0], a[0], t[0]);
				break;
			case 1:
			case 5:
				/* If p = 1,5 mod 8, (u) is a QNR. */
				dv_copy(t[0], a[0], 2 * FP_DIGS);
				dv_zero(t[1], FP_DIGS);
				dv_copy(t[1] + FP_DIGS, fp_prime_get(), FP_DIGS);
				fp_subc_low(c[0], t[1], a[1]);
				for (int i = -1; i > fp_prime_get_qnr(); i--) {
					fp_subc_low(c[0], c[0], a[1]);
				}
				dv_copy(c[1], t[0], 2 * FP_DIGS);
				break;
			case 7:
				/* If p = 7 mod 8, (2 + u) is a QNR/CNR.   */
				fp2_addc_low(t, a, a);
				fp_subc_low(c[0], t[0], a[1]);
				fp_addc_low(c[1], t[1], a[0]);
				break;
			default:
				THROW(ERR_NO_VALID);
				break;
		}
#endif
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		dv2_free(t);
		bn_free(b);
	}
}
コード例 #3
0
ファイル: relic_fp2_mul.c プロジェクト: ekr/hacrypto
void fp2_mul_nor_basic(fp2_t c, fp2_t a) {
	fp2_t t;
	bn_t b;

	fp2_null(t);
	bn_null(b);

	TRY {
		fp2_new(t);
		bn_new(b);

#ifdef FP_QNRES
		/* If p = 3 mod 8, (1 + i) is a QNR/CNR. */
		fp_neg(t[0], a[1]);
		fp_add(c[1], a[0], a[1]);
		fp_add(c[0], t[0], a[0]);
#else
		switch (fp_prime_get_mod8()) {
			case 3:
				/* If p = 3 mod 8, (1 + u) is a QNR/CNR. */
				fp_neg(t[0], a[1]);
				fp_add(c[1], a[0], a[1]);
				fp_add(c[0], t[0], a[0]);
				break;
			case 1:
			case 5:
				/* If p = 5 mod 8, (u) is a QNR/CNR. */
				fp2_mul_art(c, a);
				break;
			case 7:
				/* If p = 7 mod 8, we choose (4 + u) is a QNR/CNR. */
				fp2_mul_art(t, a);
				fp2_dbl(c, a);
				fp2_dbl(c, c);
				fp2_add(c, c, t);
				break;
			default:
				THROW(ERR_NO_VALID);
		}
#endif
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		fp2_free(t);
		bn_free(b);
	}
}
コード例 #4
0
ファイル: relic_fp_param.c プロジェクト: ekr/hacrypto
int fp_param_set_any_tower() {
#if FP_PRIME == 158
	fp_param_set(BN_158);
#elif FP_PRIME == 254
	fp_param_set(BN_254);
#elif FP_PRIME == 256
	fp_param_set(BN_256);
#elif FP_PRIME == 477
	fp_param_set(B24_477);
#elif FP_PRIME == 508
	fp_param_set(KSS_508);
#elif FP_PRIME == 638
	fp_param_set(B12_638);
#elif FP_PRIME == 1536
	fp_param_set(SS_1536);
#else
	do {
		/* Since we have to generate a prime number, pick a nice towering. */
		fp_param_set_any_dense();
	} while (fp_prime_get_mod8() == 1 || fp_prime_get_mod8() == 5);
#endif

	return STS_OK;
}
コード例 #5
0
ファイル: relic_fpx_add_low.c プロジェクト: Gesine/relic
void fp2_nord_low(dv2_t c, dv2_t a) {
	dv2_t t;
	bn_t b;

	dv2_null(t);
	bn_null(b);

	TRY {
		dv2_new(t);
		bn_new(b);

#if FP_PRIME == 158
		fp_addc_low(t[0], a[0], a[0]);
		fp_addc_low(t[0], t[0], t[0]);
		fp_subc_low(t[0], t[0], a[1]);
		fp_addc_low(t[1], a[1], a[1]);
		fp_addc_low(t[1], t[1], t[1]);
		fp_addc_low(c[1], a[0], t[1]);
		dv_copy(c[0], t[0], 2 * FP_DIGS);
#elif defined(FP_QNRES)
		/* If p = 3 mod 8, (1 + i) is a QNR/CNR. */
		/* (a_0 + a_1 * i) * (1 + i) = (a_0 - a_1) + (a_0 + a_1) * u. */
		dv_copy(t[0], a[1], 2 * FP_DIGS);
		fp_addc_low(c[1], a[0], a[1]);
		fp_subc_low(c[0], a[0], t[0]);
#else
		switch (fp_prime_get_mod8()) {
			case 3:
				/* If p = 3 mod 8, (1 + u) is a QNR, u^2 = -1. */
				/* (a_0 + a_1 * u) * (1 + u) = (a_0 - a_1) + (a_0 + a_1) * u. */
				dv_copy(t[0], a[1], 2 * FP_DIGS);
				fp_addc_low(c[1], a[0], a[1]);
				fp_subc_low(c[0], a[0], t[0]);
				break;
			case 5:
				/* If p = 5 mod 8, (u) is a QNR. */
				dv_copy(t[0], a[0], 2 * FP_DIGS);
				dv_zero(t[1], FP_DIGS);
				dv_copy(t[1] + FP_DIGS, fp_prime_get(), FP_DIGS);
				fp_subc_low(c[0], t[1], a[1]);
				for (int i = -1; i > fp_prime_get_qnr(); i--) {
					fp_subc_low(c[0], c[0], a[1]);
				}
				dv_copy(c[1], t[0], 2 * FP_DIGS);
				break;
			case 7:
				/* If p = 7 mod 8, (2^lg_4(b-1) + u) is a QNR/CNR.   */
				/* (a_0 + a_1 * u)(2^lg_4(b-1) + u) =
				 * (2^lg_4(b-1)a_0 - a_1) + (a_0 + 2^lg_4(b-1)a_1 * u. */
				fp2_addc_low(t, a, a);
				fp_prime_back(b, ep_curve_get_b());
				for (int i = 1; i < bn_bits(b) / 2; i++) {
					fp2_addc_low(t, t, t);
				}
				fp_subc_low(c[0], t[0], a[1]);
				fp_addc_low(c[1], t[1], a[0]);
				break;
			default:
				THROW(ERR_NO_VALID);
				break;
		}
#endif
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		dv2_free(t);
		bn_free(b);
	}
}
コード例 #6
0
ファイル: relic_fp_srt.c プロジェクト: Gesine/relic
int fp_srt(fp_t c, const fp_t a) {
	bn_t e;
	fp_t t0;
	fp_t t1;
	int r = 0;

	bn_null(e);
	fp_null(t0);
	fp_null(t1);

	TRY {
		bn_new(e);
		fp_new(t0);
		fp_new(t1);

		/* Make e = p. */
		e->used = FP_DIGS;
		dv_copy(e->dp, fp_prime_get(), FP_DIGS);

		if (fp_prime_get_mod8() == 3 || fp_prime_get_mod8() == 7) {
			/* Easy case, compute a^((p + 1)/4). */
			bn_add_dig(e, e, 1);
			bn_rsh(e, e, 2);

			fp_exp(t0, a, e);
			fp_sqr(t1, t0);
			r = (fp_cmp(t1, a) == CMP_EQ);
			fp_copy(c, t0);
		} else {
			int f = 0, m = 0;

			/* First, check if there is a root. Compute t1 = a^((p - 1)/2). */
			bn_rsh(e, e, 1);
			fp_exp(t0, a, e);

			if (fp_cmp_dig(t0, 1) != CMP_EQ) {
				/* Nope, there is no square root. */
				r = 0;
			} else {
				r = 1;
				/* Find a quadratic non-residue modulo p, that is a number t2
				 * such that (t2 | p) = t2^((p - 1)/2)!= 1. */
				do {
					fp_rand(t1);
					fp_exp(t0, t1, e);
				} while (fp_cmp_dig(t0, 1) == CMP_EQ);

				/* Write p - 1 as (e * 2^f), odd e. */
				bn_lsh(e, e, 1);
				while (bn_is_even(e)) {
					bn_rsh(e, e, 1);
					f++;
				}

				/* Compute t2 = t2^e. */
				fp_exp(t1, t1, e);

				/* Compute t1 = a^e, c = a^((e + 1)/2) = a^(e/2 + 1), odd e. */
				bn_rsh(e, e, 1);
				fp_exp(t0, a, e);
				fp_mul(e->dp, t0, a);
				fp_sqr(t0, t0);
				fp_mul(t0, t0, a);
				fp_copy(c, e->dp);

				while (1) {
					if (fp_cmp_dig(t0, 1) == CMP_EQ) {
						break;
					}
					fp_copy(e->dp, t0);
					for (m = 0; (m < f) && (fp_cmp_dig(t0, 1) != CMP_EQ); m++) {
						fp_sqr(t0, t0);
					}
					fp_copy(t0, e->dp);
					for (int i = 0; i < f - m - 1; i++) {
						fp_sqr(t1, t1);
					}
					fp_mul(c, c, t1);
					fp_sqr(t1, t1);
					fp_mul(t0, t0, t1);
					f = m;
				}
			}
		}
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		bn_free(e);
		fp_free(t0);
		fp_free(t1);
	}
	return r;
}