コード例 #1
0
ファイル: lsd.c プロジェクト: vaiv/OpenANPR
void test_lsd(char *cfgfile, char *weightfile, char *filename)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);

    clock_t time;
    char buff[256];
    char *input = buff;
    int i, imlayer = 0;

    for (i = 0; i < net.n; ++i) {
        if (net.layers[i].out_c == 3) {
            imlayer = i;
            printf("%d\n", i);
            break;
        }
    }

    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        image resized = resize_min(im, net.w);
        image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
        //grayscale_image_3c(crop);

        float *X = crop.data;
        time=clock();
        network_predict(net, X);
        image out = get_network_image_layer(net, imlayer);
        //yuv_to_rgb(out);
        constrain_image(out);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        show_image(out, "out");
        show_image(crop, "crop");
        save_image(out, "out");
#ifdef OPENCV
        cvWaitKey(0);
#endif

        free_image(im);
        free_image(resized);
        free_image(crop);
        if (filename) break;
    }
}
コード例 #2
0
ファイル: lsd.c プロジェクト: kunle12/darknet
void inter_dcgan(char *cfgfile, char *weightfile)
{
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);
    srand(2222222);

    clock_t time;
    char buff[256];
    char *input = buff;
    int i, imlayer = 0;

    for (i = 0; i < net->n; ++i) {
        if (net->layers[i].out_c == 3) {
            imlayer = i;
            printf("%d\n", i);
            break;
        }
    }
    image start = random_unit_vector_image(net->w, net->h, net->c);
    image end = random_unit_vector_image(net->w, net->h, net->c);
        image im = make_image(net->w, net->h, net->c);
        image orig = copy_image(start);

    int c = 0;
    int count = 0;
    int max_count = 15;
    while(1){
        ++c;

        if(count == max_count){
            count = 0;
            free_image(start);
            start = end;
            end = random_unit_vector_image(net->w, net->h, net->c);
            if(c > 300){
                end = orig;
            }
            if(c>300 + max_count) return;
        }
        ++count;

        slerp(start.data, end.data, (float)count / max_count, im.w*im.h*im.c, im.data);

        float *X = im.data;
        time=clock();
        network_predict(net, X);
        image out = get_network_image_layer(net, imlayer);
        //yuv_to_rgb(out);
        normalize_image(out);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        //char buff[256];
        sprintf(buff, "out%05d", c);
        save_image(out, "out");
        save_image(out, buff);
        show_image(out, "out", 0);
    }
}
コード例 #3
0
ファイル: network.c プロジェクト: NomokoAG/darknet
image get_network_image(network net)
{
    int i;
    for(i = net.n-1; i >= 0; --i){
        image m = get_network_image_layer(net, i);
        if(m.h != 0) return m;
    }
    image def = {0};
    return def;
}
コード例 #4
0
ファイル: lsd.c プロジェクト: ShahImranShovon/darknet
void test_dcgan(char *cfgfile, char *weightfile)
{
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);
    srand(2222222);

    clock_t time;
    char buff[256];
    char *input = buff;
    int i, imlayer = 0;

    for (i = 0; i < net->n; ++i) {
        if (net->layers[i].out_c == 3) {
            imlayer = i;
            printf("%d\n", i);
            break;
        }
    }

    while(1){
        image im = make_image(net->w, net->h, net->c);
        int i;
        for(i = 0; i < im.w*im.h*im.c; ++i){
            im.data[i] = rand_normal();
        }

        float *X = im.data;
        time=clock();
        network_predict(net, X);
        image out = get_network_image_layer(net, imlayer);
        //yuv_to_rgb(out);
        normalize_image(out);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        show_image(out, "out");
        save_image(out, "out");
#ifdef OPENCV
        cvWaitKey(0);
#endif

        free_image(im);
    }
}
コード例 #5
0
ファイル: lsd.c プロジェクト: kunle12/darknet
void test_dcgan(char *cfgfile, char *weightfile)
{
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);
    srand(2222222);

    clock_t time;
    char buff[256];
    char *input = buff;
    int imlayer = 0;

    imlayer = net->n-1;

    while(1){
        image im = make_image(net->w, net->h, net->c);
        int i;
        for(i = 0; i < im.w*im.h*im.c; ++i){
            im.data[i] = rand_normal();
        }
        //float mag = mag_array(im.data, im.w*im.h*im.c);
        //scale_array(im.data, im.w*im.h*im.c, 1./mag);

        float *X = im.data;
        time=clock();
        network_predict(net, X);
        image out = get_network_image_layer(net, imlayer);
        //yuv_to_rgb(out);
        normalize_image(out);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        save_image(out, "out");
        show_image(out, "out", 0);

        free_image(im);
    }
    free_network(net);
}