コード例 #1
0
ファイル: ocean.c プロジェクト: danielmarg/blender-main
void BKE_init_ocean(struct Ocean *o, int M, int N, float Lx, float Lz, float V, float l, float A, float w, float damp,
                    float alignment, float depth, float time, short do_height_field, short do_chop, short do_normals,
                    short do_jacobian, int seed)
{
	int i, j, ii;

	BLI_rw_mutex_lock(&o->oceanmutex, THREAD_LOCK_WRITE);

	o->_M = M;
	o->_N = N;
	o->_V = V;
	o->_l = l;
	o->_A = A;
	o->_w = w;
	o->_damp_reflections = 1.0f - damp;
	o->_wind_alignment = alignment;
	o->_depth = depth;
	o->_Lx = Lx;
	o->_Lz = Lz;
	o->_wx = cos(w);
	o->_wz = -sin(w); /* wave direction */
	o->_L = V * V / GRAVITY;  /* largest wave for a given velocity V */
	o->time = time;

	o->_do_disp_y = do_height_field;
	o->_do_normals = do_normals;
	o->_do_chop = do_chop;
	o->_do_jacobian = do_jacobian;

	o->_k = (float *) MEM_mallocN(M * (1 + N / 2) * sizeof(float), "ocean_k");
	o->_h0 = (fftw_complex *) MEM_mallocN(M * N * sizeof(fftw_complex), "ocean_h0");
	o->_h0_minus = (fftw_complex *) MEM_mallocN(M * N * sizeof(fftw_complex), "ocean_h0_minus");
	o->_kx = (float *) MEM_mallocN(o->_M * sizeof(float), "ocean_kx");
	o->_kz = (float *) MEM_mallocN(o->_N * sizeof(float), "ocean_kz");

	/* make this robust in the face of erroneous usage */
	if (o->_Lx == 0.0f)
		o->_Lx = 0.001f;

	if (o->_Lz == 0.0f)
		o->_Lz = 0.001f;

	/* the +ve components and DC */
	for (i = 0; i <= o->_M / 2; ++i)
		o->_kx[i] = 2.0f * (float)M_PI * i / o->_Lx;

	/* the -ve components */
	for (i = o->_M - 1, ii = 0; i > o->_M / 2; --i, ++ii)
		o->_kx[i] = -2.0f * (float)M_PI * ii / o->_Lx;

	/* the +ve components and DC */
	for (i = 0; i <= o->_N / 2; ++i)
		o->_kz[i] = 2.0f * (float)M_PI * i / o->_Lz;

	/* the -ve components */
	for (i = o->_N - 1, ii = 0; i > o->_N / 2; --i, ++ii)
		o->_kz[i] = -2.0f * (float)M_PI * ii / o->_Lz;

	/* pre-calculate the k matrix */
	for (i = 0; i < o->_M; ++i)
		for (j = 0; j <= o->_N / 2; ++j)
			o->_k[i * (1 + o->_N / 2) + j] = sqrt(o->_kx[i] * o->_kx[i] + o->_kz[j] * o->_kz[j]);

	/*srand(seed);*/
	BLI_srand(seed);

	for (i = 0; i < o->_M; ++i) {
		for (j = 0; j < o->_N; ++j) {
			float r1 = gaussRand();
			float r2 = gaussRand();

			fftw_complex r1r2;
			init_complex(r1r2, r1, r2);
			mul_complex_f(o->_h0[i * o->_N + j], r1r2, (float)(sqrt(Ph(o, o->_kx[i], o->_kz[j]) / 2.0f)));
			mul_complex_f(o->_h0_minus[i * o->_N + j], r1r2, (float)(sqrt(Ph(o, -o->_kx[i], -o->_kz[j]) / 2.0f)));
		}
	}

	o->_fft_in = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in");
	o->_htilda = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_htilda");

	if (o->_do_disp_y) {
		o->_disp_y = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_disp_y");
		o->_disp_y_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in, o->_disp_y, FFTW_ESTIMATE);
	}

	if (o->_do_normals) {
		o->_fft_in_nx = (fftw_complex *) MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in_nx");
		o->_fft_in_nz = (fftw_complex *) MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in_nz");

		o->_N_x = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_N_x");
		/* o->_N_y = (float *) fftwf_malloc(o->_M * o->_N * sizeof(float)); (MEM01) */
		o->_N_z = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_N_z");

		o->_N_x_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_nx, o->_N_x, FFTW_ESTIMATE);
		o->_N_z_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_nz, o->_N_z, FFTW_ESTIMATE);
	}

	if (o->_do_chop) {
		o->_fft_in_x = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in_x");
		o->_fft_in_z = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in_z");

		o->_disp_x = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_disp_x");
		o->_disp_z = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_disp_z");

		o->_disp_x_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_x, o->_disp_x, FFTW_ESTIMATE);
		o->_disp_z_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_z, o->_disp_z, FFTW_ESTIMATE);
	}
	if (o->_do_jacobian) {
		o->_fft_in_jxx = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex),
		                                             "ocean_fft_in_jxx");
		o->_fft_in_jzz = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex),
		                                             "ocean_fft_in_jzz");
		o->_fft_in_jxz = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex),
		                                             "ocean_fft_in_jxz");

		o->_Jxx = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_Jxx");
		o->_Jzz = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_Jzz");
		o->_Jxz = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_Jxz");

		o->_Jxx_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_jxx, o->_Jxx, FFTW_ESTIMATE);
		o->_Jzz_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_jzz, o->_Jzz, FFTW_ESTIMATE);
		o->_Jxz_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_jxz, o->_Jxz, FFTW_ESTIMATE);
	}

	BLI_rw_mutex_unlock(&o->oceanmutex);

	set_height_normalize_factor(o);

}
コード例 #2
0
ファイル: ParticleSet.cpp プロジェクト: digideskio/qmcpack
void
ParticleSet::randomizeFromSource (ParticleSet &src)
{
  SpeciesSet& srcSpSet(src.getSpeciesSet());
  SpeciesSet& spSet(getSpeciesSet());
  int srcChargeIndx = srcSpSet.addAttribute("charge");
  int srcMemberIndx = srcSpSet.addAttribute("membersize");
  int ChargeIndex   = spSet.addAttribute("charge");
  int MemberIndx    = spSet.addAttribute("membersize");
  int Nsrc  = src.getTotalNum();
  int Nptcl = getTotalNum();
  int NumSpecies    = spSet.TotalNum;
  int NumSrcSpecies = srcSpSet.TotalNum;
  //Store information about charges and number of each species
  vector<int> Zat, Zspec, NofSpecies, NofSrcSpecies, CurElec;
  Zat.resize(Nsrc);
  Zspec.resize(NumSrcSpecies);
  NofSpecies.resize(NumSpecies);
  CurElec.resize(NumSpecies);
  NofSrcSpecies.resize(NumSrcSpecies);
  for(int spec=0; spec<NumSrcSpecies; spec++)
  {
    Zspec[spec] = (int)round(srcSpSet(srcChargeIndx,spec));
    NofSrcSpecies[spec] = (int)round(srcSpSet(srcMemberIndx,spec));
  }
  for(int spec=0; spec<NumSpecies; spec++)
  {
    NofSpecies[spec] = (int)round(spSet(MemberIndx,spec));
    CurElec[spec] = first(spec);
  }
  int totQ=0;
  for(int iat=0; iat<Nsrc; iat++)
    totQ+=Zat[iat] = Zspec[src.GroupID[iat]];
  app_log() << "  Total ion charge    = " << totQ << endl;
  totQ -= Nptcl;
  app_log() << "  Total system charge = " << totQ << endl;
  // Now, loop over ions, attaching electrons to them to neutralize
  // charge
  int spToken = 0;
  // This is decremented when we run out of electrons in each species
  int spLeft = NumSpecies;
  vector<PosType> gaussRand (Nptcl);
  makeGaussRandom (gaussRand);
  for (int iat=0; iat<Nsrc; iat++)
  {
    // Loop over electrons to add, selecting round-robin from the
    // electron species
    int z = Zat[iat];
    while (z > 0  && spLeft)
    {
      int sp = spToken++ % NumSpecies;
      if (NofSpecies[sp])
      {
        NofSpecies[sp]--;
        z--;
        int elec = CurElec[sp]++;
        app_log() << "  Assigning " << (sp ? "down" : "up  ")
                  << " electron " << elec << " to ion " << iat
                  << " with charge " << z << endl;
        double radius = 0.5* std::sqrt((double)Zat[iat]);
        R[elec] = src.R[iat] + radius * gaussRand[elec];
      }
      else
        spLeft--;
    }
  }
  // Assign remaining electrons
  int ion=0;
  for (int sp=0; sp < NumSpecies; sp++)
  {
    for (int ie=0; ie<NofSpecies[sp]; ie++)
    {
      int iat = ion++ % Nsrc;
      double radius = std::sqrt((double)Zat[iat]);
      int elec = CurElec[sp]++;
      R[elec] = src.R[iat] + radius * gaussRand[elec];
    }
  }
}