コード例 #1
0
ファイル: sftp.c プロジェクト: lalbornoz/FySTY
void sftp_cleanup_request(void)
{
    if (sftp_requests != NULL) {
	freetree234(sftp_requests);
	sftp_requests = NULL;
    }
}
コード例 #2
0
ファイル: uxpoll.c プロジェクト: gdh1995/putty
void pollwrap_free(pollwrapper *pw)
{
    pollwrap_clear(pw);
    freetree234(pw->fdtopos);
    sfree(pw->fds);
    sfree(pw);
}
コード例 #3
0
ファイル: btree.cpp プロジェクト: dolaneast/AlgorithmPractice
int main(void) {
    int in[NSTR];
    int i, j, k;
    unsigned seed = 0;

    for (i = 0; i < NSTR; i++) in[i] = 0;
    array = NULL;
    arraylen = arraysize = 0;
    tree = newtree234(mycmp);
    cmp = mycmp;

    verify();
    for (i = 0; i < 10000; i++) {
        j = randomnumber(&seed);
        j %= NSTR;
        printf("trial: %d\n", i);
        if (in[j]) {
            printf("deleting %s (%d)\n", strings[j], j);
            deltest(strings[j]);
            in[j] = 0;
        } else {
            printf("adding %s (%d)\n", strings[j], j);
            addtest(strings[j]);
            in[j] = 1;
        }
	findtest();
    }

    while (arraylen > 0) {
        j = randomnumber(&seed);
        j %= arraylen;
        deltest(array[j]);
    }

    freetree234(tree);

    tree = newtree234(NULL);
    cmp = NULL;
    verify();
    for (i = 0; i < 1000; i++) {
	printf("trial: %d\n", i);
	j = randomnumber(&seed);
	j %= NSTR;
	k = randomnumber(&seed);
	k %= count234(tree)+1;
	printf("adding string %s at index %d\n", strings[j], k);
	addpostest(strings[j], k);
    }
    while (count234(tree) > 0) {
	printf("cleanup: tree size %d\n", count234(tree));
	j = randomnumber(&seed);
	j %= count234(tree);
	printf("deleting string %s from index %d\n", array[j], j);
	delpostest(j);
    }

    return 0;
}
コード例 #4
0
ファイル: input.c プロジェクト: 151706061/nsis-chinese
static void macrocleanup(tree234 * macros)
{
  int ti;
  macro *m;
  for (ti = 0; (m = (macro *) index234(macros, ti)) != NULL; ti++)
  {
    sfree(m->name);
    sfree(m->text);
    sfree(m);
  }
  freetree234(macros);
}
コード例 #5
0
ファイル: x11fwd.c プロジェクト: rdebath/sgt
void x11_free_auth(void *authv)
{
    struct X11Auth *auth = (struct X11Auth *)authv;
    struct XDMSeen *seen;

    if (auth->xdmseen != NULL) {
	while ((seen = delpos234(auth->xdmseen, 0)) != NULL)
	    sfree(seen);
	freetree234(auth->xdmseen);
    }
    sfree(auth);
}
コード例 #6
0
ファイル: winnet.c プロジェクト: 0x0all/s2putty
void sk_cleanup(void)
{
    Actual_Socket s;
    int i;

    if (sktree) {
	for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
	    p_closesocket(s->s);
	}
	freetree234(sktree);
	sktree = NULL;
    }

    p_WSACleanup();
    if (winsock_module)
	FreeLibrary(winsock_module);
#ifndef NO_IPV6
    if (wship6_module)
	FreeLibrary(wship6_module);
#endif
}
コード例 #7
0
ファイル: tree234.c プロジェクト: Distrotech/opensips
int main(void) {
    int in[NSTR];
    int i, j, k;
    unsigned seed = 0;

    for (i = 0; i < NSTR; i++) in[i] = 0;
    array = NULL;
    arraylen = arraysize = 0;
    tree = newtree234(mycmp);
    cmp = mycmp;

    verify();
    for (i = 0; i < 10000; i++) {
        j = randomnumber(&seed);
        j %= NSTR;
        printf("trial: %d\n", i);
        if (in[j]) {
            printf("deleting %s (%d)\n", strings[j], j);
            deltest(strings[j]);
            in[j] = 0;
        } else {
            printf("adding %s (%d)\n", strings[j], j);
            addtest(strings[j]);
            in[j] = 1;
        }
	findtest();
    }

    while (arraylen > 0) {
        j = randomnumber(&seed);
        j %= arraylen;
        deltest(array[j]);
    }

    freetree234(tree);

    /*
     * Now try an unsorted tree. We don't really need to test
     * delpos234 because we know del234 is based on it, so it's
     * already been tested in the above sorted-tree code; but for
     * completeness we'll use it to tear down our unsorted tree
     * once we've built it.
     */
    tree = newtree234(NULL);
    cmp = NULL;
    verify();
    for (i = 0; i < 1000; i++) {
	printf("trial: %d\n", i);
	j = randomnumber(&seed);
	j %= NSTR;
	k = randomnumber(&seed);
	k %= count234(tree)+1;
	printf("adding string %s at index %d\n", strings[j], k);
	addpostest(strings[j], k);
    }
    while (count234(tree) > 0) {
	printf("cleanup: tree size %d\n", count234(tree));
	j = randomnumber(&seed);
	j %= count234(tree);
	printf("deleting string %s from index %d\n", array[j], j);
	delpostest(j);
    }

    return 0;
}
コード例 #8
0
ファイル: loopgen.c プロジェクト: 4nh51rk/sgtpuzzles
/*
 * Generate a new complete random closed loop for the given grid.
 *
 * The method is to generate a WHITE/BLACK colouring of all the faces,
 * such that the WHITE faces will define the inside of the path, and the
 * BLACK faces define the outside.
 * To do this, we initially colour all faces GREY.  The infinite space outside
 * the grid is coloured BLACK, and we choose a random face to colour WHITE.
 * Then we gradually grow the BLACK and the WHITE regions, eliminating GREY
 * faces, until the grid is filled with BLACK/WHITE.  As we grow the regions,
 * we avoid creating loops of a single colour, to preserve the topological
 * shape of the WHITE and BLACK regions.
 * We also try to make the boundary as loopy and twisty as possible, to avoid
 * generating paths that are uninteresting.
 * The algorithm works by choosing a BLACK/WHITE colour, then choosing a GREY
 * face that can be coloured with that colour (without violating the
 * topological shape of that region).  It's not obvious, but I think this
 * algorithm is guaranteed to terminate without leaving any GREY faces behind.
 * Indeed, if there are any GREY faces at all, both the WHITE and BLACK
 * regions can be grown.
 * This is checked using assert()ions, and I haven't seen any failures yet.
 *
 * Hand-wavy proof: imagine what can go wrong...
 *
 * Could the white faces get completely cut off by the black faces, and still
 * leave some grey faces remaining?
 * No, because then the black faces would form a loop around both the white
 * faces and the grey faces, which is disallowed because we continually
 * maintain the correct topological shape of the black region.
 * Similarly, the black faces can never get cut off by the white faces.  That
 * means both the WHITE and BLACK regions always have some room to grow into
 * the GREY regions.
 * Could it be that we can't colour some GREY face, because there are too many
 * WHITE/BLACK transitions as we walk round the face? (see the
 * can_colour_face() function for details)
 * No.  Imagine otherwise, and we see WHITE/BLACK/WHITE/BLACK as we walk
 * around the face.  The two WHITE faces would be connected by a WHITE path,
 * and the BLACK faces would be connected by a BLACK path.  These paths would
 * have to cross, which is impossible.
 * Another thing that could go wrong: perhaps we can't find any GREY face to
 * colour WHITE, because it would create a loop-violation or a corner-violation
 * with the other WHITE faces?
 * This is a little bit tricky to prove impossible.  Imagine you have such a
 * GREY face (that is, if you coloured it WHITE, you would create a WHITE loop
 * or corner violation).
 * That would cut all the non-white area into two blobs.  One of those blobs
 * must be free of BLACK faces (because the BLACK stuff is a connected blob).
 * So we have a connected GREY area, completely surrounded by WHITE
 * (including the GREY face we've tentatively coloured WHITE).
 * A well-known result in graph theory says that you can always find a GREY
 * face whose removal leaves the remaining GREY area connected.  And it says
 * there are at least two such faces, so we can always choose the one that
 * isn't the "tentative" GREY face.  Colouring that face WHITE leaves
 * everything nice and connected, including that "tentative" GREY face which
 * acts as a gateway to the rest of the non-WHITE grid.
 */
void generate_loop(grid *g, char *board, random_state *rs,
                   loopgen_bias_fn_t bias, void *biasctx)
{
    int i, j;
    int num_faces = g->num_faces;
    struct face_score *face_scores; /* Array of face_score objects */
    struct face_score *fs; /* Points somewhere in the above list */
    struct grid_face *cur_face;
    tree234 *lightable_faces_sorted;
    tree234 *darkable_faces_sorted;
    int *face_list;
    int do_random_pass;

    /* Make a board */
    memset(board, FACE_GREY, num_faces);
    
    /* Create and initialise the list of face_scores */
    face_scores = snewn(num_faces, struct face_score);
    for (i = 0; i < num_faces; i++) {
        face_scores[i].random = random_bits(rs, 31);
        face_scores[i].black_score = face_scores[i].white_score = 0;
    }
    
    /* Colour a random, finite face white.  The infinite face is implicitly
     * coloured black.  Together, they will seed the random growth process
     * for the black and white areas. */
    i = random_upto(rs, num_faces);
    board[i] = FACE_WHITE;

    /* We need a way of favouring faces that will increase our loopiness.
     * We do this by maintaining a list of all candidate faces sorted by
     * their score and choose randomly from that with appropriate skew.
     * In order to avoid consistently biasing towards particular faces, we
     * need the sort order _within_ each group of scores to be completely
     * random.  But it would be abusing the hospitality of the tree234 data
     * structure if our comparison function were nondeterministic :-).  So with
     * each face we associate a random number that does not change during a
     * particular run of the generator, and use that as a secondary sort key.
     * Yes, this means we will be biased towards particular random faces in
     * any one run but that doesn't actually matter. */

    lightable_faces_sorted = newtree234(white_sort_cmpfn);
    darkable_faces_sorted = newtree234(black_sort_cmpfn);

    /* Initialise the lists of lightable and darkable faces.  This is
     * slightly different from the code inside the while-loop, because we need
     * to check every face of the board (the grid structure does not keep a
     * list of the infinite face's neighbours). */
    for (i = 0; i < num_faces; i++) {
        grid_face *f = g->faces + i;
        struct face_score *fs = face_scores + i;
        if (board[i] != FACE_GREY) continue;
        /* We need the full colourability check here, it's not enough simply
         * to check neighbourhood.  On some grids, a neighbour of the infinite
         * face is not necessarily darkable. */
        if (can_colour_face(g, board, i, FACE_BLACK)) {
            fs->black_score = face_score(g, board, f, FACE_BLACK);
            add234(darkable_faces_sorted, fs);
        }
        if (can_colour_face(g, board, i, FACE_WHITE)) {
            fs->white_score = face_score(g, board, f, FACE_WHITE);
            add234(lightable_faces_sorted, fs);
        }
    }

    /* Colour faces one at a time until no more faces are colourable. */
    while (TRUE)
    {
        enum face_colour colour;
        tree234 *faces_to_pick;
        int c_lightable = count234(lightable_faces_sorted);
        int c_darkable = count234(darkable_faces_sorted);
        if (c_lightable == 0 && c_darkable == 0) {
            /* No more faces we can use at all. */
            break;
        }
	assert(c_lightable != 0 && c_darkable != 0);

        /* Choose a colour, and colour the best available face
         * with that colour. */
        colour = random_upto(rs, 2) ? FACE_WHITE : FACE_BLACK;

        if (colour == FACE_WHITE)
            faces_to_pick = lightable_faces_sorted;
        else
            faces_to_pick = darkable_faces_sorted;
        if (bias) {
            /*
             * Go through all the candidate faces and pick the one the
             * bias function likes best, breaking ties using the
             * ordering in our tree234 (which is why we replace only
             * if score > bestscore, not >=).
             */
            int j, k;
            struct face_score *best = NULL;
            int score, bestscore = 0;

            for (j = 0;
                 (fs = (struct face_score *)index234(faces_to_pick, j))!=NULL;
                 j++) {

                assert(fs);
                k = fs - face_scores;
                assert(board[k] == FACE_GREY);
                board[k] = colour;
                score = bias(biasctx, board, k);
                board[k] = FACE_GREY;
                bias(biasctx, board, k); /* let bias know we put it back */

                if (!best || score > bestscore) {
                    bestscore = score;
                    best = fs;
                }
            }
            fs = best;
        } else {
            fs = (struct face_score *)index234(faces_to_pick, 0);
        }
        assert(fs);
        i = fs - face_scores;
        assert(board[i] == FACE_GREY);
        board[i] = colour;
        if (bias)
            bias(biasctx, board, i); /* notify bias function of the change */

        /* Remove this newly-coloured face from the lists.  These lists should
         * only contain grey faces. */
        del234(lightable_faces_sorted, fs);
        del234(darkable_faces_sorted, fs);

        /* Remember which face we've just coloured */
        cur_face = g->faces + i;

        /* The face we've just coloured potentially affects the colourability
         * and the scores of any neighbouring faces (touching at a corner or
         * edge).  So the search needs to be conducted around all faces
         * touching the one we've just lit.  Iterate over its corners, then
         * over each corner's faces.  For each such face, we remove it from
         * the lists, recalculate any scores, then add it back to the lists
         * (depending on whether it is lightable, darkable or both). */
        for (i = 0; i < cur_face->order; i++) {
            grid_dot *d = cur_face->dots[i];
            for (j = 0; j < d->order; j++) {
                grid_face *f = d->faces[j];
                int fi; /* face index of f */

                if (f == NULL)
                    continue;
                if (f == cur_face)
                    continue;
                
                /* If the face is already coloured, it won't be on our
                 * lightable/darkable lists anyway, so we can skip it without 
                 * bothering with the removal step. */
                if (FACE_COLOUR(f) != FACE_GREY) continue; 

                /* Find the face index and face_score* corresponding to f */
                fi = f - g->faces;                
                fs = face_scores + fi;

                /* Remove from lightable list if it's in there.  We do this,
                 * even if it is still lightable, because the score might
                 * be different, and we need to remove-then-add to maintain
                 * correct sort order. */
                del234(lightable_faces_sorted, fs);
                if (can_colour_face(g, board, fi, FACE_WHITE)) {
                    fs->white_score = face_score(g, board, f, FACE_WHITE);
                    add234(lightable_faces_sorted, fs);
                }
                /* Do the same for darkable list. */
                del234(darkable_faces_sorted, fs);
                if (can_colour_face(g, board, fi, FACE_BLACK)) {
                    fs->black_score = face_score(g, board, f, FACE_BLACK);
                    add234(darkable_faces_sorted, fs);
                }
            }
        }
    }

    /* Clean up */
    freetree234(lightable_faces_sorted);
    freetree234(darkable_faces_sorted);
    sfree(face_scores);

    /* The next step requires a shuffled list of all faces */
    face_list = snewn(num_faces, int);
    for (i = 0; i < num_faces; ++i) {
        face_list[i] = i;
    }
    shuffle(face_list, num_faces, sizeof(int), rs);

    /* The above loop-generation algorithm can often leave large clumps
     * of faces of one colour.  In extreme cases, the resulting path can be 
     * degenerate and not very satisfying to solve.
     * This next step alleviates this problem:
     * Go through the shuffled list, and flip the colour of any face we can
     * legally flip, and which is adjacent to only one face of the opposite
     * colour - this tends to grow 'tendrils' into any clumps.
     * Repeat until we can find no more faces to flip.  This will
     * eventually terminate, because each flip increases the loop's
     * perimeter, which cannot increase for ever.
     * The resulting path will have maximal loopiness (in the sense that it
     * cannot be improved "locally".  Unfortunately, this allows a player to
     * make some illicit deductions.  To combat this (and make the path more
     * interesting), we do one final pass making random flips. */

    /* Set to TRUE for final pass */
    do_random_pass = FALSE;

    while (TRUE) {
        /* Remember whether a flip occurred during this pass */
        int flipped = FALSE;

        for (i = 0; i < num_faces; ++i) {
            int j = face_list[i];
            enum face_colour opp =
                (board[j] == FACE_WHITE) ? FACE_BLACK : FACE_WHITE;
            if (can_colour_face(g, board, j, opp)) {
                grid_face *face = g->faces +j;
                if (do_random_pass) {
                    /* final random pass */
                    if (!random_upto(rs, 10))
                        board[j] = opp;
                } else {
                    /* normal pass - flip when neighbour count is 1 */
                    if (face_num_neighbours(g, board, face, opp) == 1) {
                        board[j] = opp;
                        flipped = TRUE;
                    }
                }
            }
        }

        if (do_random_pass) break;
        if (!flipped) do_random_pass = TRUE;
    }

    sfree(face_list);
}