コード例 #1
0
ファイル: routine.cpp プロジェクト: Bitlsoft/Imagenius_SDK
int freeFeaturePyramidObject (CvLSVMFeaturePyramid **obj){
    int i; 
    if(*obj == NULL) return 0;
    for(i = 0; i < (*obj)->countLevel; i++)
        freeFeatureMapObject(&((*obj)->pyramid[i]));
    free((*obj)->pyramid);
    free(*obj);
    (*obj) = NULL;
    return LATENT_SVM_OK;
}
コード例 #2
0
int freeFeaturePyramidObject (CvLSVMFeaturePyramidCaskade **obj)
{
    int i; 
    if(*obj == NULL) return LATENT_SVM_MEM_NULL;
    for(i = 0; i < (*obj)->numLevels; i++)
    {
        freeFeatureMapObject(&((*obj)->pyramid[i]));
    }
    free((*obj)->pyramid);
    free(*obj);
    (*obj) = NULL;
    return LATENT_SVM_OK;
}
コード例 #3
0
ファイル: matching.cpp プロジェクト: detapi/REBUT
/*
// Computation score function at the level that exceed threshold
//
// API
// int thresholdFunctionalScoreFixedLevel(const CvLSVMFilterObject **all_F, int n, 
                                          const featurePyramid *H, 
                                          int level, float b, 
                                          int maxXBorder, int maxYBorder,
                                          float scoreThreshold,
                                          float **score, CvPoint **points, int *kPoints,
                                          CvPoint ***partsDisplacement);
// INPUT
// all_F             - the set of filters (the first element is root filter, 
                       the other - part filters)
// n                 - the number of part filters
// H                 - feature pyramid
// level             - feature pyramid level for computation maximum score
// b                 - linear term of the score function
// maxXBorder        - the largest root filter size (X-direction)
// maxYBorder        - the largest root filter size (Y-direction)
// scoreThreshold    - score threshold
// OUTPUT
// score             - score function at the level that exceed threshold
// points            - the set of root filter positions (in the block space)
// levels            - the set of levels
// kPoints           - number of root filter positions
// partsDisplacement - displacement of part filters (in the block space)
// RESULT
// Error status
*/
int thresholdFunctionalScoreFixedLevel(const CvLSVMFilterObject **all_F, int n, 
                                       const CvLSVMFeaturePyramid *H, 
                                       int level, float b, 
                                       int maxXBorder, int maxYBorder,
                                       float scoreThreshold,
                                       float **score, CvPoint **points, int *kPoints,
                                       CvPoint ***partsDisplacement)
{
    int i, j, k, dimX, dimY, nF0, mF0, p;
    int diff1, diff2, index, last, partsLevel;
    CvLSVMFilterDisposition **disposition;
    float *f;
    float *scores;
    float sumScorePartDisposition;
    int res;
    CvLSVMFeatureMap *map;
#ifdef FFT_CONV
    CvLSVMFftImage *rootFilterImage, *mapImage;
#else
#endif
    /*
    // DEBUG variables
    FILE *file;
    char *tmp;
    char buf[40] = "..\\Data\\score\\score", buf1[10] = ".csv";
    tmp = (char *)malloc(sizeof(char) * 80);
    itoa(level, tmp, 10);
    strcat(tmp, buf1);
    //*/

    // Feature map matrix dimension on the level
    dimX = H->pyramid[level]->sizeX;
    dimY = H->pyramid[level]->sizeY;

    // Number of features
    p = H->pyramid[level]->p;
        
    // Getting dimension of root filter
    nF0 = all_F[0]->sizeY;
    mF0 = all_F[0]->sizeX;
    // Processing the situation when root filter goes 
    // beyond the boundaries of the block set
    if (nF0 > dimY || mF0 > dimX)
    {
        return LATENT_SVM_FAILED_SUPERPOSITION;
    }
        
    diff1 = dimY - nF0 + 1;
    diff2 = dimX - mF0 + 1;   
   
    // Allocation memory for saving values of function D 
    // on the level for each part filter
    disposition = (CvLSVMFilterDisposition **)malloc(sizeof(CvLSVMFilterDisposition *) * n);
    for (i = 0; i < n; i++)
    {
        disposition[i] = (CvLSVMFilterDisposition *)malloc(sizeof(CvLSVMFilterDisposition));
    }  

    // Allocation memory for values of score function for each block on the level
    scores = (float *)malloc(sizeof(float) * (diff1 * diff2));
    // A dot product vectors of feature map and weights of root filter
#ifdef FFT_CONV
    getFFTImageFeatureMap(H->pyramid[level], &mapImage);
    getFFTImageFilterObject(all_F[0], H->pyramid[level]->sizeX, H->pyramid[level]->sizeY, &rootFilterImage);
    res = convFFTConv2d(mapImage, rootFilterImage, all_F[0]->sizeX, all_F[0]->sizeY, &f);
    freeFFTImage(&mapImage);
    freeFFTImage(&rootFilterImage);
#else
    // Allocation memory for saving a dot product vectors of feature map and 
    // weights of root filter
    f = (float *)malloc(sizeof(float) * (diff1 * diff2));
    res = convolution(all_F[0], H->pyramid[level], f);
#endif
    if (res != LATENT_SVM_OK)
    {
        free(f);
        free(scores);
        for (i = 0; i < n; i++)
        {
            free(disposition[i]);
        }
        free(disposition);
        return res;
    }

    // Computation values of function D for each part filter 
    // on the level (level - LAMBDA)
    partsLevel = level - LAMBDA;
    // For feature map at the level 'partsLevel' add nullable border
    map = featureMapBorderPartFilter(H->pyramid[partsLevel], 
                                     maxXBorder, maxYBorder);
    
    // Computation the maximum of score function
    sumScorePartDisposition = 0.0;
#ifdef FFT_CONV
    getFFTImageFeatureMap(map, &mapImage);
    for (k = 1; k <= n; k++)
    {  
        filterDispositionLevelFFT(all_F[k], mapImage, 
                               &(disposition[k - 1]->score), 
                               &(disposition[k - 1]->x), 
                               &(disposition[k - 1]->y));
    }
    freeFFTImage(&mapImage);
#else
    for (k = 1; k <= n; k++)
    {        
        filterDispositionLevel(all_F[k], map, 
                               &(disposition[k - 1]->score), 
                               &(disposition[k - 1]->x), 
                               &(disposition[k - 1]->y));
    }
#endif
    (*kPoints) = 0;
    for (i = 0; i < diff1; i++)
    {
        for (j = 0; j < diff2; j++)
        {
            sumScorePartDisposition = 0.0;
            for (k = 1; k <= n; k++)
            {                
                // This condition takes on a value true
                // when filter goes beyond the boundaries of block set
                if ((2 * i + all_F[k]->V.y < 
                            map->sizeY - all_F[k]->sizeY + 1) &&
                    (2 * j + all_F[k]->V.x < 
                            map->sizeX - all_F[k]->sizeX + 1))
                {
                    index = (2 * i + all_F[k]->V.y) * 
                                (map->sizeX - all_F[k]->sizeX + 1) + 
                            (2 * j + all_F[k]->V.x);
                    sumScorePartDisposition += disposition[k - 1]->score[index];
                } 
            }
            scores[i * diff2 + j] = f[i * diff2 + j] - sumScorePartDisposition + b;
            if (scores[i * diff2 + j] > scoreThreshold)                
            {
                (*kPoints)++;
            }
        }
    }

    // Allocation memory for saving positions of root filter and part filters
    (*points) = (CvPoint *)malloc(sizeof(CvPoint) * (*kPoints));
    (*partsDisplacement) = (CvPoint **)malloc(sizeof(CvPoint *) * (*kPoints));
    for (i = 0; i < (*kPoints); i++)
    {
        (*partsDisplacement)[i] = (CvPoint *)malloc(sizeof(CvPoint) * n);
    }

    /*// DEBUG
    strcat(buf, tmp);
    file = fopen(buf, "w+");
    //*/
    // Construction of the set of positions for root filter 
    // that correspond score function on the level that exceed threshold
    (*score) = (float *)malloc(sizeof(float) * (*kPoints));
    last = 0;
    for (i = 0; i < diff1; i++)
    {
        for (j = 0; j < diff2; j++)
        {
            if (scores[i * diff2 + j] > scoreThreshold) 
            {
                (*score)[last] = scores[i * diff2 + j];
                (*points)[last].y = i;
                (*points)[last].x = j;
                for (k = 1; k <= n; k++)
                {                    
                    if ((2 * i + all_F[k]->V.y < 
                            map->sizeY - all_F[k]->sizeY + 1) &&
                        (2 * j + all_F[k]->V.x < 
                            map->sizeX - all_F[k]->sizeX + 1))
                    {
                        index = (2 * i + all_F[k]->V.y) * 
                                   (map->sizeX - all_F[k]->sizeX + 1) + 
                                (2 * j + all_F[k]->V.x);
                        (*partsDisplacement)[last][k - 1].x = 
                                              disposition[k - 1]->x[index];
                        (*partsDisplacement)[last][k - 1].y = 
                                              disposition[k - 1]->y[index];
                    } 
                }
                last++;
            }
            //fprintf(file, "%lf;", scores[i * diff2 + j]);
        }
        //fprintf(file, "\n");
    }
    //fclose(file);
    //free(tmp);

    // Release allocated memory
    for (i = 0; i < n ; i++)
    {
        free(disposition[i]->score);
        free(disposition[i]->x);
        free(disposition[i]->y);
        free(disposition[i]);
    }
    free(disposition);
    free(f);
    free(scores);
    freeFeatureMapObject(&map);
    return LATENT_SVM_OK;
}