コード例 #1
0
ファイル: graf.c プロジェクト: imr/ngspice
static int
iplot(struct plot *pl, int id)
{
    int len = pl->pl_scale->v_length;
    struct dvec *v, *xs = pl->pl_scale;
    double *lims, dy;
    double start, stop, step;
    register int j;
    bool changed = FALSE;
    int yt;
    char *yl = NULL;
    double xlims[2], ylims[2];
    static REQUEST reqst = { checkup_option, NULL };
    int inited = 0;
    char commandline[513];

    for (j = 0, v = pl->pl_dvecs; v; v = v->v_next)
        if (v->v_flags & VF_PLOT)
            j++;
    if (!j)
        return (0);
    if (ft_grdb)
        fprintf(cp_err, "Entering iplot, len = %d\n", len);

    if (len < IPOINTMIN) {
        /* Nothing yet */
        return (0);
    } else if (len == IPOINTMIN || !id) {
        resumption = FALSE;
        /* Draw the grid for the first time, and plot everything. */
        lims = ft_minmax(xs, TRUE);
        xlims[0] = lims[0];
        xlims[1] = lims[1];
        ylims[0] = HUGE;
        ylims[1] = - ylims[0];
        for (v = pl->pl_dvecs; v; v = v->v_next)
            if (v->v_flags & VF_PLOT) {
                lims = ft_minmax(v, TRUE);
                if (ylims[0] > lims[0])
                    ylims[0] = lims[0];
                if (ylims[1] < lims[1])
                    ylims[1] = lims[1];
                if (!yl)
                    yl = v->v_name;
            }
        /* generate a small difference between ymin and ymax
           to catch the y=const case */
        if (ylims[0] == ylims[1])
            ylims[1] += 1e-9;

        if (ft_grdb)
            fprintf(cp_err,
                    "iplot: after 5, xlims = %G, %G, ylims = %G, %G\n",
                    xlims[0], xlims[1], ylims[0], ylims[1]);

        for (yt = pl->pl_dvecs->v_type, v = pl->pl_dvecs->v_next; v; v = v->v_next)
            if ((v->v_flags & VF_PLOT) && (v->v_type != yt)) {
                yt = SV_NOTYPE;
                break;
            }

        /* note: have command options for iplot to specify xdelta,
           etc.  So don't need static variables hack.  Assume default
           values for now.  */
        sprintf(commandline, "plot %s", yl);

        (void) gr_init(xlims, ylims, xs->v_name,
                       pl->pl_title, NULL, j, 0.0, 0.0,
                       GRID_LIN, PLOT_LIN, xs->v_name, yl, xs->v_type, yt,
                       plot_cur->pl_typename, commandline);

        for (v = pl->pl_dvecs; v; v = v->v_next)
            if (v->v_flags & VF_PLOT) {
                gr_start_internal(v, FALSE);
                ft_graf(v, xs, TRUE);
            }
        inited = 1;

    } else {
        /* plot the last points and resize if needed */
        Input(&reqst, NULL);
        /* First see if we have to make the screen bigger */
        dy = (isreal(xs) ? xs->v_realdata[len - 1] :
              realpart(xs->v_compdata[len - 1]));
        if (ft_grdb)
            fprintf(cp_err, "x = %G\n", dy);
        if (!if_tranparams(ft_curckt, &start, &stop, &step) ||
            !ciprefix("tran", pl->pl_typename)) {
            stop = HUGE;
            start = - stop;
        }
        /* checking for x lo */
        while (dy < currentgraph->data.xmin) {
            changed = TRUE;
            if (ft_grdb)
                fprintf(cp_err, "resize: xlo %G -> %G\n",
                        currentgraph->data.xmin,
                        currentgraph->data.xmin -
                        (currentgraph->data.xmax - currentgraph->data.xmin)
                        * XFACTOR);
            /* set the new x lo value */
            currentgraph->data.xmin -=
                (currentgraph->data.xmax - currentgraph->data.xmin)
                * XFACTOR;
            if (currentgraph->data.xmin < start) {
                currentgraph->data.xmin = start;
                break;
            }
        }
        if (currentgraph->data.xmax < currentgraph->data.xmin)
            currentgraph->data.xmax = currentgraph->data.xmin;
        /* checking for x hi */
        while (dy > currentgraph->data.xmax) {
            changed = TRUE;
            if (ft_grdb)
                fprintf(cp_err, "resize: xhi %G -> %G\n",
                        currentgraph->data.xmax,
                        currentgraph->data.xmax +
                        (currentgraph->data.xmax - currentgraph->data.xmin)
                        * XFACTOR);
            /* set the new x hi value */
            currentgraph->data.xmax +=
                (currentgraph->data.xmax - currentgraph->data.xmin) *
                XFACTOR;
            if (currentgraph->data.xmax > stop) {
                currentgraph->data.xmax = stop;
                break;
            }
        }
        /* checking for all y values */
        for (v = pl->pl_dvecs; v; v = v->v_next) {
            if (!(v->v_flags & VF_PLOT))
                continue;
            dy = (isreal(v) ? v->v_realdata[len - 1] :
                  realpart(v->v_compdata[len - 1]));
            if (ft_grdb)
                fprintf(cp_err, "y = %G\n", dy);
            /* checking for y lo */
            while (dy < currentgraph->data.ymin) {
                changed = TRUE;
                if (ft_grdb)
                    fprintf(cp_err, "resize: ylo %G -> %G\n",
                            currentgraph->data.ymin,
                            currentgraph->data.ymin -
                            (currentgraph->data.ymax - currentgraph->data.ymin)
                            * YFACTOR);
                /* set the new y lo value */
                currentgraph->data.ymin -=
                    (currentgraph->data.ymax - currentgraph->data.ymin)
                    * YFACTOR;
                /* currentgraph->data.ymin +=
                  (dy - currentgraph->data.ymin) * YFACTOR;*/
                /* currentgraph->data.ymin = dy;
                  currentgraph->data.ymin *= (1 + YFACTOR); */
            }
            if (currentgraph->data.ymax < currentgraph->data.ymin)
                currentgraph->data.ymax = currentgraph->data.ymin;
            /* checking for y hi */
            while (dy > currentgraph->data.ymax) {
                changed = TRUE;
                if (ft_grdb)
                    fprintf(cp_err, "resize: yhi %G -> %G\n",
                            currentgraph->data.ymax,
                            currentgraph->data.ymax +
                            (currentgraph->data.ymax - currentgraph->data.ymin)
                            * YFACTOR);
                /* set the new y hi value */
                currentgraph->data.ymax +=
                    (currentgraph->data.ymax - currentgraph->data.ymin)
                    * YFACTOR;
                /* currentgraph->data.ymax +=
                  (dy - currentgraph->data.ymax) * YFACTOR;*/
                /* currentgraph->data.ymax = dy;
                  currentgraph->data.ymax *= (1 + YFACTOR); */
            }
        }

        if (changed) {
            /* Redraw everything. */
            gr_pmsg("Resizing screen");
            gr_resize(currentgraph);
#ifndef X_DISPLAY_MISSING
            gr_redraw(currentgraph);
#endif
        } else {
            /* Just connect the last two points. This won't be done
             * with curve interpolation, so it might look funny.  */
            for (v = pl->pl_dvecs; v; v = v->v_next)
                if (v->v_flags & VF_PLOT) {
                    gr_point(v,
                             (isreal(xs) ? xs->v_realdata[len - 1] :
                              realpart(xs->v_compdata[len - 1])),
                             (isreal(v) ? v->v_realdata[len - 1] :
                              realpart(v->v_compdata[len - 1])),
                             (isreal(xs) ? xs->v_realdata[len - 2] :
                              realpart(xs->v_compdata[len - 2])),
                             (isreal(v) ? v->v_realdata[len - 2] :
                              realpart(v->v_compdata[len - 2])),
                             len - 1);
                }
        }
    }
    DevUpdate();
    return (inited);
}
コード例 #2
0
ファイル: fourier.c プロジェクト: amarnathmhn/ngspice
int
fourier(wordlist *wl, struct plot *current_plot)
{
    struct dvec *time, *vec;
    struct pnode *pn, *names;
    double *ff, fundfreq, *data = NULL;
    int nfreqs, fourgridsize, polydegree;
    double *freq, *mag, *phase, *nmag, *nphase;  /* Outputs from CKTfour */
    double thd, *timescale = NULL;
    char *s;
    int i, err, fw;
    char xbuf[20];
    int shift;
    int rv = 1;

    char newvecname[32];
    struct dvec *n;
    int newveccount = 1;
    static int callstof = 1;

    if (!current_plot)
        return 1;

    sprintf(xbuf, "%1.1e", 0.0);
    shift = (int) strlen(xbuf) - 7;
    if (!current_plot || !current_plot->pl_scale) {
        fprintf(cp_err, "Error: no vectors loaded.\n");
        return 1;
    }

    if (!cp_getvar("nfreqs", CP_NUM, &nfreqs) || nfreqs < 1)
        nfreqs = 10;
    if (!cp_getvar("polydegree", CP_NUM, &polydegree) || polydegree < 0)
        polydegree = 1;
    if (!cp_getvar("fourgridsize", CP_NUM, &fourgridsize) || fourgridsize < 1)
        fourgridsize = DEF_FOURGRIDSIZE;

    time = current_plot->pl_scale;
    if (!isreal(time)) {
        fprintf(cp_err, "Error: fourier needs real time scale\n");
        return 1;
    }
    s = wl->wl_word;
    if ((ff = ft_numparse(&s, FALSE)) == NULL || (*ff <= 0.0)) {
        fprintf(cp_err, "Error: bad fund freq %s\n", wl->wl_word);
        return 1;
    }
    fundfreq = *ff;

    freq = TMALLOC(double, nfreqs);
    mag = TMALLOC(double, nfreqs);
    phase = TMALLOC(double, nfreqs);
    nmag = TMALLOC(double, nfreqs);
    nphase = TMALLOC(double, nfreqs);

    wl = wl->wl_next;
    names = ft_getpnames(wl, TRUE);
    for (pn = names; pn; pn = pn->pn_next) {
        vec = ft_evaluate(pn);
        for (; vec; vec = vec->v_link2) {

            if (vec->v_length != time->v_length) {
                fprintf(cp_err,
                        "Error: lengths don't match: %d, %d\n",
                        vec->v_length, time->v_length);
                continue;
            }

            if (!isreal(vec)) {
                fprintf(cp_err, "Error: %s isn't real!\n", vec->v_name);
                continue;
            }

            if (polydegree) {
                double *dp, d;
                /* Build the grid... */
                timescale = TMALLOC(double, fourgridsize);
                data = TMALLOC(double, fourgridsize);
                dp = ft_minmax(time, TRUE);
                /* Now get the last fund freq... */
                d = 1 / fundfreq;   /* The wavelength... */
                if (dp[1] - dp[0] < d) {
                    fprintf(cp_err, "Error: wavelength longer than time span\n");
                    goto done;
                } else if (dp[1] - dp[0] > d) {
                    dp[0] = dp[1] - d;
                }

                d = (dp[1] - dp[0]) / fourgridsize;
                for (i = 0; i < fourgridsize; i++)
                    timescale[i] = dp[0] + i * d;

                /* Now interpolate the data... */
                if (!ft_interpolate(vec->v_realdata, data,
                                    time->v_realdata, vec->v_length,
                                    timescale, fourgridsize,
                                    polydegree)) {
                    fprintf(cp_err, "Error: can't interpolate\n");
                    goto done;
                }
            } else {
                fourgridsize = vec->v_length;
                data = vec->v_realdata;
                timescale = time->v_realdata;
            }

            err = CKTfour(fourgridsize, nfreqs, &thd, timescale,
                          data, fundfreq, freq, mag, phase, nmag,
                          nphase);
            if (err != OK) {
                ft_sperror(err, "fourier");
                goto done;
            }

            fprintf(cp_out, "Fourier analysis for %s:\n", vec->v_name);
            fprintf(cp_out,
                    "  No. Harmonics: %d, THD: %g %%, Gridsize: %d, Interpolation Degree: %d\n\n",
                    nfreqs, thd, fourgridsize,
                    polydegree);
            /* Each field will have width cp_numdgt + 6 (or 7
             * with HP-UX) + 1 if there is a - sign.
             */
            fw = ((cp_numdgt > 0) ? cp_numdgt : 6) + 5 + shift;
            fprintf(cp_out, "Harmonic %-*s %-*s %-*s %-*s %-*s\n",
                    fw, "Frequency", fw, "Magnitude",
                    fw, "Phase", fw, "Norm. Mag",
                    fw, "Norm. Phase");
            fprintf(cp_out, "-------- %-*s %-*s %-*s %-*s %-*s\n",
                    fw, "---------", fw, "---------",
                    fw, "-----", fw, "---------",
                    fw, "-----------");
            for (i = 0; i < nfreqs; i++) {
                char *pnumfr, *pnumma, *pnumph,  *pnumnm,   *pnumnp;
                pnumfr = pnum(freq[i]);
                pnumma = pnum(mag[i]);
                pnumph = pnum(phase[i]);
                pnumnm = pnum(nmag[i]);
                pnumnp = pnum(nphase[i]);
                fprintf(cp_out,
                        " %-4d    %-*s %-*s %-*s %-*s %-*s\n",
                        i,
                        fw, pnumfr,
                        fw, pnumma,
                        fw, pnumph,
                        fw, pnumnm,
                        fw, pnumnp);
                tfree(pnumfr);
                tfree(pnumma);
                tfree(pnumph);
                tfree(pnumnm);
                tfree(pnumnp);
            }
            fputs("\n", cp_out);

            /* generate name for new vector, using vec->name */
            sprintf(newvecname, "fourier%d%d", callstof, newveccount);

            /* create and assign a new vector n */
            /* with size 3 * nfreqs in current plot */
            n = alloc(struct dvec);
            ZERO(n, struct dvec);
            n->v_name = copy(newvecname);
            n->v_type = SV_NOTYPE;
            n->v_flags = (VF_REAL | VF_PERMANENT);
            n->v_length = 3 * nfreqs;
            n->v_numdims = 2;
            n->v_dims[0] = 3;
            n->v_dims[1] = nfreqs;

            n->v_realdata = TMALLOC(double, n->v_length);

            vec_new(n);

            /* store data in vector: freq, mag, phase */
            for (i = 0; i < nfreqs; i++) {
                n->v_realdata[i] = freq[i];
                n->v_realdata[i + nfreqs] = mag[i];
                n->v_realdata[i + 2 * nfreqs] = phase[i];
            }
            newveccount++;

            if (polydegree) {
                tfree(timescale);
                tfree(data);
            }
            timescale = NULL;
            data = NULL;
        }
    }