コード例 #1
0
static void nmi_int_handler(void)
{
    // Non Maskable Interrupt -- remove interrupt event from queue
    remove_interupt_event();
    // setup r4300 Status flags: reset TS and SR, set BEV, ERL, and SR
    g_cp0_regs[CP0_STATUS_REG] = (g_cp0_regs[CP0_STATUS_REG] & ~UINT32_C(0x00380000)) | UINT32_C(0x00500004);
    g_cp0_regs[CP0_CAUSE_REG]  = 0x00000000;
    // simulate the soft reset code which would run from the PIF ROM
    r4300_reset_soft();
    // clear all interrupts, reset interrupt counters back to 0
    g_cp0_regs[CP0_COUNT_REG] = 0;
    g_gs_vi_counter = 0;
    init_interupt();
    // clear the audio status register so that subsequent write_ai() calls will work properly
    g_ai.regs[AI_STATUS_REG] = 0;
    // set ErrorEPC with the last instruction address
    g_cp0_regs[CP0_ERROREPC_REG] = PC->addr;
    // reset the r4300 internal state
    if (r4300emu != CORE_PURE_INTERPRETER)
    {
        // clear all the compiled instruction blocks and re-initialize
        free_blocks();
        init_blocks();
    }
    // adjust ErrorEPC if we were in a delay slot, and clear the delay_slot and dyna_interp flags
    if(delay_slot==1 || delay_slot==3)
    {
        g_cp0_regs[CP0_ERROREPC_REG]-=4;
    }
    delay_slot = 0;
    dyna_interp = 0;
    // set next instruction address to reset vector
    last_addr = UINT32_C(0xa4000040);
    generic_jump_to(UINT32_C(0xa4000040));
}
コード例 #2
0
static void nmi_int_handler(void)
{
   /* Non Maskable Interrupt -- remove interrupt event from queue */
   remove_interrupt_event();
   /* setup r4300 Status flags: reset TS and SR, set BEV, ERL, and SR */
   g_cp0_regs[CP0_STATUS_REG] = (g_cp0_regs[CP0_STATUS_REG] & ~(CP0_STATUS_SR | CP0_STATUS_TS | UINT32_C(0x00080000))) | (CP0_STATUS_ERL | CP0_STATUS_BEV | CP0_STATUS_SR);
   g_cp0_regs[CP0_CAUSE_REG]  = 0x00000000;
   /* simulate the soft reset code which would run from the PIF ROM */
   pifbootrom_hle_execute(&g_dev);
   /* clear all interrupts, reset interrupt counters back to 0 */
   g_cp0_regs[CP0_COUNT_REG] = 0;
   g_gs_vi_counter = 0;
   init_interrupt();

   g_dev.vi.delay = g_dev.vi.next_vi = 5000;
   add_interrupt_event_count(VI_INT, g_dev.vi.next_vi);

   /* clear the audio status register so that subsequent write_ai() calls will work properly */
   g_dev.ai.regs[AI_STATUS_REG] = 0;
   /* set ErrorEPC with the last instruction address */
   g_cp0_regs[CP0_ERROREPC_REG] = PC->addr;
   /* reset the r4300 internal state */
   if (r4300emu != CORE_PURE_INTERPRETER)
   {
      /* clear all the compiled instruction blocks and re-initialize */
      free_blocks();
      init_blocks();
   }
   /* adjust ErrorEPC if we were in a delay slot, and clear the delay_slot and dyna_interp flags */
   if(g_dev.r4300.delay_slot==1 || g_dev.r4300.delay_slot==3)
   {
      g_cp0_regs[CP0_ERROREPC_REG]-=4;
   }
   g_dev.r4300.delay_slot = 0;
   dyna_interp = 0;
   /* set next instruction address to reset vector */
   last_addr = UINT32_C(0xa4000040);
   generic_jump_to(UINT32_C(0xa4000040));

#ifdef NEW_DYNAREC
   if (r4300emu == CORE_DYNAREC)
   {
      g_cp0_regs[CP0_ERROREPC_REG]=(pcaddr&~3)-(pcaddr&1)*4;
      pcaddr = 0xa4000040;
      pending_exception = 1;
      invalidate_all_pages();
   }
#endif
}
コード例 #3
0
void reset_hard(void)
{
   poweron_device(&g_dev);

   pifbootrom_hle_execute(&g_dev);
   last_addr = UINT32_C(0xa4000040);
   next_interrupt = 624999;
   init_interrupt();

   g_dev.vi.delay = g_dev.vi.next_vi = 5000;
   add_interrupt_event_count(VI_INT, g_dev.vi.next_vi);

   if(r4300emu != CORE_PURE_INTERPRETER)
   {
      free_blocks();
      init_blocks();
   }
   generic_jump_to(last_addr);
}
コード例 #4
0
ファイル: interupt.c プロジェクト: BadyRaty/Mupen64Plus-Core
void gen_interupt(void)
{
    if (stop == 1)
    {
        vi_counter = 0; // debug
        dyna_stop();
    }

    if (!interupt_unsafe_state)
    {
        if (savestates_get_job() == savestates_job_load)
        {
            savestates_load();
            return;
        }

        if (reset_hard_job)
        {
            reset_hard();
            reset_hard_job = 0;
            return;
        }
    }
   
    if (skip_jump)
    {
        unsigned int dest = skip_jump;
        skip_jump = 0;

        if (q->count > Count || (Count - q->count) < 0x80000000)
            next_interupt = q->count;
        else
            next_interupt = 0;
        
        last_addr = dest;
        generic_jump_to(dest);
        return;
    } 

    switch(q->type)
    {
        case SPECIAL_INT:
            if (Count > 0x10000000) return;
            remove_interupt_event();
            add_interupt_event_count(SPECIAL_INT, 0);
            return;
            break;
        case VI_INT:
            if(vi_counter < 60)
            {
                if (vi_counter == 0)
                    cheat_apply_cheats(ENTRY_BOOT);
                vi_counter++;
            }
            else
            {
                cheat_apply_cheats(ENTRY_VI);
            }
            gfx.updateScreen();
#ifdef WITH_LIRC
            lircCheckInput();
#endif
            SDL_PumpEvents();

            refresh_stat();

            // if paused, poll for input events
            if(rompause)
            {
                osd_render();  // draw Paused message in case gfx.updateScreen didn't do it
                VidExt_GL_SwapBuffers();
                while(rompause)
                {
                    SDL_Delay(10);
                    SDL_PumpEvents();
#ifdef WITH_LIRC
                    lircCheckInput();
#endif //WITH_LIRC
                }
            }

            new_vi();
            if (vi_register.vi_v_sync == 0) vi_register.vi_delay = 500000;
            else vi_register.vi_delay = ((vi_register.vi_v_sync + 1)*1500);
            next_vi += vi_register.vi_delay;
            if (vi_register.vi_status&0x40) vi_field=1-vi_field;
            else vi_field=0;

            remove_interupt_event();
            add_interupt_event_count(VI_INT, next_vi);
    
            MI_register.mi_intr_reg |= 0x08;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case COMPARE_INT:
            remove_interupt_event();
            Count+=count_per_op;
            add_interupt_event_count(COMPARE_INT, Compare);
            Count-=count_per_op;
    
            Cause = (Cause | 0x8000) & 0xFFFFFF83;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case CHECK_INT:
            remove_interupt_event();
            break;
    
        case SI_INT:
#ifdef WITH_LIRC
            lircCheckInput();
#endif //WITH_LIRC
            SDL_PumpEvents();
            PIF_RAMb[0x3F] = 0x0;
            remove_interupt_event();
            MI_register.mi_intr_reg |= 0x02;
            si_register.si_stat |= 0x1000;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case PI_INT:
            remove_interupt_event();
            MI_register.mi_intr_reg |= 0x10;
            pi_register.read_pi_status_reg &= ~3;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case AI_INT:
            if (ai_register.ai_status & 0x80000000) // full
            {
                unsigned int ai_event = get_event(AI_INT);
                remove_interupt_event();
                ai_register.ai_status &= ~0x80000000;
                ai_register.current_delay = ai_register.next_delay;
                ai_register.current_len = ai_register.next_len;
                add_interupt_event_count(AI_INT, ai_event+ai_register.next_delay);
         
                MI_register.mi_intr_reg |= 0x04;
                if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                    Cause = (Cause | 0x400) & 0xFFFFFF83;
                else
                    return;
                if ((Status & 7) != 1) return;
                if (!(Status & Cause & 0xFF00)) return;
            }
            else
            {
                remove_interupt_event();
                ai_register.ai_status &= ~0x40000000;

                //-------
                MI_register.mi_intr_reg |= 0x04;
                if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                    Cause = (Cause | 0x400) & 0xFFFFFF83;
                else
                    return;
                if ((Status & 7) != 1) return;
                if (!(Status & Cause & 0xFF00)) return;
            }
            break;

        case SP_INT:
            remove_interupt_event();
            sp_register.sp_status_reg |= 0x203;
            // sp_register.sp_status_reg |= 0x303;
    
            if (!(sp_register.sp_status_reg & 0x40)) return; // !intr_on_break
            MI_register.mi_intr_reg |= 0x01;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case DP_INT:
            remove_interupt_event();
            dpc_register.dpc_status &= ~2;
            dpc_register.dpc_status |= 0x81;
            MI_register.mi_intr_reg |= 0x20;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;

        case HW2_INT:
            // Hardware Interrupt 2 -- remove interrupt event from queue
            remove_interupt_event();
            // setup r4300 Status flags: reset TS, and SR, set IM2
            Status = (Status & ~0x00380000) | 0x1000;
            Cause = (Cause | 0x1000) & 0xFFFFFF83;
            /* the exception_general() call below will jump to the interrupt vector (0x80000180) and setup the
             * interpreter or dynarec
             */
            break;

        case NMI_INT:
            // Non Maskable Interrupt -- remove interrupt event from queue
            remove_interupt_event();
            // setup r4300 Status flags: reset TS and SR, set BEV, ERL, and SR
            Status = (Status & ~0x00380000) | 0x00500004;
            Cause  = 0x00000000;
            // simulate the soft reset code which would run from the PIF ROM
            r4300_reset_soft();
            // clear all interrupts, reset interrupt counters back to 0
            Count = 0;
            vi_counter = 0;
            init_interupt();
            // clear the audio status register so that subsequent write_ai() calls will work properly
            ai_register.ai_status = 0;
            // set ErrorEPC with the last instruction address
            ErrorEPC = PC->addr;
            // reset the r4300 internal state
            if (r4300emu != CORE_PURE_INTERPRETER)
            {
                // clear all the compiled instruction blocks and re-initialize
                free_blocks();
                init_blocks();
            }
            // adjust ErrorEPC if we were in a delay slot, and clear the delay_slot and dyna_interp flags
            if(delay_slot==1 || delay_slot==3)
            {
                ErrorEPC-=4;
            }
            delay_slot = 0;
            dyna_interp = 0;
            // set next instruction address to reset vector
            last_addr = 0xa4000040;
            generic_jump_to(0xa4000040);
            return;

        default:
            DebugMessage(M64MSG_ERROR, "Unknown interrupt queue event type %.8X.", q->type);
            remove_interupt_event();
            break;
    }

#ifdef NEW_DYNAREC
    if (r4300emu == CORE_DYNAREC) {
        EPC = pcaddr;
        pcaddr = 0x80000180;
        Status |= 2;
        Cause &= 0x7FFFFFFF;
        pending_exception=1;
    } else {
        exception_general();
    }
#else
    exception_general();
#endif

    if (!interupt_unsafe_state)
    {
        if (savestates_get_job() == savestates_job_save)
        {
            savestates_save();
            return;
        }
    }
}
コード例 #5
0
void gen_interrupt(void)
{
   if (stop == 1)
   {
      g_gs_vi_counter = 0; /* debug */
      dyna_stop();
   }

   if (!interrupt_unsafe_state)
   {
      if (reset_hard_job)
      {
         reset_hard();
         reset_hard_job = 0;
         return;
      }
   }

   if (skip_jump)
   {
      uint32_t dest  = skip_jump;
      uint32_t count = g_cp0_regs[CP0_COUNT_REG];
      skip_jump = 0;

      next_interrupt = (q.first->data.count > count 
            || (count - q.first->data.count) < UINT32_C(0x80000000))
         ? q.first->data.count
         : 0;

      last_addr = dest;
      generic_jump_to(dest);
      return;
   } 

   switch(q.first->data.type)
   {
      case SPECIAL_INT:
         special_int_handler();
         break;

      case VI_INT:
         remove_interrupt_event();
         vi_vertical_interrupt_event(&g_dev.vi);
         retro_return(false);
         break;

      case COMPARE_INT:
         compare_int_handler();
         break;

      case CHECK_INT:
         remove_interrupt_event();
         wrapped_exception_general();
         break;

      case SI_INT:
         remove_interrupt_event();
         si_end_of_dma_event(&g_dev.si);
         break;

      case PI_INT:
         remove_interrupt_event();
         pi_end_of_dma_event(&g_dev.pi);
         break;

      case AI_INT:
         remove_interrupt_event();
         ai_end_of_dma_event(&g_dev.ai);
         break;

      case SP_INT:
         remove_interrupt_event();
         rsp_interrupt_event(&g_dev.sp);
         break;

      case DP_INT:
         remove_interrupt_event();
         rdp_interrupt_event(&g_dev.dp);
         break;

      case HW2_INT:
         hw2_int_handler();
         break;

      case NMI_INT:
         nmi_int_handler();
         break;

      case CART_INT:
         g_cp0_regs[CP0_CAUSE_REG] |= 0x00000800; /* set IP3 */
         g_cp0_regs[CP0_CAUSE_REG] &= 0xFFFFFF83; /* mask out old exception code */
         remove_interrupt_event();

#if 0
         if (dd_end_of_dma_event(&g_dd) == 1)
         {
            remove_interrupt_event();
            g_cp0_regs[CP0_CAUSE_REG] &= ~0x00000800;
         }
#endif
         break;

      default:
         DebugMessage(M64MSG_ERROR, "Unknown interrupt queue event type %.8X.", q.first->data.type);
         remove_interrupt_event();
         wrapped_exception_general();
         break;
   }
}
コード例 #6
0
void gen_interupt(void)
{
    if (stop == 1)
    {
        g_gs_vi_counter = 0; // debug
        dyna_stop();
    }

    if (!interupt_unsafe_state)
    {
        if (savestates_get_job() == savestates_job_load)
        {
            savestates_load();
            return;
        }

        if (reset_hard_job)
        {
            reset_hard();
            reset_hard_job = 0;
            return;
        }
    }

    if (skip_jump)
    {
        uint32_t dest = skip_jump;
        skip_jump = 0;

        next_interupt = (q.first->data.count > g_cp0_regs[CP0_COUNT_REG]
                         || (g_cp0_regs[CP0_COUNT_REG] - q.first->data.count) < UINT32_C(0x80000000))
                        ? q.first->data.count
                        : 0;

        last_addr = dest;
        generic_jump_to(dest);
        return;
    }

    switch(q.first->data.type)
    {
    case SPECIAL_INT:
        special_int_handler();
        break;

    case VI_INT:
        remove_interupt_event();
        vi_vertical_interrupt_event(&g_vi);
        break;

    case COMPARE_INT:
        compare_int_handler();
        break;

    case CHECK_INT:
        remove_interupt_event();
        wrapped_exception_general();
        break;

    case SI_INT:
        remove_interupt_event();
        si_end_of_dma_event(&g_si);
        break;

    case PI_INT:
        remove_interupt_event();
        pi_end_of_dma_event(&g_pi);
        break;

    case AI_INT:
        remove_interupt_event();
        ai_end_of_dma_event(&g_ai);
        break;

    case SP_INT:
        remove_interupt_event();
        rsp_interrupt_event(&g_sp);
        break;

    case DP_INT:
        remove_interupt_event();
        rdp_interrupt_event(&g_dp);
        break;

    case HW2_INT:
        hw2_int_handler();
        break;

    case NMI_INT:
        nmi_int_handler();
        break;

    default:
        DebugMessage(M64MSG_ERROR, "Unknown interrupt queue event type %.8X.", q.first->data.type);
        remove_interupt_event();
        wrapped_exception_general();
        break;
    }

    if (!interupt_unsafe_state)
    {
        if (savestates_get_job() == savestates_job_save)
        {
            savestates_save();
            return;
        }
    }
}
コード例 #7
0
ファイル: interupt.c プロジェクト: derselbst/lazyusf2
void osal_fastcall gen_interupt(usf_state_t * state)
{
    if (state->stop == 1)
    {
        state->g_gs_vi_counter = 0; // debug
        dyna_stop(state);
    }

    if (!state->interupt_unsafe_state)
    {
        if (state->reset_hard_job)
        {
            reset_hard(state);
            state->reset_hard_job = 0;
            return;
        }
    }

    if (state->skip_jump)
    {
        unsigned int dest = state->skip_jump;
        state->skip_jump = 0;

        state->next_interupt = (state->q.first->data.count > state->g_cp0_regs[CP0_COUNT_REG]
                || (state->g_cp0_regs[CP0_COUNT_REG] - state->q.first->data.count) < 0x80000000)
            ? state->q.first->data.count
            : 0;

        state->last_addr = dest;
        generic_jump_to(state, dest);
        return;
    }

    switch(state->q.first->data.type)
    {
        case SPECIAL_INT:
            special_int_handler(state);
            break;

        case VI_INT:
            remove_interupt_event(state);
            vi_vertical_interrupt_event(&state->g_vi);
            break;

        case COMPARE_INT:
            compare_int_handler(state);
            break;

        case CHECK_INT:
            remove_interupt_event(state);
            wrapped_exception_general(state);
            break;

        case SI_INT:
            remove_interupt_event(state);
            si_end_of_dma_event(&state->g_si);
            break;

        case PI_INT:
            remove_interupt_event(state);
            pi_end_of_dma_event(&state->g_pi);
            break;

        case AI_INT:
            remove_interupt_event(state);
            ai_end_of_dma_event(&state->g_ai);
            break;

        case SP_INT:
            remove_interupt_event(state);
            rsp_interrupt_event(&state->g_sp);
            break;

        case DP_INT:
            remove_interupt_event(state);
            rdp_interrupt_event(&state->g_dp);
            break;

        case HW2_INT:
            hw2_int_handler(state);
            break;

        case NMI_INT:
            nmi_int_handler(state);
            break;

        default:
            DebugMessage(state, M64MSG_ERROR, "Unknown interrupt queue event type %.8X.", state->q.first->data.type);
            remove_interupt_event(state);
            wrapped_exception_general(state);
            break;
    }
}