コード例 #1
0
int setup_waveform_file(ulong waveform_buf)
{
	char *fs_argv[5];
	char addr[17];
	ulong file_len, mmc_dev;

	if (!check_mmc_autodetect())
		mmc_dev = getenv_ulong("mmcdev", 10, 0);
	else
		mmc_dev = mmc_get_env_devno();

	sprintf(addr, "%lx", waveform_buf);

	fs_argv[0] = "fatload";
	fs_argv[1] = "mmc";
	fs_argv[2] = simple_itoa(mmc_dev);
	fs_argv[3] = addr;
	fs_argv[4] = getenv("epdc_waveform");

	if (!fs_argv[4])
		fs_argv[4] = "epdc_splash.bin";

	if (do_fat_fsload(NULL, 0, 5, fs_argv)) {
		printf("MMC Device %lu not found\n", mmc_dev);
		return -1;
	}

	file_len = getenv_hex("filesize", 0);
	if (!file_len)
		return -1;

	flush_cache((ulong)addr, file_len);

	return 0;
}
コード例 #2
0
int do_bootloader_validate(cmd_tbl_t * cmdtp, int flag, int argc,
			   char *const argv[])
{
	uint32_t image_addr = 0;
	const bootloader_header_t *header;

	if (argc >= 2)
		image_addr = simple_strtoul(argv[1], NULL, 16);

	if (!image_addr) {
		image_addr = getenv_hex("fileaddr", load_addr);
		if (!image_addr) {
			puts("ERROR: Unable to get image address from "
			     "'fileaddr' environment variable\n");
			return 1;
		}
	}

	header = (void *)image_addr;
	if (validate_header(header)) {
		puts("Image does not have valid header\n");
		return 1;
	}

	if (validate_data(header))
		return 1;

	printf("Image validated. Header size %d, data size %d\n", header->hlen,
	       header->dlen);
	printf("                 Header crc 0x%x, data crc 0x%x\n",
	       header->hcrc, header->dcrc);
	printf("                 Image link address is 0x%llx\n",
	       header->address);

	return 0;
}
コード例 #3
0
ファイル: fdt.c プロジェクト: eesuda/u-boot
/*
 * Flattened Device Tree command, see the help for parameter definitions.
 */
static int do_fdt(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	if (argc < 2)
		return CMD_RET_USAGE;

	/*
	 * Set the address of the fdt
	 */
	if (strncmp(argv[1], "ad", 2) == 0) {
		unsigned long addr;
		int control = 0;
		struct fdt_header *blob;
		/*
		 * Set the address [and length] of the fdt.
		 */
		argc -= 2;
		argv += 2;
/* Temporary #ifdef - some archs don't have fdt_blob yet */
#ifdef CONFIG_OF_CONTROL
		if (argc && !strcmp(*argv, "-c")) {
			control = 1;
			argc--;
			argv++;
		}
#endif
		if (argc == 0) {
			if (control)
				blob = (struct fdt_header *)gd->fdt_blob;
			else
				blob = working_fdt;
			if (!blob || !fdt_valid(&blob))
				return 1;
			printf("The address of the fdt is %#08lx\n",
			       control ? (ulong)map_to_sysmem(blob) :
					getenv_hex("fdtaddr", 0));
			return 0;
		}

		addr = simple_strtoul(argv[0], NULL, 16);
		blob = map_sysmem(addr, 0);
		if (!fdt_valid(&blob))
			return 1;
		if (control)
			gd->fdt_blob = blob;
		else
			set_working_fdt_addr(addr);

		if (argc >= 2) {
			int  len;
			int  err;
			/*
			 * Optional new length
			 */
			len = simple_strtoul(argv[1], NULL, 16);
			if (len < fdt_totalsize(blob)) {
				printf ("New length %d < existing length %d, "
					"ignoring.\n",
					len, fdt_totalsize(blob));
			} else {
				/*
				 * Open in place with a new length.
				 */
				err = fdt_open_into(blob, blob, len);
				if (err != 0) {
					printf ("libfdt fdt_open_into(): %s\n",
						fdt_strerror(err));
				}
			}
		}

		return CMD_RET_SUCCESS;
	}

	if (!working_fdt) {
		puts(
			"No FDT memory address configured. Please configure\n"
			"the FDT address via \"fdt addr <address>\" command.\n"
			"Aborting!\n");
		return CMD_RET_FAILURE;
	}

	/*
	 * Move the working_fdt
	 */
	if (strncmp(argv[1], "mo", 2) == 0) {
		struct fdt_header *newaddr;
		int  len;
		int  err;

		if (argc < 4)
			return CMD_RET_USAGE;

		/*
		 * Set the address and length of the fdt.
		 */
		working_fdt = (struct fdt_header *)simple_strtoul(argv[2], NULL, 16);
		if (!fdt_valid(&working_fdt))
			return 1;

		newaddr = (struct fdt_header *)simple_strtoul(argv[3],NULL,16);

		/*
		 * If the user specifies a length, use that.  Otherwise use the
		 * current length.
		 */
		if (argc <= 4) {
			len = fdt_totalsize(working_fdt);
		} else {
			len = simple_strtoul(argv[4], NULL, 16);
			if (len < fdt_totalsize(working_fdt)) {
				printf ("New length 0x%X < existing length "
					"0x%X, aborting.\n",
					len, fdt_totalsize(working_fdt));
				return 1;
			}
		}

		/*
		 * Copy to the new location.
		 */
		err = fdt_open_into(working_fdt, newaddr, len);
		if (err != 0) {
			printf ("libfdt fdt_open_into(): %s\n",
				fdt_strerror(err));
			return 1;
		}
		working_fdt = newaddr;

	/*
	 * Make a new node
	 */
	} else if (strncmp(argv[1], "mk", 2) == 0) {
		char *pathp;		/* path */
		char *nodep;		/* new node to add */
		int  nodeoffset;	/* node offset from libfdt */
		int  err;

		/*
		 * Parameters: Node path, new node to be appended to the path.
		 */
		if (argc < 4)
			return CMD_RET_USAGE;

		pathp = argv[2];
		nodep = argv[3];

		nodeoffset = fdt_path_offset (working_fdt, pathp);
		if (nodeoffset < 0) {
			/*
			 * Not found or something else bad happened.
			 */
			printf ("libfdt fdt_path_offset() returned %s\n",
				fdt_strerror(nodeoffset));
			return 1;
		}
		err = fdt_add_subnode(working_fdt, nodeoffset, nodep);
		if (err < 0) {
			printf ("libfdt fdt_add_subnode(): %s\n",
				fdt_strerror(err));
			return 1;
		}

	/*
	 * Set the value of a property in the working_fdt.
	 */
	} else if (argv[1][0] == 's') {
		char *pathp;		/* path */
		char *prop;		/* property */
		int  nodeoffset;	/* node offset from libfdt */
		static char data[SCRATCHPAD];	/* storage for the property */
		int  len;		/* new length of the property */
		int  ret;		/* return value */

		/*
		 * Parameters: Node path, property, optional value.
		 */
		if (argc < 4)
			return CMD_RET_USAGE;

		pathp  = argv[2];
		prop   = argv[3];
		if (argc == 4) {
			len = 0;
		} else {
			ret = fdt_parse_prop(&argv[4], argc - 4, data, &len);
			if (ret != 0)
				return ret;
		}

		nodeoffset = fdt_path_offset (working_fdt, pathp);
		if (nodeoffset < 0) {
			/*
			 * Not found or something else bad happened.
			 */
			printf ("libfdt fdt_path_offset() returned %s\n",
				fdt_strerror(nodeoffset));
			return 1;
		}

		ret = fdt_setprop(working_fdt, nodeoffset, prop, data, len);
		if (ret < 0) {
			printf ("libfdt fdt_setprop(): %s\n", fdt_strerror(ret));
			return 1;
		}

	/********************************************************************
	 * Get the value of a property in the working_fdt.
	 ********************************************************************/
	} else if (argv[1][0] == 'g') {
		char *subcmd;		/* sub-command */
		char *pathp;		/* path */
		char *prop;		/* property */
		char *var;		/* variable to store result */
		int  nodeoffset;	/* node offset from libfdt */
		const void *nodep;	/* property node pointer */
		int  len = 0;		/* new length of the property */

		/*
		 * Parameters: Node path, property, optional value.
		 */
		if (argc < 5)
			return CMD_RET_USAGE;

		subcmd = argv[2];

		if (argc < 6 && subcmd[0] != 's')
			return CMD_RET_USAGE;

		var    = argv[3];
		pathp  = argv[4];
		prop   = argv[5];

		nodeoffset = fdt_path_offset(working_fdt, pathp);
		if (nodeoffset < 0) {
			/*
			 * Not found or something else bad happened.
			 */
			printf("libfdt fdt_path_offset() returned %s\n",
				fdt_strerror(nodeoffset));
			return 1;
		}

		if (subcmd[0] == 'n' || (subcmd[0] == 's' && argc == 5)) {
			int reqIndex = -1;
			int startDepth = fdt_node_depth(
				working_fdt, nodeoffset);
			int curDepth = startDepth;
			int curIndex = -1;
			int nextNodeOffset = fdt_next_node(
				working_fdt, nodeoffset, &curDepth);

			if (subcmd[0] == 'n')
				reqIndex = simple_strtoul(argv[5], NULL, 16);

			while (curDepth > startDepth) {
				if (curDepth == startDepth + 1)
					curIndex++;
				if (subcmd[0] == 'n' && curIndex == reqIndex) {
					const char *nodeName = fdt_get_name(
					    working_fdt, nextNodeOffset, NULL);

					setenv(var, (char *)nodeName);
					return 0;
				}
				nextNodeOffset = fdt_next_node(
					working_fdt, nextNodeOffset, &curDepth);
				if (nextNodeOffset < 0)
					break;
			}
			if (subcmd[0] == 's') {
				/* get the num nodes at this level */
				setenv_ulong(var, curIndex + 1);
			} else {
				/* node index not found */
				printf("libfdt node not found\n");
				return 1;
			}
		} else {
			nodep = fdt_getprop(
				working_fdt, nodeoffset, prop, &len);
			if (len == 0) {
				/* no property value */
				setenv(var, "");
				return 0;
			} else if (len > 0) {
				if (subcmd[0] == 'v') {
					int ret;

					ret = fdt_value_setenv(nodep, len, var);
					if (ret != 0)
						return ret;
				} else if (subcmd[0] == 'a') {
					/* Get address */
					char buf[11];

					sprintf(buf, "0x%p", nodep);
					setenv(var, buf);
				} else if (subcmd[0] == 's') {
					/* Get size */
					char buf[11];

					sprintf(buf, "0x%08X", len);
					setenv(var, buf);
				} else
					return CMD_RET_USAGE;
				return 0;
			} else {
				printf("libfdt fdt_getprop(): %s\n",
					fdt_strerror(len));
				return 1;
			}
		}

	/*
	 * Print (recursive) / List (single level)
	 */
	} else if ((argv[1][0] == 'p') || (argv[1][0] == 'l')) {
		int depth = MAX_LEVEL;	/* how deep to print */
		char *pathp;		/* path */
		char *prop;		/* property */
		int  ret;		/* return value */
		static char root[2] = "/";

		/*
		 * list is an alias for print, but limited to 1 level
		 */
		if (argv[1][0] == 'l') {
			depth = 1;
		}

		/*
		 * Get the starting path.  The root node is an oddball,
		 * the offset is zero and has no name.
		 */
		if (argc == 2)
			pathp = root;
		else
			pathp = argv[2];
		if (argc > 3)
			prop = argv[3];
		else
			prop = NULL;

		ret = fdt_print(pathp, prop, depth);
		if (ret != 0)
			return ret;

	/*
	 * Remove a property/node
	 */
	} else if (strncmp(argv[1], "rm", 2) == 0) {
		int  nodeoffset;	/* node offset from libfdt */
		int  err;

		/*
		 * Get the path.  The root node is an oddball, the offset
		 * is zero and has no name.
		 */
		nodeoffset = fdt_path_offset (working_fdt, argv[2]);
		if (nodeoffset < 0) {
			/*
			 * Not found or something else bad happened.
			 */
			printf ("libfdt fdt_path_offset() returned %s\n",
				fdt_strerror(nodeoffset));
			return 1;
		}
		/*
		 * Do the delete.  A fourth parameter means delete a property,
		 * otherwise delete the node.
		 */
		if (argc > 3) {
			err = fdt_delprop(working_fdt, nodeoffset, argv[3]);
			if (err < 0) {
				printf("libfdt fdt_delprop():  %s\n",
					fdt_strerror(err));
				return err;
			}
		} else {
			err = fdt_del_node(working_fdt, nodeoffset);
			if (err < 0) {
				printf("libfdt fdt_del_node():  %s\n",
					fdt_strerror(err));
				return err;
			}
		}

	/*
	 * Display header info
	 */
	} else if (argv[1][0] == 'h') {
		u32 version = fdt_version(working_fdt);
		printf("magic:\t\t\t0x%x\n", fdt_magic(working_fdt));
		printf("totalsize:\t\t0x%x (%d)\n", fdt_totalsize(working_fdt),
		       fdt_totalsize(working_fdt));
		printf("off_dt_struct:\t\t0x%x\n",
		       fdt_off_dt_struct(working_fdt));
		printf("off_dt_strings:\t\t0x%x\n",
		       fdt_off_dt_strings(working_fdt));
		printf("off_mem_rsvmap:\t\t0x%x\n",
		       fdt_off_mem_rsvmap(working_fdt));
		printf("version:\t\t%d\n", version);
		printf("last_comp_version:\t%d\n",
		       fdt_last_comp_version(working_fdt));
		if (version >= 2)
			printf("boot_cpuid_phys:\t0x%x\n",
				fdt_boot_cpuid_phys(working_fdt));
		if (version >= 3)
			printf("size_dt_strings:\t0x%x\n",
				fdt_size_dt_strings(working_fdt));
		if (version >= 17)
			printf("size_dt_struct:\t\t0x%x\n",
				fdt_size_dt_struct(working_fdt));
		printf("number mem_rsv:\t\t0x%x\n",
		       fdt_num_mem_rsv(working_fdt));
		printf("\n");

	/*
	 * Set boot cpu id
	 */
	} else if (strncmp(argv[1], "boo", 3) == 0) {
		unsigned long tmp = simple_strtoul(argv[2], NULL, 16);
		fdt_set_boot_cpuid_phys(working_fdt, tmp);

	/*
	 * memory command
	 */
	} else if (strncmp(argv[1], "me", 2) == 0) {
		uint64_t addr, size;
		int err;
		addr = simple_strtoull(argv[2], NULL, 16);
		size = simple_strtoull(argv[3], NULL, 16);
		err = fdt_fixup_memory(working_fdt, addr, size);
		if (err < 0)
			return err;

	/*
	 * mem reserve commands
	 */
	} else if (strncmp(argv[1], "rs", 2) == 0) {
		if (argv[2][0] == 'p') {
			uint64_t addr, size;
			int total = fdt_num_mem_rsv(working_fdt);
			int j, err;
			printf("index\t\t   start\t\t    size\n");
			printf("-------------------------------"
				"-----------------\n");
			for (j = 0; j < total; j++) {
				err = fdt_get_mem_rsv(working_fdt, j, &addr, &size);
				if (err < 0) {
					printf("libfdt fdt_get_mem_rsv():  %s\n",
							fdt_strerror(err));
					return err;
				}
				printf("    %x\t%08x%08x\t%08x%08x\n", j,
					(u32)(addr >> 32),
					(u32)(addr & 0xffffffff),
					(u32)(size >> 32),
					(u32)(size & 0xffffffff));
			}
		} else if (argv[2][0] == 'a') {
コード例 #4
0
/**
 * Command for updating a bootloader image in flash.  This function
 * parses the arguments, and validates the header (if header exists.)
 * Actual flash updating is done by flash type specific functions.
 *
 * @return 0 on success
 *         1 on failure
 */
int do_bootloader_update(cmd_tbl_t * cmdtp, int flag, int argc,
			 char *const argv[])
{
	uint32_t image_addr = 0;
	uint32_t image_len = 0;
	uint32_t burn_addr = 0;
	int failsafe = 0;
	const bootloader_header_t *header;
	int force_nand = 0;
	int force_spi = 0;

	if (argc >= 2) {
		if (!strcmp(argv[1], "nand")) {
			debug("Forced NAND bootloader update\n");
			force_nand = 1;
			argc--;
			argv++;
		} else if (!strcmp(argv[1], "spi")) {
			debug("Forced SPI bootloader update\n");
			force_spi = 1;
			argc--;
			argv++;
			if (!strcmp(argv[1], "failsafe")) {
				failsafe = 1;
				argc--;
				argv++;
			}
		}
	}
	if (argc >= 2)
		image_addr = simple_strtoul(argv[1], NULL, 16);
	if (argc >= 3)
		image_len = simple_strtoul(argv[2], NULL, 16);
	if (argc >= 4) {
		if (force_spi || force_nand) {
			if (!strcmp("failsafe", argv[3]))
				failsafe = 1;
		} else {
			burn_addr = simple_strtoul(argv[3], NULL, 16);
		}
	}
	if ((argc >= 5) && (strcmp("failsafe", argv[4]) == 0))
		failsafe = 1;

	/* If we don't support failsafe images, we need to put the image at the
	 * base of flash, so we treat all images like failsafe image in this
	 * case.
	 */
#ifdef CONFIG_OCTEON_NO_FAILSAFE
	failsafe = 1;
	burn_addr = 0x1fc00000;
#endif

	if (!burn_addr)
		burn_addr = getenv_hex("burnaddr", 0);

	if (!image_addr) {
		image_addr = getenv_hex("fileaddr", load_addr);
		if (!image_addr) {
			puts("ERROR: Unable to get image address from "
			     "'fileaddr' environment variable\n");
			return 1;
		}
	}

	DBGUPD("%s: burn address: 0x%x, image address: 0x%x\n",
	      __func__, burn_addr, image_addr);

	/* Figure out what kind of flash we are going to update.  This will
	 * typically come from the bootloader header.  If the bootloader does
	 * not have a header, then it is assumed to be a legacy NOR image, and
	 * a destination NOR flash address must be supplied.  NAND images
	 * _must_ have a header.
	 */
	header = (void *)image_addr;

	if (header->magic != BOOTLOADER_HEADER_MAGIC) {
		/* No header, assume headerless NOR bootloader image */
		puts("No valid bootloader header found.  Assuming old headerless image\n"
		     "Image checks cannot be performed\n");

		if (!burn_addr) {
			burn_addr = CONFIG_SYS_NORMAL_BOOTLOADER_BASE;
			DBGUPD("Unable to get burn address from 'burnaddr' environment variable,\n");
			DBGUPD(" using default 0x%x\n", burn_addr);
		}
		/* We only need image length for the headerless case */
		if (!image_len) {
			image_len = getenv_hex("filesize", 0);
			if (!image_len) {
				puts("ERROR: Unable to get image size from "
				     "'filesize' environment variable\n");
				return 1;
			}
		}

		return do_bootloader_update_nor(image_addr, image_len,
						burn_addr, failsafe);
	}

	/* We have a header, so validate image */
	if (validate_header(header)) {
		puts("ERROR: Image header has invalid CRC.\n");
		return 1;
	}
	if (validate_data(header))	/* Errors printed */
		return 1;

	/* We now have a valid image, so determine what to do with it. */
	puts("Valid bootloader image found.\n");

	/* Check to see that it is for the board we are running on */
	if (header->board_type != cvmx_sysinfo_get()->board_type) {
		printf("Current board type: %s (%d), image board type: %s (%d)\n",
		       cvmx_board_type_to_string(cvmx_sysinfo_get()->board_type),
		       cvmx_sysinfo_get()->board_type,
		       cvmx_board_type_to_string(header->board_type),
		       header->board_type);
		if (cvmx_sysinfo_get()->board_type != CVMX_BOARD_TYPE_GENERIC
		    && header->board_type != CVMX_BOARD_TYPE_GENERIC) {
			puts("ERROR: Bootloader image is not for this board type.\n");
			return 1;
		} else {
			puts("Loading mismatched image since current "
			     "or new bootloader is generic.\n");
		}
	}

	/* SDK 1.9.0 NOR images have rev of 1.1 and unkown image_type */
	if (((header->image_type == BL_HEADER_IMAGE_NOR)
	     || (header->image_type == BL_HEADER_IMAGE_UNKNOWN
		 && header->maj_rev == 1 && header->min_rev == 1))
	    && !force_nand && !force_spi) {
		debug("Updating NOR bootloader\n");
		return do_bootloader_update_nor(image_addr, 0, burn_addr,
						failsafe);
#if defined(CONFIG_CMD_OCTEON_NAND) || defined(CONFIG_OCTEON_NAND_BOOT_END)
	} else if (!force_spi &&
		   (header->image_type == BL_HEADER_IMAGE_STAGE2 ||
		    header->image_type == BL_HEADER_IMAGE_STAGE3 ||
		    force_nand)) {
		debug("Updating NAND bootloader\n");
		return (do_bootloader_update_nand(image_addr));
#endif
#if defined(CONFIG_OCTEON_SPI_BOOT_END)
	} else if (!force_nand &&
		   (header->image_type == BL_HEADER_IMAGE_STAGE2 ||
		    header->image_type == BL_HEADER_IMAGE_STAGE3 ||
		    force_spi)) {
		debug("Updating SPI bootloader\n");
		return do_bootloader_update_spi(image_addr,
						header->dlen + header->hlen,
						failsafe, false);
#else
	} else {
		puts("ERROR: This bootloader not compiled for this medium\n");
		return 1;
#endif
	}

	return 1;
}