コード例 #1
0
/*
 * Create a kernel thread
 */
int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
	struct pt_regs regs;

	memset(&regs, 0, sizeof(regs));

	regs.si = (unsigned long) fn;
	regs.di = (unsigned long) arg;

#ifdef CONFIG_X86_32
	regs.ds = __KERNEL_DS;
	regs.es = __KERNEL_DS;
	regs.fs = __KERNEL_PERCPU;
	savesegment(gs, regs.gs);
#else
	regs.ss = __KERNEL_DS;
#endif

	regs.orig_ax = -1;
	regs.ip = (unsigned long) kernel_thread_helper;
	regs.cs = __KERNEL_CS | get_kernel_rpl();
	regs.flags = X86_EFLAGS_IF | 0x2;

	/* Ok, create the new process.. */
	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
}
コード例 #2
0
__notrace_funcgraph struct task_struct *
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
	struct thread_struct *prev = &prev_p->thread,
				 *next = &next_p->thread;
	int cpu = smp_processor_id();
	struct tss_struct *tss = &per_cpu(init_tss, cpu);
	bool preload_fpu;

	

	
	preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5;

	__unlazy_fpu(prev_p);

	
	if (preload_fpu)
		prefetch(next->xstate);

	
	load_sp0(tss, next);

	
	lazy_save_gs(prev->gs);

	
	load_TLS(next, cpu);

	
	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
		set_iopl_mask(next->iopl);

	
	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
		__switch_to_xtra(prev_p, next_p, tss);

	
	if (preload_fpu)
		clts();

	
	arch_end_context_switch(next_p);

	if (preload_fpu)
		__math_state_restore();

	
	if (prev->gs | next->gs)
		lazy_load_gs(next->gs);

	percpu_write(current_task, next_p);

	return prev_p;
}
コード例 #3
0
ファイル: process_32.c プロジェクト: B-Rich/L4Reap
/*
 * Create a kernel thread
 */
int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
	struct pt_regs regs;
#ifdef CONFIG_L4_VCPU
	unsigned ds, cs;
	asm volatile ("mov %%ds, %0; mov %%cs, %1\n" : "=r"(ds), "=r"(cs));
#endif

	memset(&regs, 0, sizeof(regs));

	regs.bx = (unsigned long) fn;
	regs.dx = (unsigned long) arg;

#ifdef CONFIG_L4_VCPU
	regs.ds = ds;
	regs.ds = ds;
	regs.es = ds;
#ifdef CONFIG_SMP
	regs.fs = (l4x_fiasco_gdt_entry_offset + 2) * 8 + 3;
#else
	regs.fs = ds;
#endif
#else
	regs.ds = __USER_DS;
	regs.es = __USER_DS;
	regs.fs = __KERNEL_PERCPU;
	regs.gs = __KERNEL_STACK_CANARY;
#endif
	regs.orig_ax = -1;
#ifdef CONFIG_L4_VCPU
	regs.ip = (unsigned long) kernel_thread_helper;
	regs.cs = (cs & ~3) | get_kernel_rpl();
#else
	regs.cs = __KERNEL_CS | get_kernel_rpl();
#endif
	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;

	/* Ok, create the new process.. */
	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, COPY_THREAD_STACK_SIZE___FLAG_INKERNEL, NULL, NULL);
}
コード例 #4
0
/*H:000
 * Welcome to the Host!
 *
 * By this point your brain has been tickled by the Guest code and numbed by
 * the Launcher code; prepare for it to be stretched by the Host code.  This is
 * the heart.  Let's begin at the initialization routine for the Host's lg
 * module.
 */
static int __init init(void)
{
	int err;

	/* Lguest can't run under Xen, VMI or itself.  It does Tricky Stuff. */
	if (get_kernel_rpl() != 0) {
		printk("lguest is afraid of being a guest\n");
		return -EPERM;
	}

	/* First we put the Switcher up in very high virtual memory. */
	err = map_switcher();
	if (err)
		goto out;

	/* Now we set up the pagetable implementation for the Guests. */
	err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
	if (err)
		goto unmap;

	/* We might need to reserve an interrupt vector. */
	err = init_interrupts();
	if (err)
		goto free_pgtables;

	/* /dev/lguest needs to be registered. */
	err = lguest_device_init();
	if (err)
		goto free_interrupts;

	/* Finally we do some architecture-specific setup. */
	lguest_arch_host_init();

	/* All good! */
	return 0;

free_interrupts:
	free_interrupts();
free_pgtables:
	free_pagetables();
unmap:
	unmap_switcher();
out:
	return err;
}
コード例 #5
0
ファイル: process_32.c プロジェクト: maraz/linux-2.6
/*
 * Create a kernel thread
 */
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
	struct pt_regs regs;

	memset(&regs, 0, sizeof(regs));

	regs.bx = (unsigned long) fn;
	regs.dx = (unsigned long) arg;

	regs.ds = __USER_DS;
	regs.es = __USER_DS;
	regs.fs = __KERNEL_PERCPU;
	regs.orig_ax = -1;
	regs.ip = (unsigned long) kernel_thread_helper;
	regs.cs = __KERNEL_CS | get_kernel_rpl();
	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;

	/* Ok, create the new process.. */
	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
}
コード例 #6
0
__notrace_funcgraph struct task_struct *
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
	struct thread_struct *prev = &prev_p->thread,
				 *next = &next_p->thread;
	int cpu = smp_processor_id();
	struct tss_struct *tss = &per_cpu(init_tss, cpu);
	fpu_switch_t fpu;

	

	fpu = switch_fpu_prepare(prev_p, next_p, cpu);

	load_sp0(tss, next);

	lazy_save_gs(prev->gs);

	load_TLS(next, cpu);

	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
		set_iopl_mask(next->iopl);

	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
		__switch_to_xtra(prev_p, next_p, tss);

	arch_end_context_switch(next_p);

	if (prev->gs | next->gs)
		lazy_load_gs(next->gs);

	switch_fpu_finish(next_p, fpu);

	percpu_write(current_task, next_p);

	return prev_p;
}
コード例 #7
0
ファイル: process_32.c プロジェクト: xianjimli/datasafe
/*
 *	switch_to(x,yn) should switch tasks from x to y.
 *
 * We fsave/fwait so that an exception goes off at the right time
 * (as a call from the fsave or fwait in effect) rather than to
 * the wrong process. Lazy FP saving no longer makes any sense
 * with modern CPU's, and this simplifies a lot of things (SMP
 * and UP become the same).
 *
 * NOTE! We used to use the x86 hardware context switching. The
 * reason for not using it any more becomes apparent when you
 * try to recover gracefully from saved state that is no longer
 * valid (stale segment register values in particular). With the
 * hardware task-switch, there is no way to fix up bad state in
 * a reasonable manner.
 *
 * The fact that Intel documents the hardware task-switching to
 * be slow is a fairly red herring - this code is not noticeably
 * faster. However, there _is_ some room for improvement here,
 * so the performance issues may eventually be a valid point.
 * More important, however, is the fact that this allows us much
 * more flexibility.
 *
 * The return value (in %ax) will be the "prev" task after
 * the task-switch, and shows up in ret_from_fork in entry.S,
 * for example.
 */
__notrace_funcgraph struct task_struct *
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
	struct thread_struct *prev = &prev_p->thread,
				 *next = &next_p->thread;
	int cpu = smp_processor_id();
	struct tss_struct *tss = &per_cpu(init_tss, cpu);

	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */

	__unlazy_fpu(prev_p);
	if (next_p->mm)
		load_user_cs_desc(cpu, next_p->mm);

	/* we're going to use this soon, after a few expensive things */
	if (next_p->fpu_counter > 5)
		prefetch(next->xstate);

	/*
	 * Reload esp0.
	 */
	load_sp0(tss, next);

	/*
	 * Save away %gs. No need to save %fs, as it was saved on the
	 * stack on entry.  No need to save %es and %ds, as those are
	 * always kernel segments while inside the kernel.  Doing this
	 * before setting the new TLS descriptors avoids the situation
	 * where we temporarily have non-reloadable segments in %fs
	 * and %gs.  This could be an issue if the NMI handler ever
	 * used %fs or %gs (it does not today), or if the kernel is
	 * running inside of a hypervisor layer.
	 */
	lazy_save_gs(prev->gs);

	/*
	 * Load the per-thread Thread-Local Storage descriptor.
	 */
	load_TLS(next, cpu);

	/*
	 * Restore IOPL if needed.  In normal use, the flags restore
	 * in the switch assembly will handle this.  But if the kernel
	 * is running virtualized at a non-zero CPL, the popf will
	 * not restore flags, so it must be done in a separate step.
	 */
	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
		set_iopl_mask(next->iopl);

	/*
	 * Now maybe handle debug registers and/or IO bitmaps
	 */
	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
		__switch_to_xtra(prev_p, next_p, tss);

	/*
	 * Leave lazy mode, flushing any hypercalls made here.
	 * This must be done before restoring TLS segments so
	 * the GDT and LDT are properly updated, and must be
	 * done before math_state_restore, so the TS bit is up
	 * to date.
	 */
	arch_end_context_switch(next_p);

	/* If the task has used fpu the last 5 timeslices, just do a full
	 * restore of the math state immediately to avoid the trap; the
	 * chances of needing FPU soon are obviously high now
	 *
	 * tsk_used_math() checks prevent calling math_state_restore(),
	 * which can sleep in the case of !tsk_used_math()
	 */
	if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
		math_state_restore();

	/*
	 * Restore %gs if needed (which is common)
	 */
	if (prev->gs | next->gs)
		lazy_load_gs(next->gs);

	percpu_write(current_task, next_p);

	return prev_p;
}
コード例 #8
0
ファイル: process_32.c プロジェクト: AdrianHuang/linux-3.8.13
int copy_thread(unsigned long clone_flags, unsigned long sp,
	unsigned long arg, struct task_struct *p)
{
	struct pt_regs *childregs = task_pt_regs(p);
	struct task_struct *tsk;
	int err;

	p->thread.sp = (unsigned long) childregs;
	p->thread.sp0 = (unsigned long) (childregs+1);

	if (unlikely(p->flags & PF_KTHREAD)) {
		/* kernel thread */
		memset(childregs, 0, sizeof(struct pt_regs));
		p->thread.ip = (unsigned long) ret_from_kernel_thread;
		task_user_gs(p) = __KERNEL_STACK_CANARY;
		childregs->ds = __USER_DS;
		childregs->es = __USER_DS;
		childregs->fs = __KERNEL_PERCPU;
		childregs->bx = sp;	/* function */
		childregs->bp = arg;
		childregs->orig_ax = -1;
		childregs->cs = __KERNEL_CS | get_kernel_rpl();
		childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
		p->fpu_counter = 0;
		p->thread.io_bitmap_ptr = NULL;
		memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
		return 0;
	}
	*childregs = *current_pt_regs();
	childregs->ax = 0;
	if (sp)
		childregs->sp = sp;

	p->thread.ip = (unsigned long) ret_from_fork;
	task_user_gs(p) = get_user_gs(current_pt_regs());

	p->fpu_counter = 0;
	p->thread.io_bitmap_ptr = NULL;
	tsk = current;
	err = -ENOMEM;

	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));

	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
						IO_BITMAP_BYTES, GFP_KERNEL);
		if (!p->thread.io_bitmap_ptr) {
			p->thread.io_bitmap_max = 0;
			return -ENOMEM;
		}
		set_tsk_thread_flag(p, TIF_IO_BITMAP);
	}

	err = 0;

	/*
	 * Set a new TLS for the child thread?
	 */
	if (clone_flags & CLONE_SETTLS)
		err = do_set_thread_area(p, -1,
			(struct user_desc __user *)childregs->si, 0);

	if (err && p->thread.io_bitmap_ptr) {
		kfree(p->thread.io_bitmap_ptr);
		p->thread.io_bitmap_max = 0;
	}
	return err;
}
コード例 #9
0
/*
 *	switch_to(x,y) should switch tasks from x to y.
 *
 * We fsave/fwait so that an exception goes off at the right time
 * (as a call from the fsave or fwait in effect) rather than to
 * the wrong process. Lazy FP saving no longer makes any sense
 * with modern CPU's, and this simplifies a lot of things (SMP
 * and UP become the same).
 *
 * NOTE! We used to use the x86 hardware context switching. The
 * reason for not using it any more becomes apparent when you
 * try to recover gracefully from saved state that is no longer
 * valid (stale segment register values in particular). With the
 * hardware task-switch, there is no way to fix up bad state in
 * a reasonable manner.
 *
 * The fact that Intel documents the hardware task-switching to
 * be slow is a fairly red herring - this code is not noticeably
 * faster. However, there _is_ some room for improvement here,
 * so the performance issues may eventually be a valid point.
 * More important, however, is the fact that this allows us much
 * more flexibility.
 *
 * The return value (in %ax) will be the "prev" task after
 * the task-switch, and shows up in ret_from_fork in entry.S,
 * for example.
 */
__visible __notrace_funcgraph struct task_struct *
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
	struct thread_struct *prev = &prev_p->thread,
			     *next = &next_p->thread;
	struct fpu *prev_fpu = &prev->fpu;
	struct fpu *next_fpu = &next->fpu;
	int cpu = smp_processor_id();
	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
	fpu_switch_t fpu_switch;

	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */

	fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);

	/*
	 * Save away %gs. No need to save %fs, as it was saved on the
	 * stack on entry.  No need to save %es and %ds, as those are
	 * always kernel segments while inside the kernel.  Doing this
	 * before setting the new TLS descriptors avoids the situation
	 * where we temporarily have non-reloadable segments in %fs
	 * and %gs.  This could be an issue if the NMI handler ever
	 * used %fs or %gs (it does not today), or if the kernel is
	 * running inside of a hypervisor layer.
	 */
	lazy_save_gs(prev->gs);

	/*
	 * Load the per-thread Thread-Local Storage descriptor.
	 */
	load_TLS(next, cpu);

	/*
	 * Restore IOPL if needed.  In normal use, the flags restore
	 * in the switch assembly will handle this.  But if the kernel
	 * is running virtualized at a non-zero CPL, the popf will
	 * not restore flags, so it must be done in a separate step.
	 */
	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
		set_iopl_mask(next->iopl);

	/*
	 * If it were not for PREEMPT_ACTIVE we could guarantee that the
	 * preempt_count of all tasks was equal here and this would not be
	 * needed.
	 */
	task_thread_info(prev_p)->saved_preempt_count = this_cpu_read(__preempt_count);
	this_cpu_write(__preempt_count, task_thread_info(next_p)->saved_preempt_count);

	/*
	 * Now maybe handle debug registers and/or IO bitmaps
	 */
	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
		__switch_to_xtra(prev_p, next_p, tss);

	/*
	 * Leave lazy mode, flushing any hypercalls made here.
	 * This must be done before restoring TLS segments so
	 * the GDT and LDT are properly updated, and must be
	 * done before fpu__restore(), so the TS bit is up
	 * to date.
	 */
	arch_end_context_switch(next_p);

	/*
	 * Reload esp0 and cpu_current_top_of_stack.  This changes
	 * current_thread_info().
	 */
	load_sp0(tss, next);
	this_cpu_write(cpu_current_top_of_stack,
		       (unsigned long)task_stack_page(next_p) +
		       THREAD_SIZE);

	/*
	 * Restore %gs if needed (which is common)
	 */
	if (prev->gs | next->gs)
		lazy_load_gs(next->gs);

	switch_fpu_finish(next_fpu, fpu_switch);

	this_cpu_write(current_task, next_p);

	return prev_p;
}
コード例 #10
0
ファイル: process_32.c プロジェクト: garyvan/openwrt-1.6
/*
 *	switch_to(x,y) should switch tasks from x to y.
 *
 * We fsave/fwait so that an exception goes off at the right time
 * (as a call from the fsave or fwait in effect) rather than to
 * the wrong process. Lazy FP saving no longer makes any sense
 * with modern CPU's, and this simplifies a lot of things (SMP
 * and UP become the same).
 *
 * NOTE! We used to use the x86 hardware context switching. The
 * reason for not using it any more becomes apparent when you
 * try to recover gracefully from saved state that is no longer
 * valid (stale segment register values in particular). With the
 * hardware task-switch, there is no way to fix up bad state in
 * a reasonable manner.
 *
 * The fact that Intel documents the hardware task-switching to
 * be slow is a fairly red herring - this code is not noticeably
 * faster. However, there _is_ some room for improvement here,
 * so the performance issues may eventually be a valid point.
 * More important, however, is the fact that this allows us much
 * more flexibility.
 *
 * The return value (in %ax) will be the "prev" task after
 * the task-switch, and shows up in ret_from_fork in entry.S,
 * for example.
 */
__notrace_funcgraph struct task_struct *
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
	struct thread_struct *prev = &prev_p->thread,
				 *next = &next_p->thread;
	int cpu = smp_processor_id();
	struct tss_struct *tss = init_tss + cpu;
	fpu_switch_t fpu;

	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */

	fpu = switch_fpu_prepare(prev_p, next_p, cpu);

	/*
	 * Reload esp0.
	 */
	load_sp0(tss, next);

	/*
	 * Save away %gs. No need to save %fs, as it was saved on the
	 * stack on entry.  No need to save %es and %ds, as those are
	 * always kernel segments while inside the kernel.  Doing this
	 * before setting the new TLS descriptors avoids the situation
	 * where we temporarily have non-reloadable segments in %fs
	 * and %gs.  This could be an issue if the NMI handler ever
	 * used %fs or %gs (it does not today), or if the kernel is
	 * running inside of a hypervisor layer.
	 */
	lazy_save_gs(prev->gs);

#ifdef CONFIG_PAX_MEMORY_UDEREF
	__set_fs(task_thread_info(next_p)->addr_limit);
#endif

	/*
	 * Load the per-thread Thread-Local Storage descriptor.
	 */
	load_TLS(next, cpu);

	/*
	 * Restore IOPL if needed.  In normal use, the flags restore
	 * in the switch assembly will handle this.  But if the kernel
	 * is running virtualized at a non-zero CPL, the popf will
	 * not restore flags, so it must be done in a separate step.
	 */
	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
		set_iopl_mask(next->iopl);

	/*
	 * Now maybe handle debug registers and/or IO bitmaps
	 */
	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
		__switch_to_xtra(prev_p, next_p, tss);

	switch_kmaps(prev_p, next_p);

	/*
	 * Leave lazy mode, flushing any hypercalls made here.
	 * This must be done before restoring TLS segments so
	 * the GDT and LDT are properly updated, and must be
	 * done before math_state_restore, so the TS bit is up
	 * to date.
	 */
	arch_end_context_switch(next_p);

	this_cpu_write(current_task, next_p);
	this_cpu_write(current_tinfo, &next_p->tinfo);

	/*
	 * Restore %gs if needed (which is common)
	 */
	if (prev->gs | next->gs)
		lazy_load_gs(next->gs);

	switch_fpu_finish(next_p, fpu);

	return prev_p;
}