void test_lsd(char *cfgfile, char *weightfile, char *filename) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; int i, imlayer = 0; for (i = 0; i < net.n; ++i) { if (net.layers[i].out_c == 3) { imlayer = i; printf("%d\n", i); break; } } while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); image resized = resize_min(im, net.w); image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h); //grayscale_image_3c(crop); float *X = crop.data; time=clock(); network_predict(net, X); image out = get_network_image_layer(net, imlayer); //yuv_to_rgb(out); constrain_image(out); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); show_image(out, "out"); show_image(crop, "crop"); save_image(out, "out"); #ifdef OPENCV cvWaitKey(0); #endif free_image(im); free_image(resized); free_image(crop); if (filename) break; } }
void inter_dcgan(char *cfgfile, char *weightfile) { network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; int i, imlayer = 0; for (i = 0; i < net->n; ++i) { if (net->layers[i].out_c == 3) { imlayer = i; printf("%d\n", i); break; } } image start = random_unit_vector_image(net->w, net->h, net->c); image end = random_unit_vector_image(net->w, net->h, net->c); image im = make_image(net->w, net->h, net->c); image orig = copy_image(start); int c = 0; int count = 0; int max_count = 15; while(1){ ++c; if(count == max_count){ count = 0; free_image(start); start = end; end = random_unit_vector_image(net->w, net->h, net->c); if(c > 300){ end = orig; } if(c>300 + max_count) return; } ++count; slerp(start.data, end.data, (float)count / max_count, im.w*im.h*im.c, im.data); float *X = im.data; time=clock(); network_predict(net, X); image out = get_network_image_layer(net, imlayer); //yuv_to_rgb(out); normalize_image(out); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); //char buff[256]; sprintf(buff, "out%05d", c); save_image(out, "out"); save_image(out, buff); show_image(out, "out", 0); } }
image get_network_image(network net) { int i; for(i = net.n-1; i >= 0; --i){ image m = get_network_image_layer(net, i); if(m.h != 0) return m; } image def = {0}; return def; }
void test_dcgan(char *cfgfile, char *weightfile) { network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; int i, imlayer = 0; for (i = 0; i < net->n; ++i) { if (net->layers[i].out_c == 3) { imlayer = i; printf("%d\n", i); break; } } while(1){ image im = make_image(net->w, net->h, net->c); int i; for(i = 0; i < im.w*im.h*im.c; ++i){ im.data[i] = rand_normal(); } float *X = im.data; time=clock(); network_predict(net, X); image out = get_network_image_layer(net, imlayer); //yuv_to_rgb(out); normalize_image(out); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); show_image(out, "out"); save_image(out, "out"); #ifdef OPENCV cvWaitKey(0); #endif free_image(im); } }
void test_dcgan(char *cfgfile, char *weightfile) { network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; int imlayer = 0; imlayer = net->n-1; while(1){ image im = make_image(net->w, net->h, net->c); int i; for(i = 0; i < im.w*im.h*im.c; ++i){ im.data[i] = rand_normal(); } //float mag = mag_array(im.data, im.w*im.h*im.c); //scale_array(im.data, im.w*im.h*im.c, 1./mag); float *X = im.data; time=clock(); network_predict(net, X); image out = get_network_image_layer(net, imlayer); //yuv_to_rgb(out); normalize_image(out); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); save_image(out, "out"); show_image(out, "out", 0); free_image(im); } free_network(net); }