/* Check the math used with Twisted Edwards curves. */ static void twistededwards_math (void) { gpg_error_t err; gcry_ctx_t ctx; gcry_mpi_point_t G, Q; gcry_mpi_t k; gcry_mpi_t w, a, x, y, z, p, n, b, I; wherestr = "twistededwards_math"; show ("checking basic Twisted Edwards math\n"); err = gcry_mpi_ec_new (&ctx, NULL, "Ed25519"); if (err) die ("gcry_mpi_ec_new failed: %s\n", gpg_strerror (err)); k = hex2mpi ("2D3501E723239632802454EE5DDC406EFB0BDF18486A5BDE9C0390A9C2984004" "F47252B628C953625B8DEB5DBCB8DA97AA43A1892D11FA83596F42E0D89CB1B6"); G = gcry_mpi_ec_get_point ("g", ctx, 1); if (!G) die ("gcry_mpi_ec_get_point(G) failed\n"); Q = gcry_mpi_point_new (0); w = gcry_mpi_new (0); a = gcry_mpi_new (0); x = gcry_mpi_new (0); y = gcry_mpi_new (0); z = gcry_mpi_new (0); I = gcry_mpi_new (0); p = gcry_mpi_ec_get_mpi ("p", ctx, 1); n = gcry_mpi_ec_get_mpi ("n", ctx, 1); b = gcry_mpi_ec_get_mpi ("b", ctx, 1); /* Check: 2^{p-1} mod p == 1 */ gcry_mpi_sub_ui (a, p, 1); gcry_mpi_powm (w, GCRYMPI_CONST_TWO, a, p); if (gcry_mpi_cmp_ui (w, 1)) fail ("failed assertion: 2^{p-1} mod p == 1\n"); /* Check: p % 4 == 1 */ gcry_mpi_mod (w, p, GCRYMPI_CONST_FOUR); if (gcry_mpi_cmp_ui (w, 1)) fail ("failed assertion: p % 4 == 1\n"); /* Check: 2^{n-1} mod n == 1 */ gcry_mpi_sub_ui (a, n, 1); gcry_mpi_powm (w, GCRYMPI_CONST_TWO, a, n); if (gcry_mpi_cmp_ui (w, 1)) fail ("failed assertion: 2^{n-1} mod n == 1\n"); /* Check: b^{(p-1)/2} mod p == p-1 */ gcry_mpi_sub_ui (a, p, 1); gcry_mpi_div (x, NULL, a, GCRYMPI_CONST_TWO, -1); gcry_mpi_powm (w, b, x, p); gcry_mpi_abs (w); if (gcry_mpi_cmp (w, a)) fail ("failed assertion: b^{(p-1)/2} mod p == p-1\n"); /* I := 2^{(p-1)/4} mod p */ gcry_mpi_sub_ui (a, p, 1); gcry_mpi_div (x, NULL, a, GCRYMPI_CONST_FOUR, -1); gcry_mpi_powm (I, GCRYMPI_CONST_TWO, x, p); /* Check: I^2 mod p == p-1 */ gcry_mpi_powm (w, I, GCRYMPI_CONST_TWO, p); if (gcry_mpi_cmp (w, a)) fail ("failed assertion: I^2 mod p == p-1\n"); /* Check: G is on the curve */ if (!gcry_mpi_ec_curve_point (G, ctx)) fail ("failed assertion: G is on the curve\n"); /* Check: nG == (0,1) */ gcry_mpi_ec_mul (Q, n, G, ctx); if (gcry_mpi_ec_get_affine (x, y, Q, ctx)) fail ("failed to get affine coordinates\n"); if (gcry_mpi_cmp_ui (x, 0) || gcry_mpi_cmp_ui (y, 1)) fail ("failed assertion: nG == (0,1)\n"); /* Now two arbitrary point operations taken from the ed25519.py sample data. */ gcry_mpi_release (a); a = hex2mpi ("4f71d012df3c371af3ea4dc38385ca5bb7272f90cb1b008b3ed601c76de1d496" "e30cbf625f0a756a678d8f256d5325595cccc83466f36db18f0178eb9925edd3"); gcry_mpi_ec_mul (Q, a, G, ctx); if (gcry_mpi_ec_get_affine (x, y, Q, ctx)) fail ("failed to get affine coordinates\n"); if (cmp_mpihex (x, ("157f7361c577aad36f67ed33e38dc7be" "00014fecc2165ca5cee9eee19fe4d2c1")) || cmp_mpihex (y, ("5a69dbeb232276b38f3f5016547bb2a2" "4025645f0b820e72b8cad4f0a909a092"))) { fail ("sample point multiply failed:\n"); print_mpi ("r", a); print_mpi ("Rx", x); print_mpi ("Ry", y); } gcry_mpi_release (a); a = hex2mpi ("2d3501e723239632802454ee5ddc406efb0bdf18486a5bde9c0390a9c2984004" "f47252b628c953625b8deb5dbcb8da97aa43a1892d11fa83596f42e0d89cb1b6"); gcry_mpi_ec_mul (Q, a, G, ctx); if (gcry_mpi_ec_get_affine (x, y, Q, ctx)) fail ("failed to get affine coordinates\n"); if (cmp_mpihex (x, ("6218e309d40065fcc338b3127f468371" "82324bd01ce6f3cf81ab44e62959c82a")) || cmp_mpihex (y, ("5501492265e073d874d9e5b81e7f8784" "8a826e80cce2869072ac60c3004356e5"))) { fail ("sample point multiply failed:\n"); print_mpi ("r", a); print_mpi ("Rx", x); print_mpi ("Ry", y); } gcry_mpi_release (I); gcry_mpi_release (b); gcry_mpi_release (n); gcry_mpi_release (p); gcry_mpi_release (w); gcry_mpi_release (a); gcry_mpi_release (x); gcry_mpi_release (y); gcry_mpi_release (z); gcry_mpi_point_release (Q); gcry_mpi_point_release (G); gcry_mpi_release (k); gcry_ctx_release (ctx); }
/* This tests checks that the low-level EC API yields the same result as using the high level API. The values have been taken from a test run using the high level API. */ static void basic_ec_math (void) { gpg_error_t err; gcry_ctx_t ctx; gcry_mpi_t P, A; gcry_mpi_point_t G, Q; gcry_mpi_t d; gcry_mpi_t x, y, z; wherestr = "basic_ec_math"; show ("checking basic math functions for EC\n"); P = hex2mpi ("0xfffffffffffffffffffffffffffffffeffffffffffffffff"); A = hex2mpi ("0xfffffffffffffffffffffffffffffffefffffffffffffffc"); G = make_point ("188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012", "7192B95FFC8DA78631011ED6B24CDD573F977A11E794811", "1"); d = hex2mpi ("D4EF27E32F8AD8E2A1C6DDEBB1D235A69E3CEF9BCE90273D"); Q = gcry_mpi_point_new (0); err = ec_p_new (&ctx, P, A); if (err) die ("ec_p_new failed: %s\n", gpg_strerror (err)); x = gcry_mpi_new (0); y = gcry_mpi_new (0); z = gcry_mpi_new (0); { /* A quick check that multiply by zero works. */ gcry_mpi_t tmp; tmp = gcry_mpi_new (0); gcry_mpi_ec_mul (Q, tmp, G, ctx); gcry_mpi_release (tmp); gcry_mpi_point_get (x, y, z, Q); if (gcry_mpi_cmp_ui (x, 0) || gcry_mpi_cmp_ui (y, 0) || gcry_mpi_cmp_ui (z, 0)) fail ("multiply a point by zero failed\n"); } gcry_mpi_ec_mul (Q, d, G, ctx); gcry_mpi_point_get (x, y, z, Q); if (cmp_mpihex (x, "222D9EC717C89D047E0898C9185B033CD11C0A981EE6DC66") || cmp_mpihex (y, "605DE0A82D70D3E0F84A127D0739ED33D657DF0D054BFDE8") || cmp_mpihex (z, "00B06B519071BC536999AC8F2D3934B3C1FC9EACCD0A31F88F")) fail ("computed public key does not match\n"); if (debug) { print_mpi ("Q.x", x); print_mpi ("Q.y", y); print_mpi ("Q.z", z); } if (gcry_mpi_ec_get_affine (x, y, Q, ctx)) fail ("failed to get affine coordinates\n"); if (cmp_mpihex (x, "008532093BA023F4D55C0424FA3AF9367E05F309DC34CDC3FE") || cmp_mpihex (y, "00C13CA9E617C6C8487BFF6A726E3C4F277913D97117939966")) fail ("computed affine coordinates of public key do not match\n"); if (debug) { print_mpi ("q.x", x); print_mpi ("q.y", y); } gcry_mpi_release (z); gcry_mpi_release (y); gcry_mpi_release (x); gcry_mpi_point_release (Q); gcry_mpi_release (d); gcry_mpi_point_release (G); gcry_mpi_release (A); gcry_mpi_release (P); gcry_ctx_release (ctx); }
/* This is the same as basic_ec_math but uses more advanced features. */ static void basic_ec_math_simplified (void) { gpg_error_t err; gcry_ctx_t ctx; gcry_mpi_point_t G, Q; gcry_mpi_t d; gcry_mpi_t x, y, z; gcry_sexp_t sexp; wherestr = "basic_ec_math_simplified"; show ("checking basic math functions for EC (variant)\n"); d = hex2mpi ("D4EF27E32F8AD8E2A1C6DDEBB1D235A69E3CEF9BCE90273D"); Q = gcry_mpi_point_new (0); err = gcry_mpi_ec_new (&ctx, NULL, "NIST P-192"); if (err) die ("gcry_mpi_ec_new failed: %s\n", gpg_strerror (err)); G = gcry_mpi_ec_get_point ("g", ctx, 1); if (!G) die ("gcry_mpi_ec_get_point(G) failed\n"); gcry_mpi_ec_mul (Q, d, G, ctx); x = gcry_mpi_new (0); y = gcry_mpi_new (0); z = gcry_mpi_new (0); gcry_mpi_point_get (x, y, z, Q); if (cmp_mpihex (x, "222D9EC717C89D047E0898C9185B033CD11C0A981EE6DC66") || cmp_mpihex (y, "605DE0A82D70D3E0F84A127D0739ED33D657DF0D054BFDE8") || cmp_mpihex (z, "00B06B519071BC536999AC8F2D3934B3C1FC9EACCD0A31F88F")) fail ("computed public key does not match\n"); if (debug) { print_mpi ("Q.x", x); print_mpi ("Q.y", y); print_mpi ("Q.z", z); } if (gcry_mpi_ec_get_affine (x, y, Q, ctx)) fail ("failed to get affine coordinates\n"); if (cmp_mpihex (x, "008532093BA023F4D55C0424FA3AF9367E05F309DC34CDC3FE") || cmp_mpihex (y, "00C13CA9E617C6C8487BFF6A726E3C4F277913D97117939966")) fail ("computed affine coordinates of public key do not match\n"); if (debug) { print_mpi ("q.x", x); print_mpi ("q.y", y); } gcry_mpi_release (z); gcry_mpi_release (y); gcry_mpi_release (x); /* Let us also check whether we can update the context. */ err = gcry_mpi_ec_set_point ("g", G, ctx); if (err) die ("gcry_mpi_ec_set_point(G) failed\n"); err = gcry_mpi_ec_set_mpi ("d", d, ctx); if (err) die ("gcry_mpi_ec_set_mpi(d) failed\n"); /* FIXME: Below we need to check that the returned S-expression is as requested. For now we use manual inspection using --debug. */ /* Does get_sexp return the private key? */ err = gcry_pubkey_get_sexp (&sexp, 0, ctx); if (err) fail ("gcry_pubkey_get_sexp(0) failed: %s\n", gpg_strerror (err)); else if (debug) print_sexp ("Result of gcry_pubkey_get_sexp (0):\n", sexp); gcry_sexp_release (sexp); /* Does get_sexp return the public key if requested? */ err = gcry_pubkey_get_sexp (&sexp, GCRY_PK_GET_PUBKEY, ctx); if (err) fail ("gcry_pubkey_get_sexp(GET_PUBKEY) failed: %s\n", gpg_strerror (err)); else if (debug) print_sexp ("Result of gcry_pubkey_get_sexp (GET_PUBKEY):\n", sexp); gcry_sexp_release (sexp); /* Does get_sexp return the public key after d has been deleted? */ err = gcry_mpi_ec_set_mpi ("d", NULL, ctx); if (err) die ("gcry_mpi_ec_set_mpi(d=NULL) failed\n"); err = gcry_pubkey_get_sexp (&sexp, 0, ctx); if (err) fail ("gcry_pubkey_get_sexp(0 w/o d) failed: %s\n", gpg_strerror (err)); else if (debug) print_sexp ("Result of gcry_pubkey_get_sexp (0 w/o d):\n", sexp); gcry_sexp_release (sexp); /* Does get_sexp return an error after d has been deleted? */ err = gcry_pubkey_get_sexp (&sexp, GCRY_PK_GET_SECKEY, ctx); if (gpg_err_code (err) != GPG_ERR_NO_SECKEY) fail ("gcry_pubkey_get_sexp(GET_SECKEY) returned wrong error: %s\n", gpg_strerror (err)); gcry_sexp_release (sexp); /* Does get_sexp return an error after d and Q have been deleted? */ err = gcry_mpi_ec_set_point ("q", NULL, ctx); if (err) die ("gcry_mpi_ec_set_point(q=NULL) failed\n"); err = gcry_pubkey_get_sexp (&sexp, 0, ctx); if (gpg_err_code (err) != GPG_ERR_BAD_CRYPT_CTX) fail ("gcry_pubkey_get_sexp(0 w/o Q,d) returned wrong error: %s\n", gpg_strerror (err)); gcry_sexp_release (sexp); gcry_mpi_point_release (Q); gcry_mpi_release (d); gcry_mpi_point_release (G); gcry_ctx_release (ctx); }
/* * Test iterative X25519 computation through lower layer MPI routines. * * Input: K (as hex string), ITER, R (as hex string) * * where R is expected result of iterating X25519 by ITER times. * */ static void test_it (int testno, const char *k_str, int iter, const char *result_str) { gcry_ctx_t ctx; gpg_error_t err; void *buffer = NULL; size_t buflen; gcry_mpi_t mpi_k = NULL; gcry_mpi_t mpi_x = NULL; gcry_mpi_point_t P = NULL; gcry_mpi_point_t Q; int i; gcry_mpi_t mpi_kk = NULL; if (verbose > 1) info ("Running test %d: iteration=%d\n", testno, iter); gcry_mpi_ec_new (&ctx, NULL, "Curve25519"); Q = gcry_mpi_point_new (0); if (!(buffer = hex2buffer (k_str, &buflen)) || buflen != 32) { fail ("error scanning MPI for test %d, %s: %s", testno, "k", "invalid hex string"); goto leave; } reverse_buffer (buffer, buflen); if ((err = gcry_mpi_scan (&mpi_x, GCRYMPI_FMT_USG, buffer, buflen, NULL))) { fail ("error scanning MPI for test %d, %s: %s", testno, "x", gpg_strerror (err)); goto leave; } xfree (buffer); buffer = NULL; P = gcry_mpi_point_set (NULL, mpi_x, NULL, GCRYMPI_CONST_ONE); mpi_k = gcry_mpi_copy (mpi_x); if (debug) print_mpi ("k", mpi_k); for (i = 0; i < iter; i++) { /* * Another variant of decodeScalar25519 thing. */ mpi_kk = gcry_mpi_set (mpi_kk, mpi_k); gcry_mpi_set_bit (mpi_kk, 254); gcry_mpi_clear_bit (mpi_kk, 255); gcry_mpi_clear_bit (mpi_kk, 0); gcry_mpi_clear_bit (mpi_kk, 1); gcry_mpi_clear_bit (mpi_kk, 2); gcry_mpi_ec_mul (Q, mpi_kk, P, ctx); P = gcry_mpi_point_set (P, mpi_k, NULL, GCRYMPI_CONST_ONE); gcry_mpi_ec_get_affine (mpi_k, NULL, Q, ctx); if (debug) print_mpi ("k", mpi_k); } { unsigned char res[32]; char *r, *r0; gcry_mpi_print (GCRYMPI_FMT_USG, res, 32, NULL, mpi_k); reverse_buffer (res, 32); r0 = r = xmalloc (65); if (!r0) { fail ("memory allocation for test %d", testno); goto leave; } for (i=0; i < 32; i++, r += 2) snprintf (r, 3, "%02x", res[i]); if (strcmp (result_str, r0)) { fail ("curv25519 failed for test %d: %s", testno, "wrong value returned"); info (" expected: '%s'", result_str); info (" got: '%s'", r0); } xfree (r0); } leave: gcry_mpi_release (mpi_kk); gcry_mpi_release (mpi_k); gcry_mpi_point_release (P); gcry_mpi_release (mpi_x); xfree (buffer); gcry_mpi_point_release (Q); gcry_ctx_release (ctx); }