コード例 #1
0
ファイル: IA32LinkageUtils.cpp プロジェクト: LinHu2016/omr
TR::Register *IA32LinkageUtils::pushLongArg(
      TR::Node *child,
      TR::CodeGenerator *cg)
   {
   TR::Register *pushRegister;
   if (child->getRegister() == NULL)
      {
      if (child->getOpCode().isLoadConst())
         {
         TR_X86OpCodes pushOp;

         int32_t highValue = child->getLongIntHigh();
         if (highValue >= -128 && highValue <= 127)
            {
            pushOp = PUSHImms;
            }
         else
            {
            pushOp = PUSHImm4;
            }
         generateImmInstruction(pushOp, child, highValue, cg);

         int32_t lowValue = child->getLongIntLow();
         if (lowValue >= -128 && lowValue <= 127)
            {
            pushOp = PUSHImms;
            }
         else
            {
            pushOp = PUSHImm4;
            }
         generateImmInstruction(pushOp, child, lowValue, cg);
         cg->decReferenceCount(child);
         return NULL;
         }
      else if (child->getOpCodeValue() == TR::dbits2l &&
               !child->normalizeNanValues() &&
               child->getReferenceCount() == 1)
         {
         pushRegister = pushDoubleArg(child->getFirstChild(), cg);
         cg->decReferenceCount(child);
         return pushRegister;
         }
      else if (child->getOpCode().isMemoryReference() &&
                child->getReferenceCount() == 1)
         {
         TR::MemoryReference  *lowMR = generateX86MemoryReference(child, cg);
         generateMemInstruction(PUSHMem, child, generateX86MemoryReference(*lowMR,4, cg), cg);
         generateMemInstruction(PUSHMem, child, lowMR, cg);
         lowMR->decNodeReferenceCounts(cg);
         return NULL;
         }
      }

   pushRegister = cg->evaluate(child);
   generateRegInstruction(PUSHReg, child, pushRegister->getHighOrder(), cg);
   generateRegInstruction(PUSHReg, child, pushRegister->getLowOrder(), cg);
   cg->decReferenceCount(child);
   return pushRegister;
   }
コード例 #2
0
ファイル: AMD64SystemLinkage.cpp プロジェクト: lmaisons/omr
TR::Register *
TR::AMD64SystemLinkage::buildIndirectDispatch(TR::Node *callNode)
   {
   TR::SymbolReference *methodSymRef = callNode->getSymbolReference();
   TR_ASSERT(methodSymRef->getSymbol()->castToMethodSymbol()->isComputed(), "system linkage only supports computed indirect call for now %p\n", callNode);

   // Evaluate VFT
   //
   TR::Register *vftRegister;
   TR::Node *vftNode = callNode->getFirstChild();
   if (vftNode->getRegister())
      {
      vftRegister = vftNode->getRegister();
      }
   else
      {
      vftRegister = cg()->evaluate(vftNode);
      }

   // Allocate adequate register dependencies.
   //
   // pre = number of argument registers + 1 for VFT register
   // post = number of volatile + VMThread + return register
   //
   uint32_t pre = getProperties().getNumIntegerArgumentRegisters() + getProperties().getNumFloatArgumentRegisters() + 1;
   uint32_t post = getProperties().getNumVolatileRegisters() + 1 + (callNode->getDataType() == TR::NoType ? 0 : 1);

#if defined (PYTHON) && 0
   // Treat all preserved GP regs as volatile until register map support available.
   //
   post += getProperties().getNumberOfPreservedGPRegisters();
#endif

   TR::RegisterDependencyConditions *callDeps = generateRegisterDependencyConditions(pre, 1, cg());

   TR::RealRegister::RegNum scratchRegIndex = getProperties().getIntegerScratchRegister(1);
   callDeps->addPostCondition(vftRegister, scratchRegIndex, cg());
   callDeps->stopAddingPostConditions();

   // Evaluate outgoing arguments on the system stack and build pre-conditions.
   //
   int32_t memoryArgSize = buildArgs(callNode, callDeps);

   // Dispatch
   //
   generateRegInstruction(CALLReg, callNode, vftRegister, callDeps, cg());
   cg()->resetIsLeafMethod();

   // Build label post-conditions
   //
   TR::RegisterDependencyConditions *postDeps = generateRegisterDependencyConditions(0, post, cg());
   TR::Register *returnReg = buildVolatileAndReturnDependencies(callNode, postDeps);
   postDeps->stopAddingPostConditions();

   TR::LabelSymbol *postDepLabel = generateLabelSymbol(cg());
   generateLabelInstruction(LABEL, callNode, postDepLabel, postDeps, cg());

   return returnReg;
   }
コード例 #3
0
ファイル: OMRTreeEvaluator.cpp プロジェクト: dinogun/omr
TR::Register *OMR::X86::AMD64::TreeEvaluator::lcmpEvaluator(TR::Node *node, TR::CodeGenerator *cg)
   {
   TR::Node *firstChild  = node->getFirstChild();
   TR::Node *secondChild = node->getSecondChild();

   TR::Register *leftRegister  = cg->evaluate(firstChild);
   TR::Register *rightRegister = cg->evaluate(secondChild);

   // Compare left and right operands, all finished with the operands after this.
   generateRegRegInstruction(CMP8RegReg, node, leftRegister, rightRegister, cg);
   cg->decReferenceCount(firstChild);
   cg->decReferenceCount(secondChild);

   TR::Register *isLessThanReg = cg->allocateRegister();
   TR::Register *isNotEqualReg = cg->allocateRegister();
   cg->getLiveRegisters(TR_GPR)->setByteRegisterAssociation(isLessThanReg);
   cg->getLiveRegisters(TR_GPR)->setByteRegisterAssociation(isNotEqualReg);

   // The state of things in each possible case after each instruction:
   //                       left < right    left = right    left > right
   // Processor flags:      NE=1 LT=1       NE=0  LT=0      NE=1 LT=0
   generateRegInstruction(SETL1Reg, node, isLessThanReg, cg);
   // isLessThanReg:        00000001        00000000        00000000
   generateRegInstruction(SETNE1Reg, node, isNotEqualReg, cg);
   // isNotEqualReg:        00000001        00000000        00000001
   generateRegInstruction(NEG1Reg, node, isLessThanReg, cg);
   // isLessThanReg:        11111111        00000000        00000000
   generateRegRegInstruction(OR1RegReg, node, isNotEqualReg, isLessThanReg, cg);
   // isNotEqualReg:        11111111        00000000        00000001

   generateRegRegInstruction(MOVSXReg4Reg1, node, isNotEqualReg, isNotEqualReg, cg);

   node->setRegister(isNotEqualReg);
   cg->stopUsingRegister(isLessThanReg);

   return isNotEqualReg;
   }
コード例 #4
0
ファイル: SubtractAnalyser.cpp プロジェクト: dinogun/omr
/*
 * users should call the integerSubtractAnalyser or integerSubtractAnalyserWithExplicitOperands APIs instead of calling this one directly 
 */
TR::Register* TR_X86SubtractAnalyser::integerSubtractAnalyserImpl(TR::Node     *root,
                                                                  TR::Node     *firstChild,
                                                                  TR::Node     *secondChild,
                                                                  TR_X86OpCodes regRegOpCode,
                                                                  TR_X86OpCodes regMemOpCode,
                                                                  TR_X86OpCodes copyOpCode,
                                                                  bool needsEflags, 
                                                                  TR::Node *borrow)  
   {
   TR::Register *targetRegister = NULL;
   TR::Register *firstRegister = firstChild->getRegister();
   TR::Register *secondRegister = secondChild->getRegister();
   setInputs(firstChild, firstRegister, secondChild, secondRegister);

   bool loadedConst = false;

   needsEflags = needsEflags || NEED_CC(root);

   if (getEvalChild1())
      {
      // if firstChild and secondChild are the same node, then we should
      // evaluate (take the else path) so that the evaluate for the secondChild
      // below will get the correct/already-allocated register.
      if (firstRegister == 0 && firstChild->getOpCodeValue() == TR::iconst && (firstChild != secondChild))
         {
	   // An iconst may have to be generated.  The iconst will be generated after the
	   //    secondChild is evaluated.  Set the loadedConst flag to true.
	   loadedConst = true;
         }
      else
         {
         firstRegister = _cg->evaluate(firstChild);
         }
      }

   if (getEvalChild2())
      {
      secondRegister = _cg->evaluate(secondChild);
      if (firstChild->getRegister())
         {
         firstRegister = firstChild->getRegister();
         }
      else if (!loadedConst)
         {
         firstRegister = _cg->evaluate(firstChild);
         }
      }

   if (loadedConst)
      {
      if (firstRegister == 0)
         {
         // firstchild is an inconst and it has not been evaluated.
         //   Generate the code for an iconst.
         firstRegister = _cg->allocateRegister();
         TR::TreeEvaluator::insertLoadConstant(firstChild, firstRegister, firstChild->getInt(), TR_RematerializableInt, _cg);
         }
      else
         {
         // firstchild was evaluated.  The code for an iconst does not need to be generated.
         //   Set the loadConst flag to false.
         loadedConst = false;
         }
      }

   if (borrow != 0)
      TR_X86ComputeCC::setCarryBorrow(borrow, true, _cg);

   if (getCopyReg1())
      {
      if (firstChild->getReferenceCount() > 1)
         {
         TR::Register *thirdReg;
         if (firstChild->getOpCodeValue() == TR::iconst && loadedConst)
            {
            thirdReg = firstRegister;
            }
         else
            {
            if (secondChild->getReferenceCount() == 1 && secondRegister != 0 && !needsEflags && (borrow == 0))
               {
               // use one fewer registers if we negate the clobberable secondRegister and add
               // Don't do this though if condition codes are needed.  The sequence
               // depends on the carry flag being valid as if a sub was done.
               //
               bool nodeIs64Bit = TR_X86OpCode(regRegOpCode).hasLongSource();
               generateRegInstruction(NEGReg(nodeIs64Bit), secondChild, secondRegister, _cg);
               thirdReg       = secondRegister;
               secondRegister = firstRegister;
               regRegOpCode   = ADDRegReg(nodeIs64Bit);
               }
            else
               {
               thirdReg = _cg->allocateRegister();
               generateRegRegInstruction(copyOpCode, root, thirdReg, firstRegister, _cg);
               }
            }
         targetRegister = thirdReg;
         if (getSubReg3Reg2())
            {
            generateRegRegInstruction(regRegOpCode, root, thirdReg, secondRegister, _cg);
            }
         else // assert getSubReg3Mem2() == true
            {
            TR::MemoryReference  *tempMR = generateX86MemoryReference(secondChild, _cg);
            generateRegMemInstruction(regMemOpCode, root, thirdReg, tempMR, _cg);
            tempMR->decNodeReferenceCounts(_cg);
            }
         }
      else
         {
         if (getSubReg3Reg2())
            {
            generateRegRegInstruction(regRegOpCode, root, firstRegister, secondRegister, _cg);
            }
         else // assert getSubReg3Mem2() == true
            {
            TR::MemoryReference  *tempMR = generateX86MemoryReference(secondChild, _cg);
            generateRegMemInstruction(regMemOpCode, root, firstRegister, tempMR, _cg);
            tempMR->decNodeReferenceCounts(_cg);
            }
         targetRegister = firstRegister;
         }
      }
   else if (getSubReg1Reg2())
      {
      generateRegRegInstruction(regRegOpCode, root, firstRegister, secondRegister, _cg);
      targetRegister = firstRegister;
      }
   else // assert getSubReg1Mem2() == true
      {
      TR::MemoryReference  *tempMR = generateX86MemoryReference(secondChild, _cg);
      generateRegMemInstruction(regMemOpCode, root, firstRegister, tempMR, _cg);
      targetRegister = firstRegister;
      tempMR->decNodeReferenceCounts(_cg);
      }
   return targetRegister;
   }
コード例 #5
0
ファイル: AMD64SystemLinkage.cpp プロジェクト: lmaisons/omr
TR::Register *TR::AMD64SystemLinkage::buildDirectDispatch(
      TR::Node *callNode,
      bool spillFPRegs)
   {
   TR::SymbolReference *methodSymRef = callNode->getSymbolReference();
   TR::MethodSymbol *methodSymbol = methodSymRef->getSymbol()->castToMethodSymbol();

   TR::Register *returnReg;

   // Allocate adequate register dependencies.
   //
   // pre = number of argument registers
   // post = number of volatile + return register
   //
   uint32_t pre = getProperties().getNumIntegerArgumentRegisters() + getProperties().getNumFloatArgumentRegisters();
   uint32_t post = getProperties().getNumVolatileRegisters() + (callNode->getDataType() == TR::NoType ? 0 : 1);

#if defined (PYTHON) && 0
   // Treat all preserved GP regs as volatile until register map support available.
   //
   post += getProperties().getNumberOfPreservedGPRegisters();
#endif

   TR::RegisterDependencyConditions *preDeps = generateRegisterDependencyConditions(pre, 0, cg());
   TR::RegisterDependencyConditions *postDeps = generateRegisterDependencyConditions(0, post, cg());

   // Evaluate outgoing arguments on the system stack and build pre-conditions.
   //
   int32_t memoryArgSize = buildArgs(callNode, preDeps);

   // Build post-conditions.
   //
   returnReg = buildVolatileAndReturnDependencies(callNode, postDeps);
   postDeps->stopAddingPostConditions();

   // Find the second scratch register in the post dependency list.
   //
   TR::Register *scratchReg = NULL;
   TR::RealRegister::RegNum scratchRegIndex = getProperties().getIntegerScratchRegister(1);
   for (int32_t i=0; i<post; i++)
      {
      if (postDeps->getPostConditions()->getRegisterDependency(i)->getRealRegister() == scratchRegIndex)
         {
         scratchReg = postDeps->getPostConditions()->getRegisterDependency(i)->getRegister();
         break;
         }
      }

#if defined(PYTHON) && 0
   // For Python, store the instruction that contains the GC map at this site into
   // the frame object.
   //
   TR::SymbolReference *frameObjectSymRef =
      comp()->getSymRefTab()->findOrCreateAutoSymbol(comp()->getMethodSymbol(), 0, TR::Address, true, false, true);

   TR::Register *frameObjectRegister = cg()->allocateRegister();
   generateRegMemInstruction(
         L8RegMem,
         callNode,
         frameObjectRegister,
         generateX86MemoryReference(frameObjectSymRef, cg()),
         cg());

   TR::RealRegister *espReal = cg()->machine()->getX86RealRegister(TR::RealRegister::esp);
   TR::Register *gcMapPCRegister = cg()->allocateRegister();

   generateRegMemInstruction(
         LEA8RegMem,
         callNode,
         gcMapPCRegister,
         generateX86MemoryReference(espReal, -8, cg()),
         cg());

   // Use "volatile" registers across the call.  Once proper register map support
   // is implemented, r14 and r15 will no longer be volatile and a different pair
   // should be chosen.
   //
   TR::RegisterDependencyConditions *gcMapDeps = generateRegisterDependencyConditions(0, 2, cg());
   gcMapDeps->addPostCondition(frameObjectRegister, TR::RealRegister::r14, cg());
   gcMapDeps->addPostCondition(gcMapPCRegister, TR::RealRegister::r15, cg());
   gcMapDeps->stopAddingPostConditions();

   generateMemRegInstruction(
         S8MemReg,
         callNode,
         generateX86MemoryReference(frameObjectRegister, fe()->getPythonGCMapPCOffsetInFrame(), cg()),
         gcMapPCRegister,
         gcMapDeps,
         cg());

   cg()->stopUsingRegister(frameObjectRegister);
   cg()->stopUsingRegister(gcMapPCRegister);
#endif

   TR::Instruction *instr;
   if (methodSymbol->getMethodAddress())
      {
      TR_ASSERT(scratchReg, "could not find second scratch register");
      auto LoadRegisterInstruction = generateRegImm64SymInstruction(
         MOV8RegImm64,
         callNode,
         scratchReg,
         (uintptr_t)methodSymbol->getMethodAddress(),
         methodSymRef,
         cg());

      if (TR::Options::getCmdLineOptions()->getOption(TR_EmitRelocatableELFFile))
         {
         LoadRegisterInstruction->setReloKind(TR_NativeMethodAbsolute);
         }

      instr = generateRegInstruction(CALLReg, callNode, scratchReg, preDeps, cg());
      }
   else
      {
      instr = generateImmSymInstruction(CALLImm4, callNode, (uintptrj_t)methodSymbol->getMethodAddress(), methodSymRef, preDeps, cg());
      }

   cg()->resetIsLeafMethod();

   instr->setNeedsGCMap(getProperties().getPreservedRegisterMapForGC());

   cg()->stopUsingRegister(scratchReg);

   TR::LabelSymbol *postDepLabel = generateLabelSymbol(cg());
   generateLabelInstruction(LABEL, callNode, postDepLabel, postDeps, cg());

   return returnReg;
   }
コード例 #6
0
ファイル: AMD64SystemLinkage.cpp プロジェクト: LinHu2016/omr
TR::Register *TR::AMD64SystemLinkage::buildDirectDispatch(
      TR::Node *callNode,
      bool spillFPRegs)
   {
   TR::SymbolReference *methodSymRef = callNode->getSymbolReference();
   TR::MethodSymbol *methodSymbol = methodSymRef->getSymbol()->castToMethodSymbol();

   TR::Register *returnReg;

   // Allocate adequate register dependencies.
   //
   // pre = number of argument registers
   // post = number of volatile + return register
   //
   uint32_t pre = getProperties().getNumIntegerArgumentRegisters() + getProperties().getNumFloatArgumentRegisters();
   uint32_t post = getProperties().getNumVolatileRegisters() + (callNode->getDataType() == TR::NoType ? 0 : 1);

   TR::RegisterDependencyConditions *preDeps = generateRegisterDependencyConditions(pre, 0, cg());
   TR::RegisterDependencyConditions *postDeps = generateRegisterDependencyConditions(0, post, cg());

   // Evaluate outgoing arguments on the system stack and build pre-conditions.
   //
   int32_t memoryArgSize = buildArgs(callNode, preDeps);

   // Build post-conditions.
   //
   returnReg = buildVolatileAndReturnDependencies(callNode, postDeps);
   postDeps->stopAddingPostConditions();

   // Find the second scratch register in the post dependency list.
   //
   TR::Register *scratchReg = NULL;
   TR::RealRegister::RegNum scratchRegIndex = getProperties().getIntegerScratchRegister(1);
   for (int32_t i=0; i<post; i++)
      {
      if (postDeps->getPostConditions()->getRegisterDependency(i)->getRealRegister() == scratchRegIndex)
         {
         scratchReg = postDeps->getPostConditions()->getRegisterDependency(i)->getRegister();
         break;
         }
      }

   TR::Instruction *instr;
   if (methodSymbol->getMethodAddress())
      {
      TR_ASSERT(scratchReg, "could not find second scratch register");
      auto LoadRegisterInstruction = generateRegImm64SymInstruction(
         MOV8RegImm64,
         callNode,
         scratchReg,
         (uintptr_t)methodSymbol->getMethodAddress(),
         methodSymRef,
         cg());

      if (comp()->getOption(TR_EmitRelocatableELFFile))
         {
         LoadRegisterInstruction->setReloKind(TR_NativeMethodAbsolute);
         }

      instr = generateRegInstruction(CALLReg, callNode, scratchReg, preDeps, cg());
      }
   else
      {
      instr = generateImmSymInstruction(CALLImm4, callNode, (uintptrj_t)methodSymbol->getMethodAddress(), methodSymRef, preDeps, cg());
      }

   cg()->resetIsLeafMethod();

   instr->setNeedsGCMap(getProperties().getPreservedRegisterMapForGC());

   cg()->stopUsingRegister(scratchReg);

   TR::LabelSymbol *postDepLabel = generateLabelSymbol(cg());
   generateLabelInstruction(LABEL, callNode, postDepLabel, postDeps, cg());

   return returnReg;
   }
コード例 #7
0
ファイル: FPCompareAnalyser.cpp プロジェクト: dinogun/omr
TR::Register *TR_X86FPCompareAnalyser::fpCompareAnalyser(TR::Node       *root,
                                                         TR_X86OpCodes cmpRegRegOpCode,
                                                         TR_X86OpCodes cmpRegMemOpCode,
                                                         TR_X86OpCodes cmpiRegRegOpCode,
                                                         bool           useFCOMIInstructions)
   {
   TR::Node      *firstChild,
                *secondChild;
   TR::ILOpCodes  cmpOp = root->getOpCodeValue();
   bool          reverseMemOp = false;
   bool          reverseCmpOp = false;
   TR::Compilation* comp = _cg->comp();
   TR_X86OpCodes cmpInstr = useFCOMIInstructions ? cmpiRegRegOpCode : cmpRegRegOpCode;

   // Some operators must have their operands swapped to improve the generated
   // code needed to evaluate the result of the comparison.
   //
   bool mustSwapOperands = (cmpOp == TR::iffcmple ||
                            cmpOp == TR::ifdcmple ||
                            cmpOp == TR::iffcmpgtu ||
                            cmpOp == TR::ifdcmpgtu ||
                            cmpOp == TR::fcmple ||
                            cmpOp == TR::dcmple ||
                            cmpOp == TR::fcmpgtu ||
                            cmpOp == TR::dcmpgtu ||
                            (useFCOMIInstructions &&
                             (cmpOp == TR::iffcmplt ||
                              cmpOp == TR::ifdcmplt ||
                              cmpOp == TR::iffcmpgeu ||
                              cmpOp == TR::ifdcmpgeu ||
                              cmpOp == TR::fcmplt ||
                              cmpOp == TR::dcmplt ||
                              cmpOp == TR::fcmpgeu ||
                              cmpOp == TR::dcmpgeu))) ? true : false;

   // Some operators should not have their operands swapped to improve the generated
   // code needed to evaluate the result of the comparison.
   //
   bool preventOperandSwapping = (cmpOp == TR::iffcmpltu ||
                                  cmpOp == TR::ifdcmpltu ||
                                  cmpOp == TR::iffcmpge ||
                                  cmpOp == TR::ifdcmpge ||
                                  cmpOp == TR::fcmpltu ||
                                  cmpOp == TR::dcmpltu ||
                                  cmpOp == TR::fcmpge ||
                                  cmpOp == TR::dcmpge ||
                                  (useFCOMIInstructions &&
                                   (cmpOp == TR::iffcmpgt ||
                                    cmpOp == TR::ifdcmpgt ||
                                    cmpOp == TR::iffcmpleu ||
                                    cmpOp == TR::ifdcmpleu ||
                                    cmpOp == TR::fcmpgt ||
                                    cmpOp == TR::dcmpgt ||
                                    cmpOp == TR::fcmpleu ||
                                    cmpOp == TR::dcmpleu))) ? true : false;

   // For correctness, don't swap operands of these operators.
   //
   if (cmpOp == TR::fcmpg || cmpOp == TR::fcmpl ||
       cmpOp == TR::dcmpg || cmpOp == TR::dcmpl)
      {
      preventOperandSwapping = true;
      }

   // Initial operand evaluation ordering.
   //
   if (preventOperandSwapping || (!mustSwapOperands && _cg->whichChildToEvaluate(root) == 0))
      {
      firstChild  = root->getFirstChild();
      secondChild = root->getSecondChild();
      setReversedOperands(false);
      }
   else
      {
      firstChild  = root->getSecondChild();
      secondChild = root->getFirstChild();
      setReversedOperands(true);
      }

   TR::Register *firstRegister  = firstChild->getRegister();
   TR::Register *secondRegister = secondChild->getRegister();

   setInputs(firstChild,
             firstRegister,
             secondChild,
             secondRegister,
             useFCOMIInstructions,

             // If either 'preventOperandSwapping' or 'mustSwapOperands' is set then the
             // initial operand ordering set above must be maintained.
             //
             preventOperandSwapping || mustSwapOperands);

   // Make sure any required operand ordering is respected.
   //
   if ((getCmpReg2Reg1() || getCmpReg2Mem1()) &&
       (mustSwapOperands || preventOperandSwapping))
      {
      reverseCmpOp = getCmpReg2Reg1() ? true : false;
      reverseMemOp = getCmpReg2Mem1() ? true : false;
      }

   // If we are not comparing with a memory operand, one of them evaluates
   // to a zero, and the zero is not already on the stack, then we can use
   // FTST to save a register.
   //
   // (With a memory operand, either the constant zero needs to be loaded
   // to use FCOM, or the memory operand needs to be loaded to use FTST,
   // so there is no gain in using FTST.)
   //
   // If the constant zero is in the target register, using FTST means the
   // comparison will be reversed. We cannot do this if the initial ordering
   // of the operands must be maintained.
   //
   // Finally, if FTST is used and this is the last use of the target, the
   // target register may need to be explicitly popped.
   //
   TR::Register *targetRegisterForFTST = NULL;
   TR::Node     *targetChildForFTST = NULL;

   if (getEvalChild1() && isUnevaluatedZero(firstChild))  // do we need getEvalChild1() here?
      {
      if ( ((getCmpReg1Reg2() || reverseCmpOp) && !(preventOperandSwapping || mustSwapOperands)) ||
            (getCmpReg2Reg1() && !reverseCmpOp))
         {
         if (getEvalChild2())
            {
            secondRegister = _cg->evaluate(secondChild);
            }
         targetRegisterForFTST = secondRegister;
         targetChildForFTST = secondChild;
         notReversedOperands();
         }
      }
   else if (getEvalChild2() && isUnevaluatedZero(secondChild))  // do we need getEvalChild2() here?
      {
      if ( (getCmpReg1Reg2() || reverseCmpOp) ||
           (getCmpReg2Reg1() && !reverseCmpOp && !(preventOperandSwapping || mustSwapOperands)) )
         {
         if (getEvalChild1())
            {
            firstRegister = _cg->evaluate(firstChild);
            }
         targetRegisterForFTST = firstRegister;
         targetChildForFTST = firstChild;
         }
      }

   if (!targetRegisterForFTST)
      {
      // If we have a choice, evaluate the target operand last.  By doing so, we
      // help out the register assigner because the target must be TOS.  This
      // avoids an unneccessary FXCH for the target.
      //
      if (getEvalChild1() && getEvalChild2())
         {
         if (getCmpReg1Reg2() || getCmpReg1Mem2())
            {
            secondRegister = _cg->evaluate(secondChild);
            firstRegister = _cg->evaluate(firstChild);
            }
         else
            {
            firstRegister = _cg->evaluate(firstChild);
            secondRegister = _cg->evaluate(secondChild);
            }
         }
      else
         {
         if (getEvalChild1())
            {
            firstRegister = _cg->evaluate(firstChild);
            }

         if (getEvalChild2())
            {
            secondRegister = _cg->evaluate(secondChild);
            }
         }
      }

   // Adjust the FP precision of feeding operands.
   //
   if (firstRegister &&
       (firstRegister->needsPrecisionAdjustment() ||
        comp->getOption(TR_StrictFPCompares) ||
        (firstRegister->mayNeedPrecisionAdjustment() && secondChild->getOpCode().isLoadConst()) ||
        (firstRegister->mayNeedPrecisionAdjustment() && !secondRegister)))
      {
      TR::TreeEvaluator::insertPrecisionAdjustment(firstRegister, root, _cg);
      }

   if (secondRegister &&
       (secondRegister->needsPrecisionAdjustment() ||
        comp->getOption(TR_StrictFPCompares) ||
        (secondRegister->mayNeedPrecisionAdjustment() && firstChild->getOpCode().isLoadConst()) ||
        (secondRegister->mayNeedPrecisionAdjustment() && !firstRegister)))
      {
      TR::TreeEvaluator::insertPrecisionAdjustment(secondRegister, root, _cg);
      }

   // Generate the compare instruction.
   //
   if (targetRegisterForFTST)
      {
      generateFPRegInstruction(FTSTReg, root, targetRegisterForFTST, _cg);
      }
   else if (!useFCOMIInstructions && (getCmpReg1Mem2() || reverseMemOp))
      {
      TR::MemoryReference  *tempMR = generateX86MemoryReference(secondChild, _cg);
      generateFPRegMemInstruction(cmpRegMemOpCode, root, firstRegister, tempMR, _cg);
      tempMR->decNodeReferenceCounts(_cg);
      }
   else if (!useFCOMIInstructions && getCmpReg2Mem1())
      {
      TR::MemoryReference  *tempMR = generateX86MemoryReference(firstChild, _cg);
      generateFPRegMemInstruction(cmpRegMemOpCode, root, secondRegister, tempMR, _cg);
      notReversedOperands();
      tempMR->decNodeReferenceCounts(_cg);
      }
   else if (getCmpReg1Reg2() || reverseCmpOp)
      {
      generateFPCompareRegRegInstruction(cmpInstr, root, firstRegister, secondRegister, _cg);
      }
   else if (getCmpReg2Reg1())
      {
      generateFPCompareRegRegInstruction(cmpInstr, root, secondRegister, firstRegister, _cg);
      notReversedOperands();
      }

   _cg->decReferenceCount(firstChild);
   _cg->decReferenceCount(secondChild);

   // Evaluate the comparison.
   //
   if (getReversedOperands())
      {
      cmpOp = TR::ILOpCode(cmpOp).getOpCodeForSwapChildren();
      TR::Node::recreate(root, cmpOp);
      }

   if (useFCOMIInstructions && !targetRegisterForFTST)
      {
      return NULL;
      }

   // We must manually move the FP condition flags to the EFLAGS register if we don't
   // use the FCOMI instructions.
   //
   TR::Register *accRegister = _cg->allocateRegister();
   TR::RegisterDependencyConditions  *dependencies = generateRegisterDependencyConditions((uint8_t)1, 1, _cg);
   dependencies->addPreCondition(accRegister, TR::RealRegister::eax, _cg);
   dependencies->addPostCondition(accRegister, TR::RealRegister::eax, _cg);
   generateRegInstruction(STSWAcc, root, accRegister, dependencies, _cg);

   // Pop the FTST target register if it is not used any more.
   //
   if (targetRegisterForFTST &&
       targetChildForFTST && targetChildForFTST->getReferenceCount() == 0)
      {
      generateFPSTiST0RegRegInstruction(FSTRegReg, root, targetRegisterForFTST, targetRegisterForFTST, _cg);
      }

   return accRegister;
   }
コード例 #8
0
ファイル: IA32LinkageUtils.cpp プロジェクト: LinHu2016/omr
TR::Register *IA32LinkageUtils::pushIntegerWordArg(
      TR::Node *child,
      TR::CodeGenerator *cg)
   {
   TR::Register *pushRegister;
   if (child->getRegister() == NULL)
      {
      if (child->getOpCode().isLoadConst())
         {
         int32_t value = child->getInt();
         TR_X86OpCodes pushOp;
         if (value >= -128 && value <= 127)
            {
            pushOp = PUSHImms;
            }
         else
            {
            pushOp = PUSHImm4;
            }

         generateImmInstruction(pushOp, child, value, cg);
         cg->decReferenceCount(child);
         return NULL;
         }
      else if (child->getOpCodeValue() == TR::loadaddr)
         {
         TR::SymbolReference * symRef = child->getSymbolReference();
         TR::StaticSymbol *sym = symRef->getSymbol()->getStaticSymbol();
         if (sym)
            {
            TR_ASSERT(!symRef->isUnresolved(), "pushIntegerWordArg loadaddr expecting resolved symbol");
            generateImmSymInstruction(PUSHImm4, child, (uintptrj_t)sym->getStaticAddress(), symRef, cg);
            cg->decReferenceCount(child);
            return NULL;
            }
         }
      else if (child->getOpCodeValue() == TR::fbits2i &&
               !child->normalizeNanValues() &&
               child->getReferenceCount() == 1)
         {
         pushRegister = pushFloatArg(child->getFirstChild(), cg);
         cg->decReferenceCount(child);
         return pushRegister;
         }
      else if (child->getOpCode().isMemoryReference() &&
               (child->getReferenceCount() == 1) &&
               (child->getSymbolReference() != cg->comp()->getSymRefTab()->findVftSymbolRef()))
         {
         TR::MemoryReference  *tempMR = generateX86MemoryReference(child, cg);
         generateMemInstruction(PUSHMem, child, tempMR, cg);
         tempMR->decNodeReferenceCounts(cg);
         cg->decReferenceCount(child);
         return NULL;
         }
      }

   pushRegister = cg->evaluate(child);
   generateRegInstruction(PUSHReg, child, pushRegister, cg);
   cg->decReferenceCount(child);
   return pushRegister;
   }
コード例 #9
0
void TR_OutlinedInstructions::generateOutlinedInstructionsDispatch()
   {
   // Switch to cold helper instruction stream.
   //
   TR::Register    *vmThreadReg = _cg->getMethodMetaDataRegister();
   TR::Instruction *savedFirstInstruction = comp()->getFirstInstruction();
   TR::Instruction *savedAppendInstruction = comp()->getAppendInstruction();
   comp()->setFirstInstruction(NULL);
   comp()->setAppendInstruction(NULL);

   new (_cg->trHeapMemory()) TR::X86LabelInstruction(NULL, LABEL, _entryLabel, _cg);

   if (_rematerializeVMThread)
      {
      generateRegInstruction(PUSHReg, _callNode, vmThreadReg, _cg);
      generateRestoreVMThreadInstruction ( _callNode, _cg);
      TR::MemoryReference  *vmThreadMR = generateX86MemoryReference(vmThreadReg, (TR::Compiler->target.is64Bit()) ? 16 : 8, _cg);
      generateRegMemInstruction (LRegMem(), _callNode, vmThreadReg, vmThreadMR, _cg);
      }
   TR::Register *resultReg=NULL;
   if (_callNode->getOpCode().isCallIndirect())
      resultReg = TR::TreeEvaluator::performCall(_callNode, true, false, _cg);
   else
      resultReg = TR::TreeEvaluator::performCall(_callNode, false, false, _cg);

   if (_rematerializeVMThread)
      {
      generateRegInstruction(POPReg, _callNode, vmThreadReg, _cg);
      }

   if (_targetReg)
      {
      TR_ASSERT(resultReg, "assertion failure");
      TR::RegisterPair *targetRegPair = _targetReg->getRegisterPair();
      TR::RegisterPair *resultRegPair =  resultReg->getRegisterPair();
      if (targetRegPair)
         {
         TR_ASSERT(resultRegPair, "OutlinedInstructions: targetReg is a register pair and resultReg is not");
         generateRegRegInstruction(_targetRegMovOpcode, _callNode, targetRegPair->getLowOrder(),  resultRegPair->getLowOrder(),  _cg);
         generateRegRegInstruction(_targetRegMovOpcode, _callNode, targetRegPair->getHighOrder(), resultRegPair->getHighOrder(), _cg);
         }
      else
         {
         TR_ASSERT(!resultRegPair, "OutlinedInstructions: resultReg is a register pair and targetReg is not");
         generateRegRegInstruction(_targetRegMovOpcode, _callNode, _targetReg, resultReg, _cg);
         }
      }

   _cg->decReferenceCount(_callNode);

   if (_restartLabel)
      generateLabelInstruction(JMP4, _callNode, _restartLabel, _cg);
   else
      {
      // Java-specific.
      // No restart label implies we're not coming back from this call,
      // so it's safe to put data after the call.  In the case of calling a throw
      // helper, there's an ancient busted handshake that expects to find a 4-byte
      // offset here, so we have to comply...
      //
      // When the handshake is removed, we can delete this zero.
      //
      generateImmInstruction(DDImm4, _callNode, 0, _cg);
      }

   // Dummy label to delimit the end of the helper call dispatch sequence (for exception ranges).
   //
   generateLabelInstruction(LABEL, _callNode, TR::LabelSymbol::create(_cg->trHeapMemory(),_cg), _cg);

   // Switch from cold helper instruction stream.
   //
   _firstInstruction = comp()->getFirstInstruction();
   _appendInstruction = comp()->getAppendInstruction();
   comp()->setFirstInstruction(savedFirstInstruction);
   comp()->setAppendInstruction(savedAppendInstruction);
   }