コード例 #1
0
static void lb_reserve_table_memory(struct lb_header *head)
{
/* Dynamic cbmem has already reserved the memory where the coreboot tables
 * reside. Therefore, there is nothing to fix up. */
#if !CONFIG_DYNAMIC_CBMEM
	struct lb_record *last_rec;
	struct lb_memory *mem;
	uint64_t start;
	uint64_t end;
	int i, entries;

	last_rec = lb_last_record(head);
	mem = get_lb_mem();
	start = (unsigned long)head;
	end = (unsigned long)last_rec;
	entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
	/* Resize the right two memory areas so this table is in
	 * a reserved area of memory.  Everything has been carefully
	 * setup so that is all we need to do.
	 */
	for(i = 0; i < entries; i++ ) {
		uint64_t map_start = unpack_lb64(mem->map[i].start);
		uint64_t map_end = map_start + unpack_lb64(mem->map[i].size);
		/* Does this area need to be expanded? */
		if (map_end == start) {
			mem->map[i].size = pack_lb64(end - map_start);
		}
		/* Does this area need to be contracted? */
		else if (map_start == start) {
			mem->map[i].start = pack_lb64(end);
			mem->map[i].size = pack_lb64(map_end - end);
		}
	}
#endif
}
コード例 #2
0
ファイル: hardwaremain.c プロジェクト: mytbk/coreboot
static boot_state_t bs_payload_load(void *arg)
{
	void *payload;
	void *entry;

	timestamp_add_now(TS_LOAD_PAYLOAD);

	payload = cbfs_load_payload(CBFS_DEFAULT_MEDIA,
				    CONFIG_CBFS_PREFIX "/payload");
	if (! payload)
		die("Could not find a payload\n");

	entry = selfload(get_lb_mem(), payload);

	if (! entry)
		die("Could not load payload\n");

	/* Pass the payload to the next state. */
	boot_states[BS_PAYLOAD_BOOT].arg = entry;

	return BS_PAYLOAD_BOOT;
}
コード例 #3
0
ファイル: tables.c プロジェクト: Rapternmn/coreboot
struct lb_memory *write_tables(void)
{
	unsigned long table_pointer, new_table_pointer;

#if ! CONFIG_DYNAMIC_CBMEM
	if (!high_tables_base) {
		printk(BIOS_ERR, "ERROR: high_tables_base is not set.\n");
	}

	printk(BIOS_DEBUG, "high_tables_base: %llx.\n", high_tables_base);
#endif

	post_code(0x9d);

	table_pointer = (unsigned long)cbmem_add(CBMEM_ID_CBTABLE,
						MAX_COREBOOT_TABLE_SIZE);
	if (!table_pointer) {
		printk(BIOS_ERR, "Could not add CBMEM for coreboot table.\n");
		return NULL;
	}

	new_table_pointer = write_coreboot_table(0UL, 0UL,
				table_pointer, table_pointer);

	if (new_table_pointer > (table_pointer + MAX_COREBOOT_TABLE_SIZE)) {
		printk(BIOS_ERR, "coreboot table didn't fit (%lx/%x bytes)\n",
			   new_table_pointer - table_pointer, MAX_COREBOOT_TABLE_SIZE);
	}

	printk(BIOS_DEBUG, "coreboot table: %ld bytes.\n",
			new_table_pointer - table_pointer);

	post_code(0x9e);

	/* Print CBMEM sections */
	cbmem_list();

	return get_lb_mem();
}
コード例 #4
0
ファイル: tables.c プロジェクト: XVilka/coreboot
struct lb_memory *write_tables(void)
{
    unsigned long low_table_start, low_table_end;
    unsigned long rom_table_start, rom_table_end;

    /* Even if high tables are configured, some tables are copied both to
     * the low and the high area, so payloads and OSes don't need to know
     * about the high tables.
     */
    unsigned long high_table_pointer;

    if (!high_tables_base) {
        printk(BIOS_ERR, "ERROR: High Tables Base is not set.\n");
        // Are there any boards without?
        // Stepan thinks we should die() here!
    }

    printk(BIOS_DEBUG, "High Tables Base is %llx.\n", high_tables_base);

    rom_table_start = 0xf0000;
    rom_table_end =   0xf0000;

    /* Start low addr at 0x500, so we don't run into conflicts with the BDA
     * in case our data structures grow beyound 0x400. Only multiboot, GDT
     * and the coreboot table use low_tables.
     */
    low_table_start = 0;
    low_table_end = 0x500;

#if CONFIG_GENERATE_PIRQ_TABLE == 1
#define MAX_PIRQ_TABLE_SIZE (4 * 1024)
    post_code(0x9a);

    /* This table must be between 0x0f0000 and 0x100000 */
    rom_table_end = write_pirq_routing_table(rom_table_end);
    rom_table_end = ALIGN(rom_table_end, 1024);

    /* And add a high table version for those payloads that
     * want to live in the F segment
     */
    high_table_pointer = (unsigned long)cbmem_add(CBMEM_ID_PIRQ, MAX_PIRQ_TABLE_SIZE);
    if (high_table_pointer) {
        unsigned long new_high_table_pointer;
        new_high_table_pointer = write_pirq_routing_table(high_table_pointer);
        // FIXME make pirq table code intelligent enough to know how
        // much space it's going to need.
        if (new_high_table_pointer > (high_table_pointer + MAX_PIRQ_TABLE_SIZE)) {
            printk(BIOS_ERR, "ERROR: Increase PIRQ size.\n");
        }
        printk(BIOS_DEBUG, "PIRQ table: %ld bytes.\n",
               new_high_table_pointer - high_table_pointer);
    }

#endif

#if CONFIG_GENERATE_MP_TABLE == 1
#define MAX_MP_TABLE_SIZE (4 * 1024)
    post_code(0x9b);

    /* The smp table must be in 0-1K, 639K-640K, or 960K-1M */
    rom_table_end = write_smp_table(rom_table_end);
    rom_table_end = ALIGN(rom_table_end, 1024);

    high_table_pointer = (unsigned long)cbmem_add(CBMEM_ID_MPTABLE, MAX_MP_TABLE_SIZE);
    if (high_table_pointer) {
        unsigned long new_high_table_pointer;
        new_high_table_pointer = write_smp_table(high_table_pointer);
        // FIXME make mp table code intelligent enough to know how
        // much space it's going to need.
        if (new_high_table_pointer > (high_table_pointer + MAX_MP_TABLE_SIZE)) {
            printk(BIOS_ERR, "ERROR: Increase MP table size.\n");
        }

        printk(BIOS_DEBUG, "MP table: %ld bytes.\n",
               new_high_table_pointer - high_table_pointer);
    }
#endif /* CONFIG_GENERATE_MP_TABLE */

#if CONFIG_GENERATE_ACPI_TABLES == 1
#define MAX_ACPI_SIZE (45 * 1024)
    post_code(0x9c);

    /* Write ACPI tables to F segment and high tables area */

    /* Ok, this is a bit hacky still, because some day we want to have this
     * completely dynamic. But right now we are setting fixed sizes.
     * It's probably still better than the old high_table_base code because
     * now at least we know when we have an overflow in the area.
     *
     * We want to use 1MB - 64K for Resume backup. We use 512B for TOC and
     * 512 byte for GDT, 4K for PIRQ and 4K for MP table and 8KB for the
     * coreboot table. This leaves us with 47KB for all of ACPI. Let's see
     * how far we get.
     */
    high_table_pointer = (unsigned long)cbmem_add(CBMEM_ID_ACPI, MAX_ACPI_SIZE);
    if (high_table_pointer) {
        unsigned long acpi_start = high_table_pointer;
        unsigned long new_high_table_pointer;

        rom_table_end = ALIGN(rom_table_end, 16);
        new_high_table_pointer = write_acpi_tables(high_table_pointer);
        if (new_high_table_pointer > ( high_table_pointer + MAX_ACPI_SIZE)) {
            printk(BIOS_ERR, "ERROR: Increase ACPI size\n");
        }
        printk(BIOS_DEBUG, "ACPI tables: %ld bytes.\n",
               new_high_table_pointer - high_table_pointer);

        /* Now we need to create a low table copy of the RSDP. */

        /* First we look for the high table RSDP */
        while (acpi_start < new_high_table_pointer) {
            if (memcmp(((acpi_rsdp_t *)acpi_start)->signature, RSDP_SIG, 8) == 0) {
                break;
            }
            acpi_start++;
        }

        /* Now, if we found the RSDP, we take the RSDT and XSDT pointer
         * from it in order to write the low RSDP
         */
        if (acpi_start < new_high_table_pointer) {
            acpi_rsdp_t *low_rsdp = (acpi_rsdp_t *)rom_table_end,
                         *high_rsdp = (acpi_rsdp_t *)acpi_start;

            acpi_write_rsdp(low_rsdp,
                            (acpi_rsdt_t *)(high_rsdp->rsdt_address),
                            (acpi_xsdt_t *)((unsigned long)high_rsdp->xsdt_address));
        } else {
            printk(BIOS_ERR, "ERROR: Didn't find RSDP in high table.\n");
        }
        rom_table_end = ALIGN(rom_table_end + sizeof(acpi_rsdp_t), 16);
    } else {
        rom_table_end = write_acpi_tables(rom_table_end);
        rom_table_end = ALIGN(rom_table_end, 1024);
    }

#endif
#define MAX_SMBIOS_SIZE 2048
#if CONFIG_GENERATE_SMBIOS_TABLES
    high_table_pointer = (unsigned long)cbmem_add(CBMEM_ID_SMBIOS, MAX_SMBIOS_SIZE);
    if (high_table_pointer) {
        unsigned long new_high_table_pointer;

        new_high_table_pointer = smbios_write_tables(high_table_pointer);
        rom_table_end = ALIGN(rom_table_end, 16);
        memcpy((void *)rom_table_end, (void *)high_table_pointer, sizeof(struct smbios_entry));
        rom_table_end += sizeof(struct smbios_entry);

        if (new_high_table_pointer > ( high_table_pointer + MAX_SMBIOS_SIZE)) {
            printk(BIOS_ERR, "ERROR: Increase SMBIOS size\n");
        }
        printk(BIOS_DEBUG, "SMBIOS tables: %ld bytes.\n",
               new_high_table_pointer - high_table_pointer);
    } else {
        unsigned long new_rom_table_end = smbios_write_tables(rom_table_end);
        printk(BIOS_DEBUG, "SMBIOS size %ld bytes\n", new_rom_table_end - rom_table_end);
        rom_table_end = ALIGN(new_rom_table_end, 16);
    }
#endif

#define MAX_COREBOOT_TABLE_SIZE (8 * 1024)
    post_code(0x9d);

    high_table_pointer = (unsigned long)cbmem_add(CBMEM_ID_CBTABLE, MAX_COREBOOT_TABLE_SIZE);

    if (high_table_pointer) {
        unsigned long new_high_table_pointer;

        /* Also put a forwarder entry into 0-4K */
        new_high_table_pointer = write_coreboot_table(low_table_start, low_table_end,
                                 high_tables_base, high_table_pointer);

        if (new_high_table_pointer > (high_table_pointer +
                                      MAX_COREBOOT_TABLE_SIZE))
            printk(BIOS_ERR, "%s: coreboot table didn't fit (%lx)\n",
                   __func__, new_high_table_pointer -
                   high_table_pointer);

        printk(BIOS_DEBUG, "coreboot table: %ld bytes.\n",
               new_high_table_pointer - high_table_pointer);
    } else {
        /* The coreboot table must be in 0-4K or 960K-1M */
        rom_table_end = write_coreboot_table(
                            low_table_start, low_table_end,
                            rom_table_start, rom_table_end);
    }

    post_code(0x9e);

#if CONFIG_HAVE_ACPI_RESUME
    /* Let's prepare the ACPI S3 Resume area now already, so we can rely on
     * it begin there during reboot time. We don't need the pointer, nor
     * the result right now. If it fails, ACPI resume will be disabled.
     */
    cbmem_add(CBMEM_ID_RESUME, HIGH_MEMORY_SAVE);
#endif

#if CONFIG_MULTIBOOT
    post_code(0x9d);

    /* The Multiboot information structure */
    write_multiboot_info(rom_table_end);
#endif

    // Remove before sending upstream
    cbmem_list();

    return get_lb_mem();
}