/** * Multiply the generator g of the elliptic curve by @a val * to obtain the point on the curve representing @a val. * Afterwards, point addition will correspond to integer * addition. #GNUNET_CRYPTO_ecc_dlog() can be used to * convert a point back to an integer (as long as the * integer is smaller than the MAX of the @a edc context). * * @param edc calculation context for ECC operations * @param val value to encode into a point * @return representation of the value as an ECC point, * must be freed using #GNUNET_CRYPTO_ecc_free() */ gcry_mpi_point_t GNUNET_CRYPTO_ecc_dexp (struct GNUNET_CRYPTO_EccDlogContext *edc, int val) { gcry_mpi_t fact; gcry_mpi_t n; gcry_mpi_point_t g; gcry_mpi_point_t r; g = gcry_mpi_ec_get_point ("g", edc->ctx, 0); GNUNET_assert (NULL != g); fact = gcry_mpi_new (0); if (val < 0) { n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1); gcry_mpi_set_ui (fact, - val); gcry_mpi_sub (fact, n, fact); gcry_mpi_release (n); } else { gcry_mpi_set_ui (fact, val); } r = gcry_mpi_point_new (0); gcry_mpi_ec_mul (r, fact, g, edc->ctx); gcry_mpi_release (fact); gcry_mpi_point_release (g); return r; }
/** * Obtain a random point on the curve and its * additive inverse. Both returned values * must be freed using #GNUNET_CRYPTO_ecc_free(). * * @param edc calculation context for ECC operations * @param[out] r set to a random point on the curve * @param[out] r_inv set to the additive inverse of @a r */ void GNUNET_CRYPTO_ecc_rnd (struct GNUNET_CRYPTO_EccDlogContext *edc, gcry_mpi_point_t *r, gcry_mpi_point_t *r_inv) { gcry_mpi_t fact; gcry_mpi_t n; gcry_mpi_point_t g; fact = GNUNET_CRYPTO_ecc_random_mod_n (edc); /* calculate 'r' */ g = gcry_mpi_ec_get_point ("g", edc->ctx, 0); GNUNET_assert (NULL != g); *r = gcry_mpi_point_new (0); gcry_mpi_ec_mul (*r, fact, g, edc->ctx); /* calculate 'r_inv' */ n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1); gcry_mpi_sub (fact, n, fact); /* fact = n - fact = - fact */ *r_inv = gcry_mpi_point_new (0); gcry_mpi_ec_mul (*r_inv, fact, g, edc->ctx); gcry_mpi_release (n); gcry_mpi_release (fact); gcry_mpi_point_release (g); }
/** * Do pre-calculation for ECC discrete logarithm for small factors. * * @param max maximum value the factor can be * @param mem memory to use (should be smaller than @a max), must not be zero. * @return @a max if dlog failed, otherwise the factor */ struct GNUNET_CRYPTO_EccDlogContext * GNUNET_CRYPTO_ecc_dlog_prepare (unsigned int max, unsigned int mem) { struct GNUNET_CRYPTO_EccDlogContext *edc; unsigned int K = ((max + (mem-1)) / mem); gcry_mpi_point_t g; struct GNUNET_PeerIdentity key; gcry_mpi_point_t gKi; gcry_mpi_t fact; gcry_mpi_t n; unsigned int i; GNUNET_assert (max < INT32_MAX); edc = GNUNET_new (struct GNUNET_CRYPTO_EccDlogContext); edc->max = max; edc->mem = mem; edc->map = GNUNET_CONTAINER_multipeermap_create (mem * 2, GNUNET_NO); GNUNET_assert (0 == gcry_mpi_ec_new (&edc->ctx, NULL, CURVE)); g = gcry_mpi_ec_get_point ("g", edc->ctx, 0); GNUNET_assert (NULL != g); fact = gcry_mpi_new (0); gKi = gcry_mpi_point_new (0); for (i=0;i<=mem;i++) { gcry_mpi_set_ui (fact, i * K); gcry_mpi_ec_mul (gKi, fact, g, edc->ctx); extract_pk (gKi, edc->ctx, &key); GNUNET_assert (GNUNET_OK == GNUNET_CONTAINER_multipeermap_put (edc->map, &key, (void*) (long) i + max, GNUNET_CONTAINER_MULTIHASHMAPOPTION_UNIQUE_ONLY)); } /* negative values */ n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1); for (i=1;i<mem;i++) { gcry_mpi_set_ui (fact, i * K); gcry_mpi_sub (fact, n, fact); gcry_mpi_ec_mul (gKi, fact, g, edc->ctx); extract_pk (gKi, edc->ctx, &key); GNUNET_assert (GNUNET_OK == GNUNET_CONTAINER_multipeermap_put (edc->map, &key, (void*) (long) max - i, GNUNET_CONTAINER_MULTIHASHMAPOPTION_UNIQUE_ONLY)); } gcry_mpi_release (fact); gcry_mpi_release (n); gcry_mpi_point_release (gKi); gcry_mpi_point_release (g); return edc; }
/** * Do some DLOG operations for testing. * * @param edc context for ECC operations * @param do_dlog #GNUNET_YES if we want to actually do the bencharked operation */ static void test_dlog (struct GNUNET_CRYPTO_EccDlogContext *edc, int do_dlog) { gcry_mpi_t fact; gcry_mpi_t n; gcry_ctx_t ctx; gcry_mpi_point_t q; gcry_mpi_point_t g; unsigned int i; int x; int iret; GNUNET_assert (0 == gcry_mpi_ec_new (&ctx, NULL, CURVE)); g = gcry_mpi_ec_get_point ("g", ctx, 0); GNUNET_assert (NULL != g); n = gcry_mpi_ec_get_mpi ("n", ctx, 0); q = gcry_mpi_point_new (0); fact = gcry_mpi_new (0); for (i=0;i<TEST_ITER;i++) { fprintf (stderr, "."); x = GNUNET_CRYPTO_random_u32 (GNUNET_CRYPTO_QUALITY_WEAK, MAX_FACT); if (0 == GNUNET_CRYPTO_random_u32 (GNUNET_CRYPTO_QUALITY_WEAK, 2)) { gcry_mpi_set_ui (fact, x); gcry_mpi_sub (fact, n, fact); x = - x; } else { gcry_mpi_set_ui (fact, x); } gcry_mpi_ec_mul (q, fact, g, ctx); if ( (GNUNET_YES == do_dlog) && (x != (iret = GNUNET_CRYPTO_ecc_dlog (edc, q))) ) { fprintf (stderr, "DLOG failed for value %d (%d)\n", x, iret); GNUNET_assert (0); } } gcry_mpi_release (fact); gcry_mpi_release (n); gcry_mpi_point_release (g); gcry_mpi_point_release (q); gcry_ctx_release (ctx); fprintf (stderr, "\n"); }
/** * Multiply the generator g of the elliptic curve by @a val * to obtain the point on the curve representing @a val. * * @param edc calculation context for ECC operations * @param val (positive) value to encode into a point * @return representation of the value as an ECC point, * must be freed using #GNUNET_CRYPTO_ecc_free() */ gcry_mpi_point_t GNUNET_CRYPTO_ecc_dexp_mpi (struct GNUNET_CRYPTO_EccDlogContext *edc, gcry_mpi_t val) { gcry_mpi_point_t g; gcry_mpi_point_t r; g = gcry_mpi_ec_get_point ("g", edc->ctx, 0); GNUNET_assert (NULL != g); r = gcry_mpi_point_new (0); gcry_mpi_ec_mul (r, val, g, edc->ctx); gcry_mpi_point_release (g); return r; }
/** * Calculate ECC discrete logarithm for small factors. * * @param edc precalculated values, determine range of factors * @param input point on the curve to factor * @return `edc->max` if dlog failed, otherwise the factor */ int GNUNET_CRYPTO_ecc_dlog (struct GNUNET_CRYPTO_EccDlogContext *edc, gcry_mpi_point_t input) { unsigned int K = ((edc->max + (edc->mem-1)) / edc->mem); gcry_mpi_point_t g; struct GNUNET_PeerIdentity key; gcry_mpi_point_t q; unsigned int i; int res; void *retp; g = gcry_mpi_ec_get_point ("g", edc->ctx, 0); GNUNET_assert (NULL != g); q = gcry_mpi_point_new (0); res = edc->max; for (i=0;i<=edc->max/edc->mem;i++) { if (0 == i) extract_pk (input, edc->ctx, &key); else extract_pk (q, edc->ctx, &key); retp = GNUNET_CONTAINER_multipeermap_get (edc->map, &key); if (NULL != retp) { res = (((long) retp) - edc->max) * K - i; /* we continue the loop here to make the implementation "constant-time". If we do not care about this, we could just 'break' here and do fewer operations... */ } if (i == edc->max/edc->mem) break; /* q = q + g */ if (0 == i) gcry_mpi_ec_add (q, input, g, edc->ctx); else gcry_mpi_ec_add (q, q, g, edc->ctx); } gcry_mpi_point_release (g); gcry_mpi_point_release (q); return res; }
static int get_and_cmp_point (const char *name, const char *mpi_x_string, const char *mpi_y_string, const char *desc, gcry_ctx_t ctx) { gcry_mpi_point_t point; gcry_mpi_t x, y, z; int result = 0; point = gcry_mpi_ec_get_point (name, ctx, 1); if (!point) { fail ("error getting point parameter '%s' of curve '%s'\n", name, desc); return 1; } if (debug) print_point (name, point); x = gcry_mpi_new (0); y = gcry_mpi_new (0); z = gcry_mpi_new (0); gcry_mpi_point_snatch_get (x, y, z, point); if (cmp_mpihex (x, mpi_x_string)) { fail ("x coordinate of '%s' of curve '%s' does not match\n", name, desc); result = 1; } if (cmp_mpihex (y, mpi_y_string)) { fail ("y coordinate of '%s' of curve '%s' does not match\n", name, desc); result = 1; } if (cmp_mpihex (z, "01")) { fail ("z coordinate of '%s' of curve '%s' is not 1\n", name, desc); result = 1; } gcry_mpi_release (x); gcry_mpi_release (y); gcry_mpi_release (z); return result; }
gcry_mpi_point_t deserialize_point(const struct gotr_point* data, const int len) { gcry_sexp_t s; gcry_ctx_t ctx; gcry_mpi_point_t ret; gcry_error_t rc; rc = gcry_sexp_build(&s, NULL, "(public-key(ecc(curve " CURVE ")(q %b)))", len, data); gotr_assert_gpgerr(rc); rc = gcry_mpi_ec_new(&ctx, s, NULL); gotr_assert_gpgerr(rc); gcry_sexp_release(s); ret = gcry_mpi_ec_get_point("q", ctx, 0); gotr_assert(ret); gcry_ctx_release(ctx); return ret; }
/** * Convert binary representation of a point to computational representation. * * @param edc calculation context for ECC operations * @param bin binary point representation * @return computational representation */ gcry_mpi_point_t GNUNET_CRYPTO_ecc_bin_to_point (struct GNUNET_CRYPTO_EccDlogContext *edc, const struct GNUNET_CRYPTO_EccPoint *bin) { gcry_sexp_t pub_sexpr; gcry_ctx_t ctx; gcry_mpi_point_t q; if (0 != gcry_sexp_build (&pub_sexpr, NULL, "(public-key(ecc(curve " CURVE ")(q %b)))", (int) sizeof (bin->q_y), bin->q_y)) { GNUNET_break (0); return NULL; } GNUNET_assert (0 == gcry_mpi_ec_new (&ctx, pub_sexpr, NULL)); gcry_sexp_release (pub_sexpr); q = gcry_mpi_ec_get_point ("q", ctx, 0); gcry_ctx_release (ctx); return q; }
/* This is the same as basic_ec_math but uses more advanced features. */ static void basic_ec_math_simplified (void) { gpg_error_t err; gcry_ctx_t ctx; gcry_mpi_point_t G, Q; gcry_mpi_t d; gcry_mpi_t x, y, z; gcry_sexp_t sexp; wherestr = "basic_ec_math_simplified"; show ("checking basic math functions for EC (variant)\n"); d = hex2mpi ("D4EF27E32F8AD8E2A1C6DDEBB1D235A69E3CEF9BCE90273D"); Q = gcry_mpi_point_new (0); err = gcry_mpi_ec_new (&ctx, NULL, "NIST P-192"); if (err) die ("gcry_mpi_ec_new failed: %s\n", gpg_strerror (err)); G = gcry_mpi_ec_get_point ("g", ctx, 1); if (!G) die ("gcry_mpi_ec_get_point(G) failed\n"); gcry_mpi_ec_mul (Q, d, G, ctx); x = gcry_mpi_new (0); y = gcry_mpi_new (0); z = gcry_mpi_new (0); gcry_mpi_point_get (x, y, z, Q); if (cmp_mpihex (x, "222D9EC717C89D047E0898C9185B033CD11C0A981EE6DC66") || cmp_mpihex (y, "605DE0A82D70D3E0F84A127D0739ED33D657DF0D054BFDE8") || cmp_mpihex (z, "00B06B519071BC536999AC8F2D3934B3C1FC9EACCD0A31F88F")) fail ("computed public key does not match\n"); if (debug) { print_mpi ("Q.x", x); print_mpi ("Q.y", y); print_mpi ("Q.z", z); } if (gcry_mpi_ec_get_affine (x, y, Q, ctx)) fail ("failed to get affine coordinates\n"); if (cmp_mpihex (x, "008532093BA023F4D55C0424FA3AF9367E05F309DC34CDC3FE") || cmp_mpihex (y, "00C13CA9E617C6C8487BFF6A726E3C4F277913D97117939966")) fail ("computed affine coordinates of public key do not match\n"); if (debug) { print_mpi ("q.x", x); print_mpi ("q.y", y); } gcry_mpi_release (z); gcry_mpi_release (y); gcry_mpi_release (x); /* Let us also check wheer we can update the context. */ err = gcry_mpi_ec_set_point ("g", G, ctx); if (err) die ("gcry_mpi_ec_set_point(G) failed\n"); err = gcry_mpi_ec_set_mpi ("d", d, ctx); if (err) die ("gcry_mpi_ec_set_mpi(d) failed\n"); /* FIXME: Below we need to check that the returned S-expression is as requested. For now we use manual inspection using --debug. */ /* Does get_sexp return the private key? */ err = gcry_pubkey_get_sexp (&sexp, 0, ctx); if (err) fail ("gcry_pubkey_get_sexp(0) failed: %s\n", gpg_strerror (err)); else if (verbose) print_sexp ("Result of gcry_pubkey_get_sexp (0):\n", sexp); gcry_sexp_release (sexp); /* Does get_sexp return the public key if requested? */ err = gcry_pubkey_get_sexp (&sexp, GCRY_PK_GET_PUBKEY, ctx); if (err) fail ("gcry_pubkey_get_sexp(GET_PUBKEY) failed: %s\n", gpg_strerror (err)); else if (verbose) print_sexp ("Result of gcry_pubkey_get_sexp (GET_PUBKEY):\n", sexp); gcry_sexp_release (sexp); /* Does get_sexp return the public key if after d has been deleted? */ err = gcry_mpi_ec_set_mpi ("d", NULL, ctx); if (err) die ("gcry_mpi_ec_set_mpi(d=NULL) failed\n"); err = gcry_pubkey_get_sexp (&sexp, 0, ctx); if (err) fail ("gcry_pubkey_get_sexp(0 w/o d) failed: %s\n", gpg_strerror (err)); else if (verbose) print_sexp ("Result of gcry_pubkey_get_sexp (0 w/o d):\n", sexp); gcry_sexp_release (sexp); /* Does get_sexp return an error after d has been deleted? */ err = gcry_pubkey_get_sexp (&sexp, GCRY_PK_GET_SECKEY, ctx); if (gpg_err_code (err) != GPG_ERR_NO_SECKEY) fail ("gcry_pubkey_get_sexp(GET_SECKEY) returned wrong error: %s\n", gpg_strerror (err)); gcry_sexp_release (sexp); /* Does get_sexp return an error after d and Q have been deleted? */ err = gcry_mpi_ec_set_point ("q", NULL, ctx); if (err) die ("gcry_mpi_ec_set_point(q=NULL) failed\n"); err = gcry_pubkey_get_sexp (&sexp, 0, ctx); if (gpg_err_code (err) != GPG_ERR_BAD_CRYPT_CTX) fail ("gcry_pubkey_get_sexp(0 w/o Q,d) returned wrong error: %s\n", gpg_strerror (err)); gcry_sexp_release (sexp); gcry_mpi_point_release (Q); gcry_mpi_release (d); gcry_mpi_point_release (G); gcry_ctx_release (ctx); }
/* Check the math used with Twisted Edwards curves. */ static void twistededwards_math (void) { gpg_error_t err; gcry_ctx_t ctx; gcry_mpi_point_t G, Q; gcry_mpi_t k; gcry_mpi_t w, a, x, y, z, p, n, b, I; wherestr = "twistededwards_math"; show ("checking basic Twisted Edwards math\n"); err = gcry_mpi_ec_new (&ctx, NULL, "Ed25519"); if (err) die ("gcry_mpi_ec_new failed: %s\n", gpg_strerror (err)); k = hex2mpi ("2D3501E723239632802454EE5DDC406EFB0BDF18486A5BDE9C0390A9C2984004" "F47252B628C953625B8DEB5DBCB8DA97AA43A1892D11FA83596F42E0D89CB1B6"); G = gcry_mpi_ec_get_point ("g", ctx, 1); if (!G) die ("gcry_mpi_ec_get_point(G) failed\n"); Q = gcry_mpi_point_new (0); w = gcry_mpi_new (0); a = gcry_mpi_new (0); x = gcry_mpi_new (0); y = gcry_mpi_new (0); z = gcry_mpi_new (0); I = gcry_mpi_new (0); p = gcry_mpi_ec_get_mpi ("p", ctx, 1); n = gcry_mpi_ec_get_mpi ("n", ctx, 1); b = gcry_mpi_ec_get_mpi ("b", ctx, 1); /* Check: 2^{p-1} mod p == 1 */ gcry_mpi_sub_ui (a, p, 1); gcry_mpi_powm (w, GCRYMPI_CONST_TWO, a, p); if (gcry_mpi_cmp_ui (w, 1)) fail ("failed assertion: 2^{p-1} mod p == 1\n"); /* Check: p % 4 == 1 */ gcry_mpi_mod (w, p, GCRYMPI_CONST_FOUR); if (gcry_mpi_cmp_ui (w, 1)) fail ("failed assertion: p % 4 == 1\n"); /* Check: 2^{n-1} mod n == 1 */ gcry_mpi_sub_ui (a, n, 1); gcry_mpi_powm (w, GCRYMPI_CONST_TWO, a, n); if (gcry_mpi_cmp_ui (w, 1)) fail ("failed assertion: 2^{n-1} mod n == 1\n"); /* Check: b^{(p-1)/2} mod p == p-1 */ gcry_mpi_sub_ui (a, p, 1); gcry_mpi_div (x, NULL, a, GCRYMPI_CONST_TWO, -1); gcry_mpi_powm (w, b, x, p); gcry_mpi_abs (w); if (gcry_mpi_cmp (w, a)) fail ("failed assertion: b^{(p-1)/2} mod p == p-1\n"); /* I := 2^{(p-1)/4} mod p */ gcry_mpi_sub_ui (a, p, 1); gcry_mpi_div (x, NULL, a, GCRYMPI_CONST_FOUR, -1); gcry_mpi_powm (I, GCRYMPI_CONST_TWO, x, p); /* Check: I^2 mod p == p-1 */ gcry_mpi_powm (w, I, GCRYMPI_CONST_TWO, p); if (gcry_mpi_cmp (w, a)) fail ("failed assertion: I^2 mod p == p-1\n"); /* Check: G is on the curve */ if (!gcry_mpi_ec_curve_point (G, ctx)) fail ("failed assertion: G is on the curve\n"); /* Check: nG == (0,1) */ gcry_mpi_ec_mul (Q, n, G, ctx); if (gcry_mpi_ec_get_affine (x, y, Q, ctx)) fail ("failed to get affine coordinates\n"); if (gcry_mpi_cmp_ui (x, 0) || gcry_mpi_cmp_ui (y, 1)) fail ("failed assertion: nG == (0,1)\n"); /* Now two arbitrary point operations taken from the ed25519.py sample data. */ gcry_mpi_release (a); a = hex2mpi ("4f71d012df3c371af3ea4dc38385ca5bb7272f90cb1b008b3ed601c76de1d496" "e30cbf625f0a756a678d8f256d5325595cccc83466f36db18f0178eb9925edd3"); gcry_mpi_ec_mul (Q, a, G, ctx); if (gcry_mpi_ec_get_affine (x, y, Q, ctx)) fail ("failed to get affine coordinates\n"); if (cmp_mpihex (x, ("157f7361c577aad36f67ed33e38dc7be" "00014fecc2165ca5cee9eee19fe4d2c1")) || cmp_mpihex (y, ("5a69dbeb232276b38f3f5016547bb2a2" "4025645f0b820e72b8cad4f0a909a092"))) { fail ("sample point multiply failed:\n"); print_mpi ("r", a); print_mpi ("Rx", x); print_mpi ("Ry", y); } gcry_mpi_release (a); a = hex2mpi ("2d3501e723239632802454ee5ddc406efb0bdf18486a5bde9c0390a9c2984004" "f47252b628c953625b8deb5dbcb8da97aa43a1892d11fa83596f42e0d89cb1b6"); gcry_mpi_ec_mul (Q, a, G, ctx); if (gcry_mpi_ec_get_affine (x, y, Q, ctx)) fail ("failed to get affine coordinates\n"); if (cmp_mpihex (x, ("6218e309d40065fcc338b3127f468371" "82324bd01ce6f3cf81ab44e62959c82a")) || cmp_mpihex (y, ("5501492265e073d874d9e5b81e7f8784" "8a826e80cce2869072ac60c3004356e5"))) { fail ("sample point multiply failed:\n"); print_mpi ("r", a); print_mpi ("Rx", x); print_mpi ("Ry", y); } gcry_mpi_release (I); gcry_mpi_release (b); gcry_mpi_release (n); gcry_mpi_release (p); gcry_mpi_release (w); gcry_mpi_release (a); gcry_mpi_release (x); gcry_mpi_release (y); gcry_mpi_release (z); gcry_mpi_point_release (Q); gcry_mpi_point_release (G); gcry_mpi_release (k); gcry_ctx_release (ctx); }