コード例 #1
0
InfExtract3::InfExtract3(Data *d,FsXml *fs,std::vector<Node*> nodes,bool v)
{
	weights=vector<double>(nodes.size(),0.0);
	weights2=vector<double>(nodes.size(),0.0);
	counts=0;

	data=d;
	verbose=v;
	streampos fpos;
	if(verbose) cout<<"Creating average coincidence..."<<endl;
	fpos=fs->gotoLineContaining("<Iteration>");
	int counts=0;
	while(!fs->eof() && fpos>=0) {
		if(fpos>0) state=new State(data,fs,vector<double>(1.0),1.0,BETAMOD_CONST,2.0);
		vector<double> tmp=getSplits(state,nodes,true);//****
		vector<double> tmp2=getSplits(state,nodes,false);//****
		for(unsigned int c1=0;c1<tmp.size();c1++) { weights[c1]+=tmp[c1]; weights2[c1]+=tmp2[c1];}
		counts++;
		delete(state);
		fpos=fs->gotoNextLineContaining("<Iteration>");
	}
	for(unsigned int c1=0;c1<nodes.size();c1++) if(nodes[c1]->getFather()!=NULL){
	  if(nodes[c1]->inTree() || nodes[c1]->getFather()->inTree()){
		nodes[c1]->assignCertainty(weights[c1]/(double)counts,true);
	//	nodes[c1]->assignCertainty(weights2[c1]/(double)counts,false);
	// NOTE THe weights2 is not functioning correctly.
	  }
	}
	if(verbose) cout<<"Finished creating mean distance matrix."<<endl;
}
コード例 #2
0
ファイル: BuildDAG.cpp プロジェクト: dgu123/factplusplus
void TBox :: buildDAG ( void )
{
	nNominalReferences = 0;

	// init concept indexing
	nC = 1;	// start with 1 to make index 0 an indicator of "not processed"
	ConceptMap.push_back(NULL);

	// make fresh concept and datatype
	concept2dag(pTemp);
	DLTree* freshDT = DTCenter.getFreshDataType();
	addDataExprToHeap ( static_cast<TDataEntry*>(freshDT->Element().getNE()) );
	deleteTree(freshDT);

	for ( c_const_iterator pc = c_begin(); pc != c_end(); ++pc )
		concept2dag(*pc);
	for ( i_const_iterator pi = i_begin(); pi != i_end(); ++pi )
		concept2dag(*pi);

	// init heads of simple rules
	for ( TSimpleRules::iterator q = SimpleRules.begin(), q_end = SimpleRules.end(); q < q_end; ++q )
		(*q)->bpHead = tree2dag((*q)->tHead);

	// builds Roles range and domain
	initRangeDomain(ORM);
	initRangeDomain(DRM);

	// build all splits
	for ( TSplitVars::iterator s = getSplits()->begin(), s_end = getSplits()->end(); s != s_end; ++s )
		split2dag(*s);

	RoleMaster::iterator p, p_end;

	// build all GCIs
	DLTree* GCI = Axioms.getGCI();

	// add special domains to the GCIs
	if ( likely(useSpecialDomains) )
		for ( p = ORM.begin(), p_end = ORM.end(); p < p_end; ++p )
			if ( !(*p)->isSynonym() && (*p)->hasSpecialDomain() )
				GCI = createSNFAnd ( GCI, clone((*p)->getTSpecialDomain()) );

	// take chains that lead to Bot role into account
	if ( !ORM.getBotRole()->isSimple() )
		GCI = createSNFAnd ( GCI,
				new DLTree ( TLexeme(FORALL), createRole(ORM.getBotRole()), createBottom() ) );

	T_G = tree2dag(GCI);
	deleteTree(GCI);

	// mark GCI flags
	GCIs.setGCI(T_G != bpTOP);
	GCIs.setReflexive(ORM.hasReflexiveRoles());

	// builds functional labels for roles
	for ( p = ORM.begin(), p_end = ORM.end(); p < p_end; ++p )
		if ( !(*p)->isSynonym() && (*p)->isTopFunc() )
			(*p)->setFunctional ( atmost2dag ( 1, *p, bpTOP ) );
	for ( p = DRM.begin(), p_end = DRM.end(); p < p_end; ++p )
		if ( !(*p)->isSynonym() && (*p)->isTopFunc() )
			(*p)->setFunctional ( atmost2dag ( 1, *p, bpTOP ) );

	// check the type of the ontology
	if ( nNominalReferences > 0 )
	{
		unsigned int nInd = i_end() - i_begin();
		if ( nInd > 100 && nNominalReferences > nInd )
			isLikeWINE = true;
	}

	// here DAG is complete; set its final size
	DLHeap.setFinalSize();
}