コード例 #1
0
ファイル: ubsan.c プロジェクト: acoxepochlabs/gcc
void
ubsan_expand_bounds_ifn (gimple_stmt_iterator *gsi)
{
  gimple stmt = gsi_stmt (*gsi);
  location_t loc = gimple_location (stmt);
  gcc_assert (gimple_call_num_args (stmt) == 3);

  /* Pick up the arguments of the UBSAN_BOUNDS call.  */
  tree type = TREE_TYPE (TREE_TYPE (gimple_call_arg (stmt, 0)));
  tree index = gimple_call_arg (stmt, 1);
  tree orig_index_type = TREE_TYPE (index);
  tree bound = gimple_call_arg (stmt, 2);

  gimple_stmt_iterator gsi_orig = *gsi;

  /* Create condition "if (index > bound)".  */
  basic_block then_bb, fallthru_bb;
  gimple_stmt_iterator cond_insert_point
    = create_cond_insert_point (gsi, 0/*before_p*/, false, true,
				&then_bb, &fallthru_bb);
  index = fold_convert (TREE_TYPE (bound), index);
  index = force_gimple_operand_gsi (&cond_insert_point, index,
				    true/*simple_p*/, NULL_TREE,
				    false/*before*/, GSI_NEW_STMT);
  gimple g = gimple_build_cond (GT_EXPR, index, bound, NULL_TREE, NULL_TREE);
  gimple_set_location (g, loc);
  gsi_insert_after (&cond_insert_point, g, GSI_NEW_STMT);

  /* Generate __ubsan_handle_out_of_bounds call.  */
  *gsi = gsi_after_labels (then_bb);
  if (flag_sanitize_undefined_trap_on_error)
    g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TRAP), 0);
  else
    {
      tree data
	= ubsan_create_data ("__ubsan_out_of_bounds_data", &loc, NULL,
			     ubsan_type_descriptor (type, UBSAN_PRINT_ARRAY),
			     ubsan_type_descriptor (orig_index_type),
			     NULL_TREE);
      data = build_fold_addr_expr_loc (loc, data);
      enum built_in_function bcode
	= flag_sanitize_recover
	  ? BUILT_IN_UBSAN_HANDLE_OUT_OF_BOUNDS
	  : BUILT_IN_UBSAN_HANDLE_OUT_OF_BOUNDS_ABORT;
      tree fn = builtin_decl_explicit (bcode);
      tree val = force_gimple_operand_gsi (gsi, ubsan_encode_value (index),
					   true, NULL_TREE, true,
					   GSI_SAME_STMT);
      g = gimple_build_call (fn, 2, data, val);
    }
  gimple_set_location (g, loc);
  gsi_insert_before (gsi, g, GSI_SAME_STMT);

  /* Get rid of the UBSAN_BOUNDS call from the IR.  */
  unlink_stmt_vdef (stmt);
  gsi_remove (&gsi_orig, true);

  /* Point GSI to next logical statement.  */
  *gsi = gsi_start_bb (fallthru_bb);
}
コード例 #2
0
static void
test_string_literals (gimple *stmt)
{
  gcall *call = check_for_named_call (stmt, "__emit_string_literal_range", 4);
  if (!call)
    return;

  /* We expect an ADDR_EXPR with a STRING_CST inside it for the
     initial arg.  */
  tree t_addr_string = gimple_call_arg (call, 0);
  if (TREE_CODE (t_addr_string) != ADDR_EXPR)
    {
      error_at (call->location, "string literal required for arg 1");
      return;
    }

  tree t_string = TREE_OPERAND (t_addr_string, 0);
  if (TREE_CODE (t_string) != STRING_CST)
    {
      error_at (call->location, "string literal required for arg 1");
      return;
    }

  tree t_caret_idx = gimple_call_arg (call, 1);
  if (TREE_CODE (t_caret_idx) != INTEGER_CST)
    {
      error_at (call->location, "integer constant required for arg 2");
      return;
    }
  int caret_idx = TREE_INT_CST_LOW (t_caret_idx);

  tree t_start_idx = gimple_call_arg (call, 2);
  if (TREE_CODE (t_start_idx) != INTEGER_CST)
    {
      error_at (call->location, "integer constant required for arg 3");
      return;
    }
  int start_idx = TREE_INT_CST_LOW (t_start_idx);

  tree t_end_idx = gimple_call_arg (call, 3);
  if (TREE_CODE (t_end_idx) != INTEGER_CST)
    {
      error_at (call->location, "integer constant required for arg 4");
      return;
    }
  int end_idx = TREE_INT_CST_LOW (t_end_idx);

  /* A STRING_CST doesn't have a location, but the ADDR_EXPR does.  */
  location_t strloc = EXPR_LOCATION (t_addr_string);
  location_t loc;
  substring_loc substr_loc (strloc, TREE_TYPE (t_string),
			    caret_idx, start_idx, end_idx);
  const char *err = substr_loc.get_location (&loc);
  if (err)
    error_at (strloc, "unable to read substring location: %s", err);
  else
    emit_warning (loc);
}
コード例 #3
0
ファイル: tree-object-size.c プロジェクト: ChaosJohn/gcc
static unsigned HOST_WIDE_INT
alloc_object_size (const_gimple call, int object_size_type)
{
  tree callee, bytes = NULL_TREE;
  tree alloc_size;
  int arg1 = -1, arg2 = -1;

  gcc_assert (is_gimple_call (call));

  callee = gimple_call_fndecl (call);
  if (!callee)
    return unknown[object_size_type];

  alloc_size = lookup_attribute ("alloc_size",
				 TYPE_ATTRIBUTES (TREE_TYPE (callee)));
  if (alloc_size && TREE_VALUE (alloc_size))
    {
      tree p = TREE_VALUE (alloc_size);

      arg1 = TREE_INT_CST_LOW (TREE_VALUE (p))-1;
      if (TREE_CHAIN (p))
        arg2 = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (p)))-1;
    }

  if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
    switch (DECL_FUNCTION_CODE (callee))
      {
      case BUILT_IN_CALLOC:
	arg2 = 1;
	/* fall through */
      case BUILT_IN_MALLOC:
      case BUILT_IN_ALLOCA:
      case BUILT_IN_ALLOCA_WITH_ALIGN:
	arg1 = 0;
      default:
	break;
      }

  if (arg1 < 0 || arg1 >= (int)gimple_call_num_args (call)
      || TREE_CODE (gimple_call_arg (call, arg1)) != INTEGER_CST
      || (arg2 >= 0
	  && (arg2 >= (int)gimple_call_num_args (call)
	      || TREE_CODE (gimple_call_arg (call, arg2)) != INTEGER_CST)))
    return unknown[object_size_type];

  if (arg2 >= 0)
    bytes = size_binop (MULT_EXPR,
	fold_convert (sizetype, gimple_call_arg (call, arg1)),
	fold_convert (sizetype, gimple_call_arg (call, arg2)));
  else if (arg1 >= 0)
    bytes = fold_convert (sizetype, gimple_call_arg (call, arg1));

  if (bytes && host_integerp (bytes, 1))
    return tree_low_cst (bytes, 1);

  return unknown[object_size_type];
}
コード例 #4
0
ファイル: tree-vectorizer.c プロジェクト: sam3455/gcc
static void
adjust_simduid_builtins (hash_table<simduid_to_vf> *htab)
{
  basic_block bb;

  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator i;

      for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
	{
	  unsigned int vf = 1;
	  enum internal_fn ifn;
	  gimple stmt = gsi_stmt (i);
	  tree t;
	  if (!is_gimple_call (stmt)
	      || !gimple_call_internal_p (stmt))
	    continue;
	  ifn = gimple_call_internal_fn (stmt);
	  switch (ifn)
	    {
	    case IFN_GOMP_SIMD_LANE:
	    case IFN_GOMP_SIMD_VF:
	    case IFN_GOMP_SIMD_LAST_LANE:
	      break;
	    default:
	      continue;
	    }
	  tree arg = gimple_call_arg (stmt, 0);
	  gcc_assert (arg != NULL_TREE);
	  gcc_assert (TREE_CODE (arg) == SSA_NAME);
	  simduid_to_vf *p = NULL, data;
	  data.simduid = DECL_UID (SSA_NAME_VAR (arg));
	  if (htab)
	    {
	      p = htab->find (&data);
	      if (p)
		vf = p->vf;
	    }
	  switch (ifn)
	    {
	    case IFN_GOMP_SIMD_VF:
	      t = build_int_cst (unsigned_type_node, vf);
	      break;
	    case IFN_GOMP_SIMD_LANE:
	      t = build_int_cst (unsigned_type_node, 0);
	      break;
	    case IFN_GOMP_SIMD_LAST_LANE:
	      t = gimple_call_arg (stmt, 1);
	      break;
	    default:
	      gcc_unreachable ();
	    }
	  update_call_from_tree (&i, t);
	}
    }
コード例 #5
0
ファイル: tree-chkp-opt.c プロジェクト: paranoiacblack/gcc
/* For bounds used in CI check if bounds are produced by
   intersection and we may use outer bounds instead.  If
   transformation is possible then fix check statement and
   recompute its info.  */
static void
chkp_use_outer_bounds_if_possible (struct check_info *ci)
{
    gimple *bnd_def;
    tree bnd1, bnd2, bnd_res = NULL;
    int check_res1, check_res2;

    if (TREE_CODE (ci->bounds) != SSA_NAME)
        return;

    bnd_def = SSA_NAME_DEF_STMT (ci->bounds);
    if (gimple_code (bnd_def) != GIMPLE_CALL
            || gimple_call_fndecl (bnd_def) != chkp_intersect_fndecl)
        return;

    if (dump_file && (dump_flags & TDF_DETAILS))
    {
        fprintf (dump_file, "Check if bounds intersection is redundant: \n");
        fprintf (dump_file, "  check: ");
        print_gimple_stmt (dump_file, ci->stmt, 0, 0);
        fprintf (dump_file, "  intersection: ");
        print_gimple_stmt (dump_file, bnd_def, 0, 0);
        fprintf (dump_file, "\n");
    }

    bnd1 = gimple_call_arg (bnd_def, 0);
    bnd2 = gimple_call_arg (bnd_def, 1);

    check_res1 = chkp_get_check_result (ci, bnd1);
    check_res2 = chkp_get_check_result (ci, bnd2);
    if (check_res1 == 1)
        bnd_res = bnd2;
    else if (check_res1 == -1)
        bnd_res = bnd1;
    else if (check_res2 == 1)
        bnd_res = bnd1;
    else if (check_res2 == -1)
        bnd_res = bnd2;

    if (bnd_res)
    {
        if (dump_file && (dump_flags & TDF_DETAILS))
        {
            fprintf (dump_file, "  action: use ");
            print_generic_expr (dump_file, bnd2, 0);
            fprintf (dump_file, " instead of ");
            print_generic_expr (dump_file, ci->bounds, 0);
            fprintf (dump_file, "\n");
        }

        ci->bounds = bnd_res;
        gimple_call_set_arg (ci->stmt, 1, bnd_res);
        update_stmt (ci->stmt);
        chkp_fill_check_info (ci->stmt, ci);
    }
}
コード例 #6
0
ファイル: tree-chkp-opt.c プロジェクト: paranoiacblack/gcc
/* Fill check_info structure *CI with information about
   check STMT.  */
static void
chkp_fill_check_info (gimple *stmt, struct check_info *ci)
{
    ci->addr.pol.create (0);
    ci->bounds = gimple_call_arg (stmt, 1);
    chkp_collect_value (gimple_call_arg (stmt, 0), ci->addr);
    ci->type = (gimple_call_fndecl (stmt) == chkp_checkl_fndecl
                ? CHECK_LOWER_BOUND
                : CHECK_UPPER_BOUND);
    ci->stmt = stmt;
}
コード例 #7
0
// Start stmt duplication on marked function parameters
static struct interesting_stmts *search_interesting_calls(struct interesting_stmts *head, gcall *call_stmt)
{
	tree decl;
	unsigned int i, len;

	len = gimple_call_num_args(call_stmt);
	if (len == 0)
		return head;

	decl = get_fn_or_fnptr_decl(call_stmt);
	if (decl == NULL_TREE)
		return head;

	for (i = 0; i < len; i++) {
		tree arg;

		arg = gimple_call_arg(call_stmt, i);
		if (is_gimple_constant(arg))
			continue;
		if (skip_types(arg))
			continue;
		if (is_interesting_function(decl, i + 1))
			head = search_interesting_stmt(head, call_stmt, arg, i + 1);
	}

	return head;
}
コード例 #8
0
ファイル: tree-call-cdce.c プロジェクト: acoxepochlabs/gcc
static void
gen_shrink_wrap_conditions (gimple bi_call, vec<gimple> conds,
                            unsigned int *nconds)
{
  gimple call;
  tree fn;
  enum built_in_function fnc;

  gcc_assert (nconds && conds.exists ());
  gcc_assert (conds.length () == 0);
  gcc_assert (is_gimple_call (bi_call));

  call = bi_call;
  fn = gimple_call_fndecl (call);
  gcc_assert (fn && DECL_BUILT_IN (fn));
  fnc = DECL_FUNCTION_CODE (fn);
  *nconds = 0;

  if (fnc == BUILT_IN_POW)
    gen_conditions_for_pow (call, conds, nconds);
  else
    {
      tree arg;
      inp_domain domain = get_no_error_domain (fnc);
      *nconds = 0;
      arg = gimple_call_arg (bi_call, 0);
      gen_conditions_for_domain (arg, domain, conds, nconds);
    }

  return;
}
コード例 #9
0
static void
test_groups (gimple *stmt)
{
  gcall *call = check_for_named_call (stmt, "__emit_warning", 1);
  if (!call)
    return;

  /* We expect an ADDR_EXPR with a STRING_CST inside it for the
     initial arg.  */
  tree t_addr_string = gimple_call_arg (call, 0);
  if (TREE_CODE (t_addr_string) != ADDR_EXPR)
    {
      error_at (call->location, "string literal required for arg 1");
      return;
    }

  tree t_string = TREE_OPERAND (t_addr_string, 0);
  if (TREE_CODE (t_string) != STRING_CST)
    {
      error_at (call->location, "string literal required for arg 1");
      return;
    }

  {
    auto_diagnostic_group d;
    if (warning_at (call->location, 0, "%s", call,
		    TREE_STRING_POINTER (t_string)))
      {
	inform (call->location, "message for note");
	inform (call->location, " some more detail");
	inform (call->location, "  yet more detail");
      }
  }
  inform (call->location, "an unrelated message");
}
コード例 #10
0
ファイル: tree-object-size.c プロジェクト: ChaosJohn/gcc
static tree
pass_through_call (const_gimple call)
{
  tree callee = gimple_call_fndecl (call);

  if (callee
      && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
    switch (DECL_FUNCTION_CODE (callee))
      {
      case BUILT_IN_MEMCPY:
      case BUILT_IN_MEMMOVE:
      case BUILT_IN_MEMSET:
      case BUILT_IN_STRCPY:
      case BUILT_IN_STRNCPY:
      case BUILT_IN_STRCAT:
      case BUILT_IN_STRNCAT:
      case BUILT_IN_MEMCPY_CHK:
      case BUILT_IN_MEMMOVE_CHK:
      case BUILT_IN_MEMSET_CHK:
      case BUILT_IN_STRCPY_CHK:
      case BUILT_IN_STRNCPY_CHK:
      case BUILT_IN_STPNCPY_CHK:
      case BUILT_IN_STRCAT_CHK:
      case BUILT_IN_STRNCAT_CHK:
      case BUILT_IN_ASSUME_ALIGNED:
	if (gimple_call_num_args (call) >= 1)
	  return gimple_call_arg (call, 0);
	break;
      default:
	break;
      }

  return NULL_TREE;
}
コード例 #11
0
static tree
strip_sign_op_1 (tree rhs)
{
  if (TREE_CODE (rhs) != SSA_NAME)
    return NULL_TREE;

  gimple *def_stmt = SSA_NAME_DEF_STMT (rhs);
  if (gassign *assign = dyn_cast <gassign *> (def_stmt))
    switch (gimple_assign_rhs_code (assign))
      {
      case ABS_EXPR:
      case NEGATE_EXPR:
	return gimple_assign_rhs1 (assign);

      default:
	break;
      }
  else if (gcall *call = dyn_cast <gcall *> (def_stmt))
    switch (gimple_call_combined_fn (call))
      {
      CASE_CFN_COPYSIGN:
	return gimple_call_arg (call, 0);

      default:
	break;
      }

  return NULL_TREE;
}
コード例 #12
0
ファイル: internal-fn.c プロジェクト: Alexpux/GCC
static void
expand_UBSAN_CHECK_SUB (gimple stmt)
{
  if (integer_zerop (gimple_call_arg (stmt, 0)))
    ubsan_expand_si_overflow_neg_check (stmt);
  else
    ubsan_expand_si_overflow_addsub_check (MINUS_EXPR, stmt);
}
コード例 #13
0
static bool
check_builtin_call (gimple bcall)
{
  tree arg;

  arg = gimple_call_arg (bcall, 0);
  return check_target_format (arg);
}
コード例 #14
0
ファイル: ubsan.c プロジェクト: acoxepochlabs/gcc
static void
instrument_member_call (gimple_stmt_iterator *iter)
{
  tree this_parm = gimple_call_arg (gsi_stmt (*iter), 0);
  tree kind = build_int_cst (unsigned_char_type_node, UBSAN_MEMBER_CALL);
  gimple g = gimple_build_call_internal (IFN_UBSAN_NULL, 2, this_parm, kind);
  gimple_set_location (g, gimple_location (gsi_stmt (*iter)));
  gsi_insert_before (iter, g, GSI_SAME_STMT);
}
コード例 #15
0
ファイル: selfassign.c プロジェクト: CookieChen/gcc
static void
warn_self_assign (gimple stmt)
{
  tree rhs, lhs;

  /* Check assigment statement.  */
  if (gimple_assign_single_p (stmt))
    {
      rhs = get_real_ref_rhs (gimple_assign_rhs1 (stmt));
      if (!rhs)
        return;

      lhs = gimple_assign_lhs (stmt);
      if (TREE_CODE (lhs) == SSA_NAME)
        {
          lhs = SSA_NAME_VAR (lhs);
          if (!lhs || DECL_ARTIFICIAL (lhs))
            return;
        }

      compare_and_warn (stmt, lhs, rhs);
    }
  /* Check overloaded operator '=' (if enabled).  */
  else if (check_operator_eq && is_gimple_call (stmt))
    {
      tree fdecl = gimple_call_fndecl (stmt);
      if (fdecl && (DECL_NAME (fdecl) == maybe_get_identifier ("operator=")))
        {
          /* If 'operator=' takes reference operands, the arguments will be 
             ADDR_EXPR trees. In this case, just remove the address-taken
             operator before we compare the lhs and rhs.  */
          lhs = gimple_call_arg (stmt, 0);
          if (TREE_CODE (lhs) == ADDR_EXPR)
            lhs = TREE_OPERAND (lhs, 0);
          rhs = gimple_call_arg (stmt, 1);
          if (TREE_CODE (rhs) == ADDR_EXPR)
            rhs = TREE_OPERAND (rhs, 0);

          compare_and_warn (stmt, lhs, rhs);
        }
    }
}
コード例 #16
0
ファイル: omp-general.c プロジェクト: WojciechMigda/gcc
int
oacc_get_ifn_dim_arg (const gimple *stmt)
{
  gcc_checking_assert (gimple_call_internal_fn (stmt) == IFN_GOACC_DIM_SIZE
		       || gimple_call_internal_fn (stmt) == IFN_GOACC_DIM_POS);
  tree arg = gimple_call_arg (stmt, 0);
  HOST_WIDE_INT axis = TREE_INT_CST_LOW (arg);

  gcc_checking_assert (axis >= 0 && axis < GOMP_DIM_MAX);
  return (int) axis;
}
コード例 #17
0
static void
lower_builtin_posix_memalign (gimple_stmt_iterator *gsi)
{
  gimple stmt, call = gsi_stmt (*gsi);
  tree pptr = gimple_call_arg (call, 0);
  tree align = gimple_call_arg (call, 1);
  tree res = gimple_call_lhs (call);
  tree ptr = create_tmp_reg (ptr_type_node, NULL);
  if (TREE_CODE (pptr) == ADDR_EXPR)
    {
      tree tem = create_tmp_var (ptr_type_node, NULL);
      TREE_ADDRESSABLE (tem) = 1;
      gimple_call_set_arg (call, 0, build_fold_addr_expr (tem));
      stmt = gimple_build_assign (ptr, tem);
    }
  else
    stmt = gimple_build_assign (ptr,
				fold_build2 (MEM_REF, ptr_type_node, pptr,
					     build_int_cst (ptr_type_node, 0)));
  if (res == NULL_TREE)
    {
      res = create_tmp_reg (integer_type_node, NULL);
      gimple_call_set_lhs (call, res);
    }
  tree align_label = create_artificial_label (UNKNOWN_LOCATION);
  tree noalign_label = create_artificial_label (UNKNOWN_LOCATION);
  gimple cond = gimple_build_cond (EQ_EXPR, res, integer_zero_node,
				   align_label, noalign_label);
  gsi_insert_after (gsi, cond, GSI_NEW_STMT);
  gsi_insert_after (gsi, gimple_build_label (align_label), GSI_NEW_STMT);
  gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
  stmt = gimple_build_call (builtin_decl_implicit (BUILT_IN_ASSUME_ALIGNED),
			    2, ptr, align);
  gimple_call_set_lhs (stmt, ptr);
  gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
  stmt = gimple_build_assign (fold_build2 (MEM_REF, ptr_type_node, pptr,
					   build_int_cst (ptr_type_node, 0)),
			      ptr);
  gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
  gsi_insert_after (gsi, gimple_build_label (noalign_label), GSI_NEW_STMT);
}
コード例 #18
0
ファイル: internal-fn.c プロジェクト: Alexpux/GCC
static void
expand_MASK_STORE (gimple stmt)
{
  struct expand_operand ops[3];
  tree type, lhs, rhs, maskt;
  rtx mem, reg, mask;

  maskt = gimple_call_arg (stmt, 2);
  rhs = gimple_call_arg (stmt, 3);
  type = TREE_TYPE (rhs);
  lhs = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0),
		     gimple_call_arg (stmt, 1));

  mem = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  gcc_assert (MEM_P (mem));
  mask = expand_normal (maskt);
  reg = expand_normal (rhs);
  create_fixed_operand (&ops[0], mem);
  create_input_operand (&ops[1], reg, TYPE_MODE (type));
  create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
  expand_insn (optab_handler (maskstore_optab, TYPE_MODE (type)), 3, ops);
}
コード例 #19
0
ファイル: tree-call-cdce.c プロジェクト: acoxepochlabs/gcc
static void
gen_conditions_for_pow (gimple pow_call, vec<gimple> conds,
                        unsigned *nconds)
{
  tree base, expn;
  enum tree_code bc;

  gcc_checking_assert (check_pow (pow_call));

  *nconds = 0;

  base = gimple_call_arg (pow_call, 0);
  expn = gimple_call_arg (pow_call, 1);

  bc = TREE_CODE (base);

  if (bc == REAL_CST)
    gen_conditions_for_pow_cst_base (base, expn, conds, nconds);
  else if (bc == SSA_NAME)
    gen_conditions_for_pow_int_base (base, expn, conds, nconds);
  else
    gcc_unreachable ();
}
コード例 #20
0
ファイル: internal-fn.c プロジェクト: Alexpux/GCC
static void
expand_MASK_LOAD (gimple stmt)
{
  struct expand_operand ops[3];
  tree type, lhs, rhs, maskt;
  rtx mem, target, mask;

  maskt = gimple_call_arg (stmt, 2);
  lhs = gimple_call_lhs (stmt);
  if (lhs == NULL_TREE)
    return;
  type = TREE_TYPE (lhs);
  rhs = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0),
		     gimple_call_arg (stmt, 1));

  mem = expand_expr (rhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  gcc_assert (MEM_P (mem));
  mask = expand_normal (maskt);
  target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  create_output_operand (&ops[0], target, TYPE_MODE (type));
  create_fixed_operand (&ops[1], mem);
  create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
  expand_insn (optab_handler (maskload_optab, TYPE_MODE (type)), 3, ops);
}
コード例 #21
0
ファイル: internal-fn.c プロジェクト: Alexpux/GCC
static void
expand_BUILTIN_EXPECT (gimple stmt)
{
  /* When guessing was done, the hints should be already stripped away.  */
  gcc_assert (!flag_guess_branch_prob || optimize == 0 || seen_error ());

  rtx target;
  tree lhs = gimple_call_lhs (stmt);
  if (lhs)
    target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  else
    target = const0_rtx;
  rtx val = expand_expr (gimple_call_arg (stmt, 0), target, VOIDmode, EXPAND_NORMAL);
  if (lhs && val != target)
    emit_move_insn (target, val);
}
コード例 #22
0
void
backprop::optimize_builtin_call (gcall *call, tree lhs, const usage_info *info)
{
  /* If we have an f such that -f(x) = f(-x), and if the sign of the result
     doesn't matter, strip any sign operations from the input.  */
  if (info->flags.ignore_sign
      && negate_mathfn_p (gimple_call_combined_fn (call)))
    {
      tree new_arg = strip_sign_op (gimple_call_arg (call, 0));
      if (new_arg)
	{
	  prepare_change (lhs);
	  gimple_call_set_arg (call, 0, new_arg);
	  complete_change (call);
	}
    }
}
コード例 #23
0
ファイル: internal-fn.c プロジェクト: Alexpux/GCC
static void
expand_STORE_LANES (gimple stmt)
{
  struct expand_operand ops[2];
  tree type, lhs, rhs;
  rtx target, reg;

  lhs = gimple_call_lhs (stmt);
  rhs = gimple_call_arg (stmt, 0);
  type = TREE_TYPE (rhs);

  target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  reg = expand_normal (rhs);

  gcc_assert (MEM_P (target));
  PUT_MODE (target, TYPE_MODE (type));

  create_fixed_operand (&ops[0], target);
  create_input_operand (&ops[1], reg, TYPE_MODE (type));
  expand_insn (get_multi_vector_move (type, vec_store_lanes_optab), 2, ops);
}
コード例 #24
0
static void stackleak_check_alloca(gimple_stmt_iterator *gsi)
{
	gimple stmt;
	gcall *check_alloca;
	tree alloca_size;
	cgraph_node_ptr node;
	int frequency;
	basic_block bb;

	// insert call to void pax_check_alloca(unsigned long size)
	alloca_size = gimple_call_arg(gsi_stmt(*gsi), 0);
	stmt = gimple_build_call(check_function_decl, 1, alloca_size);
	check_alloca = as_a_gcall(stmt);
	gsi_insert_before(gsi, check_alloca, GSI_SAME_STMT);

	// update the cgraph
	bb = gimple_bb(check_alloca);
	node = cgraph_get_create_node(check_function_decl);
	gcc_assert(node);
	frequency = compute_call_stmt_bb_frequency(current_function_decl, bb);
	cgraph_create_edge(cgraph_get_node(current_function_decl), node, check_alloca, bb->count, frequency, bb->loop_depth);
}
コード例 #25
0
ファイル: gimple-match-head.c プロジェクト: angrysnail/gcc
bool
gimple_simplify (gimple stmt,
		 code_helper *rcode, tree *ops,
		 gimple_seq *seq, tree (*valueize)(tree))
{
  switch (gimple_code (stmt))
    {
    case GIMPLE_ASSIGN:
      {
	enum tree_code code = gimple_assign_rhs_code (stmt);
	tree type = TREE_TYPE (gimple_assign_lhs (stmt));
	switch (gimple_assign_rhs_class (stmt))
	  {
	  case GIMPLE_SINGLE_RHS:
	    if (code == REALPART_EXPR
		|| code == IMAGPART_EXPR
		|| code == VIEW_CONVERT_EXPR)
	      {
		tree op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
		if (valueize && TREE_CODE (op0) == SSA_NAME)
		  {
		    tree tem = valueize (op0);
		    if (tem)
		      op0 = tem;
		  }
		*rcode = code;
		ops[0] = op0;
		return gimple_resimplify1 (seq, rcode, type, ops, valueize);
	      }
	    else if (code == BIT_FIELD_REF)
	      {
		tree rhs1 = gimple_assign_rhs1 (stmt);
		tree op0 = TREE_OPERAND (rhs1, 0);
		if (valueize && TREE_CODE (op0) == SSA_NAME)
		  {
		    tree tem = valueize (op0);
		    if (tem)
		      op0 = tem;
		  }
		*rcode = code;
		ops[0] = op0;
		ops[1] = TREE_OPERAND (rhs1, 1);
		ops[2] = TREE_OPERAND (rhs1, 2);
		return gimple_resimplify3 (seq, rcode, type, ops, valueize);
	      }
	    else if (code == SSA_NAME
		     && valueize)
	      {
		tree op0 = gimple_assign_rhs1 (stmt);
		tree valueized = valueize (op0);
		if (!valueized || op0 == valueized)
		  return false;
		ops[0] = valueized;
		*rcode = TREE_CODE (op0);
		return true;
	      }
	    break;
	  case GIMPLE_UNARY_RHS:
	    {
	      tree rhs1 = gimple_assign_rhs1 (stmt);
	      if (valueize && TREE_CODE (rhs1) == SSA_NAME)
		{
		  tree tem = valueize (rhs1);
		  if (tem)
		    rhs1 = tem;
		}
	      *rcode = code;
	      ops[0] = rhs1;
	      return gimple_resimplify1 (seq, rcode, type, ops, valueize);
	    }
	  case GIMPLE_BINARY_RHS:
	    {
	      tree rhs1 = gimple_assign_rhs1 (stmt);
	      if (valueize && TREE_CODE (rhs1) == SSA_NAME)
		{
		  tree tem = valueize (rhs1);
		  if (tem)
		    rhs1 = tem;
		}
	      tree rhs2 = gimple_assign_rhs2 (stmt);
	      if (valueize && TREE_CODE (rhs2) == SSA_NAME)
		{
		  tree tem = valueize (rhs2);
		  if (tem)
		    rhs2 = tem;
		}
	      *rcode = code;
	      ops[0] = rhs1;
	      ops[1] = rhs2;
	      return gimple_resimplify2 (seq, rcode, type, ops, valueize);
	    }
	  case GIMPLE_TERNARY_RHS:
	    {
	      tree rhs1 = gimple_assign_rhs1 (stmt);
	      if (valueize && TREE_CODE (rhs1) == SSA_NAME)
		{
		  tree tem = valueize (rhs1);
		  if (tem)
		    rhs1 = tem;
		}
	      tree rhs2 = gimple_assign_rhs2 (stmt);
	      if (valueize && TREE_CODE (rhs2) == SSA_NAME)
		{
		  tree tem = valueize (rhs2);
		  if (tem)
		    rhs2 = tem;
		}
	      tree rhs3 = gimple_assign_rhs3 (stmt);
	      if (valueize && TREE_CODE (rhs3) == SSA_NAME)
		{
		  tree tem = valueize (rhs3);
		  if (tem)
		    rhs3 = tem;
		}
	      *rcode = code;
	      ops[0] = rhs1;
	      ops[1] = rhs2;
	      ops[2] = rhs3;
	      return gimple_resimplify3 (seq, rcode, type, ops, valueize);
	    }
	  default:
	    gcc_unreachable ();
	  }
	break;
      }

    case GIMPLE_CALL:
      /* ???  This way we can't simplify calls with side-effects.  */
      if (gimple_call_lhs (stmt) != NULL_TREE)
	{
	  tree fn = gimple_call_fn (stmt);
	  /* ???  Internal function support missing.  */
	  if (!fn)
	    return false;
	  if (valueize && TREE_CODE (fn) == SSA_NAME)
	    {
	      tree tem = valueize (fn);
	      if (tem)
		fn = tem;
	    }
	  if (!fn
	      || TREE_CODE (fn) != ADDR_EXPR
	      || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL
	      || DECL_BUILT_IN_CLASS (TREE_OPERAND (fn, 0)) != BUILT_IN_NORMAL
	      || !builtin_decl_implicit (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0)))
	      || !gimple_builtin_call_types_compatible_p (stmt,
							  TREE_OPERAND (fn, 0)))
	    return false;

	  tree decl = TREE_OPERAND (fn, 0);
	  tree type = TREE_TYPE (gimple_call_lhs (stmt));
	  switch (gimple_call_num_args (stmt))
	    {
	    case 1:
	      {
		tree arg1 = gimple_call_arg (stmt, 0);
		if (valueize && TREE_CODE (arg1) == SSA_NAME)
		  {
		    tree tem = valueize (arg1);
		    if (tem)
		      arg1 = tem;
		  }
		*rcode = DECL_FUNCTION_CODE (decl);
		ops[0] = arg1;
		return gimple_resimplify1 (seq, rcode, type, ops, valueize);
	      }
	    case 2:
	      {
		tree arg1 = gimple_call_arg (stmt, 0);
		if (valueize && TREE_CODE (arg1) == SSA_NAME)
		  {
		    tree tem = valueize (arg1);
		    if (tem)
		      arg1 = tem;
		  }
		tree arg2 = gimple_call_arg (stmt, 1);
		if (valueize && TREE_CODE (arg2) == SSA_NAME)
		  {
		    tree tem = valueize (arg2);
		    if (tem)
		      arg2 = tem;
		  }
		*rcode = DECL_FUNCTION_CODE (decl);
		ops[0] = arg1;
		ops[1] = arg2;
		return gimple_resimplify2 (seq, rcode, type, ops, valueize);
	      }
	    case 3:
	      {
		tree arg1 = gimple_call_arg (stmt, 0);
		if (valueize && TREE_CODE (arg1) == SSA_NAME)
		  {
		    tree tem = valueize (arg1);
		    if (tem)
		      arg1 = tem;
		  }
		tree arg2 = gimple_call_arg (stmt, 1);
		if (valueize && TREE_CODE (arg2) == SSA_NAME)
		  {
		    tree tem = valueize (arg2);
		    if (tem)
		      arg2 = tem;
		  }
		tree arg3 = gimple_call_arg (stmt, 2);
		if (valueize && TREE_CODE (arg3) == SSA_NAME)
		  {
		    tree tem = valueize (arg3);
		    if (tem)
		      arg3 = tem;
		  }
		*rcode = DECL_FUNCTION_CODE (decl);
		ops[0] = arg1;
		ops[1] = arg2;
		ops[2] = arg3;
		return gimple_resimplify3 (seq, rcode, type, ops, valueize);
	      }
	    default:
	      return false;
	    }
	}
      break;

    case GIMPLE_COND:
      {
	tree lhs = gimple_cond_lhs (stmt);
	if (valueize && TREE_CODE (lhs) == SSA_NAME)
	  {
	    tree tem = valueize (lhs);
	    if (tem)
	      lhs = tem;
	  }
	tree rhs = gimple_cond_rhs (stmt);
	if (valueize && TREE_CODE (rhs) == SSA_NAME)
	  {
	    tree tem = valueize (rhs);
	    if (tem)
	      rhs = tem;
	  }
	*rcode = gimple_cond_code (stmt);
	ops[0] = lhs;
	ops[1] = rhs;
        return gimple_resimplify2 (seq, rcode, boolean_type_node, ops, valueize);
      }

    default:
      break;
    }

  return false;
}
コード例 #26
0
static bool
check_pow (gimple pow_call)
{
  tree base, expn;
  enum tree_code bc, ec;

  if (gimple_call_num_args (pow_call) != 2)
    return false;

  base = gimple_call_arg (pow_call, 0);
  expn = gimple_call_arg (pow_call, 1);

  if (!check_target_format (expn))
    return false;

  bc = TREE_CODE (base);
  ec = TREE_CODE (expn);

  /* Folding candidates are not interesting.
     Can actually assert that it is already folded.  */
  if (ec == REAL_CST && bc == REAL_CST)
    return false;

  if (bc == REAL_CST)
    {
      /* Only handle a fixed range of constant.  */
      REAL_VALUE_TYPE mv;
      REAL_VALUE_TYPE bcv = TREE_REAL_CST (base);
      if (REAL_VALUES_EQUAL (bcv, dconst1))
        return false;
      if (REAL_VALUES_LESS (bcv, dconst1))
        return false;
      real_from_integer (&mv, TYPE_MODE (TREE_TYPE (base)), 256, 0, 1);
      if (REAL_VALUES_LESS (mv, bcv))
        return false;
      return true;
    }
  else if (bc == SSA_NAME)
    {
      tree base_val0, base_var, type;
      gimple base_def;
      int bit_sz;

      /* Only handles cases where base value is converted
         from integer values.  */
      base_def = SSA_NAME_DEF_STMT (base);
      if (gimple_code (base_def) != GIMPLE_ASSIGN)
        return false;

      if (gimple_assign_rhs_code (base_def) != FLOAT_EXPR)
        return false;
      base_val0 = gimple_assign_rhs1 (base_def);

      base_var = SSA_NAME_VAR (base_val0);
      if (!DECL_P  (base_var))
        return false;

      type = TREE_TYPE (base_var);
      if (TREE_CODE (type) != INTEGER_TYPE)
        return false;
      bit_sz = TYPE_PRECISION (type);
      /* If the type of the base is too wide,
         the resulting shrink wrapping condition
	 will be too conservative.  */
      if (bit_sz > MAX_BASE_INT_BIT_SIZE)
        return false;

      return true;
    }
  else
    return false;
}
コード例 #27
0
ファイル: internal-fn.c プロジェクト: Alexpux/GCC
void
ubsan_expand_si_overflow_mul_check (gimple stmt)
{
  rtx res, op0, op1;
  tree lhs, fn, arg0, arg1;
  rtx_code_label *done_label, *do_error;
  rtx target = NULL_RTX;

  lhs = gimple_call_lhs (stmt);
  arg0 = gimple_call_arg (stmt, 0);
  arg1 = gimple_call_arg (stmt, 1);
  done_label = gen_label_rtx ();
  do_error = gen_label_rtx ();

  do_pending_stack_adjust ();
  op0 = expand_normal (arg0);
  op1 = expand_normal (arg1);

  machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
  if (lhs)
    target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);

  enum insn_code icode = optab_handler (mulv4_optab, mode);
  if (icode != CODE_FOR_nothing)
    {
      struct expand_operand ops[4];
      rtx_insn *last = get_last_insn ();

      res = gen_reg_rtx (mode);
      create_output_operand (&ops[0], res, mode);
      create_input_operand (&ops[1], op0, mode);
      create_input_operand (&ops[2], op1, mode);
      create_fixed_operand (&ops[3], do_error);
      if (maybe_expand_insn (icode, 4, ops))
	{
	  last = get_last_insn ();
	  if (profile_status_for_fn (cfun) != PROFILE_ABSENT
	      && JUMP_P (last)
	      && any_condjump_p (last)
	      && !find_reg_note (last, REG_BR_PROB, 0))
	    add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
	  emit_jump (done_label);
        }
      else
	{
	  delete_insns_since (last);
	  icode = CODE_FOR_nothing;
	}
    }

  if (icode == CODE_FOR_nothing)
    {
      struct separate_ops ops;
      machine_mode hmode
	= mode_for_size (GET_MODE_PRECISION (mode) / 2, MODE_INT, 1);
      ops.op0 = arg0;
      ops.op1 = arg1;
      ops.op2 = NULL_TREE;
      ops.location = gimple_location (stmt);
      if (GET_MODE_2XWIDER_MODE (mode) != VOIDmode
	  && targetm.scalar_mode_supported_p (GET_MODE_2XWIDER_MODE (mode)))
	{
	  machine_mode wmode = GET_MODE_2XWIDER_MODE (mode);
	  ops.code = WIDEN_MULT_EXPR;
	  ops.type
	    = build_nonstandard_integer_type (GET_MODE_PRECISION (wmode), 0);

	  res = expand_expr_real_2 (&ops, NULL_RTX, wmode, EXPAND_NORMAL);
	  rtx hipart = expand_shift (RSHIFT_EXPR, wmode, res,
				     GET_MODE_PRECISION (mode), NULL_RTX, 0);
	  hipart = gen_lowpart (mode, hipart);
	  res = gen_lowpart (mode, res);
	  rtx signbit = expand_shift (RSHIFT_EXPR, mode, res,
				      GET_MODE_PRECISION (mode) - 1,
				      NULL_RTX, 0);
	  /* RES is low half of the double width result, HIPART
	     the high half.  There was overflow if
	     HIPART is different from RES < 0 ? -1 : 0.  */
	  emit_cmp_and_jump_insns (signbit, hipart, EQ, NULL_RTX, mode,
				   false, done_label, PROB_VERY_LIKELY);
	}
      else if (hmode != BLKmode
	       && 2 * GET_MODE_PRECISION (hmode) == GET_MODE_PRECISION (mode))
	{
	  rtx_code_label *large_op0 = gen_label_rtx ();
	  rtx_code_label *small_op0_large_op1 = gen_label_rtx ();
	  rtx_code_label *one_small_one_large = gen_label_rtx ();
	  rtx_code_label *both_ops_large = gen_label_rtx ();
	  rtx_code_label *after_hipart_neg = gen_label_rtx ();
	  rtx_code_label *after_lopart_neg = gen_label_rtx ();
	  rtx_code_label *do_overflow = gen_label_rtx ();
	  rtx_code_label *hipart_different = gen_label_rtx ();

	  unsigned int hprec = GET_MODE_PRECISION (hmode);
	  rtx hipart0 = expand_shift (RSHIFT_EXPR, mode, op0, hprec,
				      NULL_RTX, 0);
	  hipart0 = gen_lowpart (hmode, hipart0);
	  rtx lopart0 = gen_lowpart (hmode, op0);
	  rtx signbit0 = expand_shift (RSHIFT_EXPR, hmode, lopart0, hprec - 1,
				       NULL_RTX, 0);
	  rtx hipart1 = expand_shift (RSHIFT_EXPR, mode, op1, hprec,
				      NULL_RTX, 0);
	  hipart1 = gen_lowpart (hmode, hipart1);
	  rtx lopart1 = gen_lowpart (hmode, op1);
	  rtx signbit1 = expand_shift (RSHIFT_EXPR, hmode, lopart1, hprec - 1,
				       NULL_RTX, 0);

	  res = gen_reg_rtx (mode);

	  /* True if op0 resp. op1 are known to be in the range of
	     halfstype.  */
	  bool op0_small_p = false;
	  bool op1_small_p = false;
	  /* True if op0 resp. op1 are known to have all zeros or all ones
	     in the upper half of bits, but are not known to be
	     op{0,1}_small_p.  */
	  bool op0_medium_p = false;
	  bool op1_medium_p = false;
	  /* -1 if op{0,1} is known to be negative, 0 if it is known to be
	     nonnegative, 1 if unknown.  */
	  int op0_sign = 1;
	  int op1_sign = 1;

	  if (TREE_CODE (arg0) == SSA_NAME)
	    {
	      wide_int arg0_min, arg0_max;
	      if (get_range_info (arg0, &arg0_min, &arg0_max) == VR_RANGE)
		{
		  unsigned int mprec0 = wi::min_precision (arg0_min, SIGNED);
		  unsigned int mprec1 = wi::min_precision (arg0_max, SIGNED);
		  if (mprec0 <= hprec && mprec1 <= hprec)
		    op0_small_p = true;
		  else if (mprec0 <= hprec + 1 && mprec1 <= hprec + 1)
		    op0_medium_p = true;
		  if (!wi::neg_p (arg0_min, TYPE_SIGN (TREE_TYPE (arg0))))
		    op0_sign = 0;
		  else if (wi::neg_p (arg0_max, TYPE_SIGN (TREE_TYPE (arg0))))
		    op0_sign = -1;
		}
	    }
	  if (TREE_CODE (arg1) == SSA_NAME)
	    {
	      wide_int arg1_min, arg1_max;
	      if (get_range_info (arg1, &arg1_min, &arg1_max) == VR_RANGE)
		{
		  unsigned int mprec0 = wi::min_precision (arg1_min, SIGNED);
		  unsigned int mprec1 = wi::min_precision (arg1_max, SIGNED);
		  if (mprec0 <= hprec && mprec1 <= hprec)
		    op1_small_p = true;
		  else if (mprec0 <= hprec + 1 && mprec1 <= hprec + 1)
		    op1_medium_p = true;
		  if (!wi::neg_p (arg1_min, TYPE_SIGN (TREE_TYPE (arg1))))
		    op1_sign = 0;
		  else if (wi::neg_p (arg1_max, TYPE_SIGN (TREE_TYPE (arg1))))
		    op1_sign = -1;
		}
	    }

	  int smaller_sign = 1;
	  int larger_sign = 1;
	  if (op0_small_p)
	    {
	      smaller_sign = op0_sign;
	      larger_sign = op1_sign;
	    }
	  else if (op1_small_p)
	    {
	      smaller_sign = op1_sign;
	      larger_sign = op0_sign;
	    }
	  else if (op0_sign == op1_sign)
	    {
	      smaller_sign = op0_sign;
	      larger_sign = op0_sign;
	    }

	  if (!op0_small_p)
	    emit_cmp_and_jump_insns (signbit0, hipart0, NE, NULL_RTX, hmode,
				     false, large_op0, PROB_UNLIKELY);

	  if (!op1_small_p)
	    emit_cmp_and_jump_insns (signbit1, hipart1, NE, NULL_RTX, hmode,
				     false, small_op0_large_op1,
				     PROB_UNLIKELY);

	  /* If both op0 and op1 are sign extended from hmode to mode,
	     the multiplication will never overflow.  We can do just one
	     hmode x hmode => mode widening multiplication.  */
	  if (GET_CODE (lopart0) == SUBREG)
	    {
	      SUBREG_PROMOTED_VAR_P (lopart0) = 1;
	      SUBREG_PROMOTED_SET (lopart0, 0);
	    }
	  if (GET_CODE (lopart1) == SUBREG)
	    {
	      SUBREG_PROMOTED_VAR_P (lopart1) = 1;
	      SUBREG_PROMOTED_SET (lopart1, 0);
	    }
	  tree halfstype = build_nonstandard_integer_type (hprec, 0);
	  ops.op0 = make_tree (halfstype, lopart0);
	  ops.op1 = make_tree (halfstype, lopart1);
	  ops.code = WIDEN_MULT_EXPR;
	  ops.type = TREE_TYPE (arg0);
	  rtx thisres
	    = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (res, thisres);
	  emit_jump (done_label);

	  emit_label (small_op0_large_op1);

	  /* If op0 is sign extended from hmode to mode, but op1 is not,
	     just swap the arguments and handle it as op1 sign extended,
	     op0 not.  */
	  rtx larger = gen_reg_rtx (mode);
	  rtx hipart = gen_reg_rtx (hmode);
	  rtx lopart = gen_reg_rtx (hmode);
	  emit_move_insn (larger, op1);
	  emit_move_insn (hipart, hipart1);
	  emit_move_insn (lopart, lopart0);
	  emit_jump (one_small_one_large);

	  emit_label (large_op0);

	  if (!op1_small_p)
	    emit_cmp_and_jump_insns (signbit1, hipart1, NE, NULL_RTX, hmode,
				     false, both_ops_large, PROB_UNLIKELY);

	  /* If op1 is sign extended from hmode to mode, but op0 is not,
	     prepare larger, hipart and lopart pseudos and handle it together
	     with small_op0_large_op1.  */
	  emit_move_insn (larger, op0);
	  emit_move_insn (hipart, hipart0);
	  emit_move_insn (lopart, lopart1);

	  emit_label (one_small_one_large);

	  /* lopart is the low part of the operand that is sign extended
	     to mode, larger is the the other operand, hipart is the
	     high part of larger and lopart0 and lopart1 are the low parts
	     of both operands.
	     We perform lopart0 * lopart1 and lopart * hipart widening
	     multiplications.  */
	  tree halfutype = build_nonstandard_integer_type (hprec, 1);
	  ops.op0 = make_tree (halfutype, lopart0);
	  ops.op1 = make_tree (halfutype, lopart1);
	  rtx lo0xlo1
	    = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);

	  ops.op0 = make_tree (halfutype, lopart);
	  ops.op1 = make_tree (halfutype, hipart);
	  rtx loxhi = gen_reg_rtx (mode);
	  rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (loxhi, tem);

	  /* if (hipart < 0) loxhi -= lopart << (bitsize / 2);  */
	  if (larger_sign == 0)
	    emit_jump (after_hipart_neg);
	  else if (larger_sign != -1)
	    emit_cmp_and_jump_insns (hipart, const0_rtx, GE, NULL_RTX, hmode,
				     false, after_hipart_neg, PROB_EVEN);

	  tem = convert_modes (mode, hmode, lopart, 1);
	  tem = expand_shift (LSHIFT_EXPR, mode, tem, hprec, NULL_RTX, 1);
	  tem = expand_simple_binop (mode, MINUS, loxhi, tem, NULL_RTX,
				     1, OPTAB_DIRECT);
	  emit_move_insn (loxhi, tem);

	  emit_label (after_hipart_neg);

	  /* if (lopart < 0) loxhi -= larger;  */
	  if (smaller_sign == 0)
	    emit_jump (after_lopart_neg);
	  else if (smaller_sign != -1)
	    emit_cmp_and_jump_insns (lopart, const0_rtx, GE, NULL_RTX, hmode,
				     false, after_lopart_neg, PROB_EVEN);

	  tem = expand_simple_binop (mode, MINUS, loxhi, larger, NULL_RTX,
				     1, OPTAB_DIRECT);
	  emit_move_insn (loxhi, tem);

	  emit_label (after_lopart_neg);

	  /* loxhi += (uns) lo0xlo1 >> (bitsize / 2);  */
	  tem = expand_shift (RSHIFT_EXPR, mode, lo0xlo1, hprec, NULL_RTX, 1);
	  tem = expand_simple_binop (mode, PLUS, loxhi, tem, NULL_RTX,
				     1, OPTAB_DIRECT);
	  emit_move_insn (loxhi, tem);

	  /* if (loxhi >> (bitsize / 2)
		 == (hmode) loxhi >> (bitsize / 2 - 1))  */
	  rtx hipartloxhi = expand_shift (RSHIFT_EXPR, mode, loxhi, hprec,
					  NULL_RTX, 0);
	  hipartloxhi = gen_lowpart (hmode, hipartloxhi);
	  rtx lopartloxhi = gen_lowpart (hmode, loxhi);
	  rtx signbitloxhi = expand_shift (RSHIFT_EXPR, hmode, lopartloxhi,
					   hprec - 1, NULL_RTX, 0);

	  emit_cmp_and_jump_insns (signbitloxhi, hipartloxhi, NE, NULL_RTX,
				   hmode, false, do_overflow,
				   PROB_VERY_UNLIKELY);

	  /* res = (loxhi << (bitsize / 2)) | (hmode) lo0xlo1;  */
	  rtx loxhishifted = expand_shift (LSHIFT_EXPR, mode, loxhi, hprec,
					   NULL_RTX, 1);
	  tem = convert_modes (mode, hmode, gen_lowpart (hmode, lo0xlo1), 1);

	  tem = expand_simple_binop (mode, IOR, loxhishifted, tem, res,
				     1, OPTAB_DIRECT);
	  if (tem != res)
	    emit_move_insn (res, tem);
	  emit_jump (done_label);

	  emit_label (both_ops_large);

	  /* If both operands are large (not sign extended from hmode),
	     then perform the full multiplication which will be the result
	     of the operation.  The only cases which don't overflow are
	     some cases where both hipart0 and highpart1 are 0 or -1.  */
	  ops.code = MULT_EXPR;
	  ops.op0 = make_tree (TREE_TYPE (arg0), op0);
	  ops.op1 = make_tree (TREE_TYPE (arg0), op1);
	  tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (res, tem);

	  if (!op0_medium_p)
	    {
	      tem = expand_simple_binop (hmode, PLUS, hipart0, const1_rtx,
					 NULL_RTX, 1, OPTAB_DIRECT);
	      emit_cmp_and_jump_insns (tem, const1_rtx, GTU, NULL_RTX, hmode,
				       true, do_error, PROB_VERY_UNLIKELY);
	    }

	  if (!op1_medium_p)
	    {
	      tem = expand_simple_binop (hmode, PLUS, hipart1, const1_rtx,
					 NULL_RTX, 1, OPTAB_DIRECT);
	      emit_cmp_and_jump_insns (tem, const1_rtx, GTU, NULL_RTX, hmode,
				       true, do_error, PROB_VERY_UNLIKELY);
	    }

	  /* At this point hipart{0,1} are both in [-1, 0].  If they are the
	     same, overflow happened if res is negative, if they are different,
	     overflow happened if res is positive.  */
	  if (op0_sign != 1 && op1_sign != 1 && op0_sign != op1_sign)
	    emit_jump (hipart_different);
	  else if (op0_sign == 1 || op1_sign == 1)
	    emit_cmp_and_jump_insns (hipart0, hipart1, NE, NULL_RTX, hmode,
				     true, hipart_different, PROB_EVEN);

	  emit_cmp_and_jump_insns (res, const0_rtx, LT, NULL_RTX, mode, false,
				   do_error, PROB_VERY_UNLIKELY);
	  emit_jump (done_label);

	  emit_label (hipart_different);

	  emit_cmp_and_jump_insns (res, const0_rtx, GE, NULL_RTX, mode, false,
				   do_error, PROB_VERY_UNLIKELY);
	  emit_jump (done_label);

	  emit_label (do_overflow);

	  /* Overflow, do full multiplication and fallthru into do_error.  */
	  ops.op0 = make_tree (TREE_TYPE (arg0), op0);
	  ops.op1 = make_tree (TREE_TYPE (arg0), op1);
	  tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (res, tem);
	}
      else
	{
	  ops.code = MULT_EXPR;
	  ops.type = TREE_TYPE (arg0);
	  res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_jump (done_label);
	}
    }

  emit_label (do_error);
  /* Expand the ubsan builtin call.  */
  push_temp_slots ();
  fn = ubsan_build_overflow_builtin (MULT_EXPR, gimple_location (stmt),
				     TREE_TYPE (arg0), arg0, arg1);
  expand_normal (fn);
  pop_temp_slots ();
  do_pending_stack_adjust ();

  /* We're done.  */
  emit_label (done_label);

  if (lhs)
    emit_move_insn (target, res);
}
コード例 #28
0
ファイル: internal-fn.c プロジェクト: Alexpux/GCC
void
ubsan_expand_si_overflow_neg_check (gimple stmt)
{
  rtx res, op1;
  tree lhs, fn, arg1;
  rtx_code_label *done_label, *do_error;
  rtx target = NULL_RTX;

  lhs = gimple_call_lhs (stmt);
  arg1 = gimple_call_arg (stmt, 1);
  done_label = gen_label_rtx ();
  do_error = gen_label_rtx ();

  do_pending_stack_adjust ();
  op1 = expand_normal (arg1);

  machine_mode mode = TYPE_MODE (TREE_TYPE (arg1));
  if (lhs)
    target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);

  enum insn_code icode = optab_handler (negv3_optab, mode);
  if (icode != CODE_FOR_nothing)
    {
      struct expand_operand ops[3];
      rtx_insn *last = get_last_insn ();

      res = gen_reg_rtx (mode);
      create_output_operand (&ops[0], res, mode);
      create_input_operand (&ops[1], op1, mode);
      create_fixed_operand (&ops[2], do_error);
      if (maybe_expand_insn (icode, 3, ops))
	{
	  last = get_last_insn ();
	  if (profile_status_for_fn (cfun) != PROFILE_ABSENT
	      && JUMP_P (last)
	      && any_condjump_p (last)
	      && !find_reg_note (last, REG_BR_PROB, 0))
	    add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
	  emit_jump (done_label);
        }
      else
	{
	  delete_insns_since (last);
	  icode = CODE_FOR_nothing;
	}
    }

  if (icode == CODE_FOR_nothing)
    {
      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_unop (mode, neg_optab, op1, NULL_RTX, false);

      /* Compare the operand with the most negative value.  */
      rtx minv = expand_normal (TYPE_MIN_VALUE (TREE_TYPE (arg1)));
      emit_cmp_and_jump_insns (op1, minv, NE, NULL_RTX, mode, false,
			       done_label, PROB_VERY_LIKELY);
    }

  emit_label (do_error);
  /* Expand the ubsan builtin call.  */
  push_temp_slots ();
  fn = ubsan_build_overflow_builtin (NEGATE_EXPR, gimple_location (stmt),
				     TREE_TYPE (arg1), arg1, NULL_TREE);
  expand_normal (fn);
  pop_temp_slots ();
  do_pending_stack_adjust ();

  /* We're done.  */
  emit_label (done_label);

  if (lhs)
    emit_move_insn (target, res);
}
コード例 #29
0
ファイル: internal-fn.c プロジェクト: Alexpux/GCC
void
ubsan_expand_si_overflow_addsub_check (tree_code code, gimple stmt)
{
  rtx res, op0, op1;
  tree lhs, fn, arg0, arg1;
  rtx_code_label *done_label, *do_error;
  rtx target = NULL_RTX;

  lhs = gimple_call_lhs (stmt);
  arg0 = gimple_call_arg (stmt, 0);
  arg1 = gimple_call_arg (stmt, 1);
  done_label = gen_label_rtx ();
  do_error = gen_label_rtx ();
  do_pending_stack_adjust ();
  op0 = expand_normal (arg0);
  op1 = expand_normal (arg1);

  machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
  if (lhs)
    target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);

  enum insn_code icode
    = optab_handler (code == PLUS_EXPR ? addv4_optab : subv4_optab, mode);
  if (icode != CODE_FOR_nothing)
    {
      struct expand_operand ops[4];
      rtx_insn *last = get_last_insn ();

      res = gen_reg_rtx (mode);
      create_output_operand (&ops[0], res, mode);
      create_input_operand (&ops[1], op0, mode);
      create_input_operand (&ops[2], op1, mode);
      create_fixed_operand (&ops[3], do_error);
      if (maybe_expand_insn (icode, 4, ops))
	{
	  last = get_last_insn ();
	  if (profile_status_for_fn (cfun) != PROFILE_ABSENT
	      && JUMP_P (last)
	      && any_condjump_p (last)
	      && !find_reg_note (last, REG_BR_PROB, 0))
	    add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
	  emit_jump (done_label);
        }
      else
	{
	  delete_insns_since (last);
	  icode = CODE_FOR_nothing;
	}
    }

  if (icode == CODE_FOR_nothing)
    {
      rtx_code_label *sub_check = gen_label_rtx ();
      int pos_neg = 3;

      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
			  op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);

      /* If we can prove one of the arguments (for MINUS_EXPR only
	 the second operand, as subtraction is not commutative) is always
	 non-negative or always negative, we can do just one comparison
	 and conditional jump instead of 2 at runtime, 3 present in the
	 emitted code.  If one of the arguments is CONST_INT, all we
	 need is to make sure it is op1, then the first
	 emit_cmp_and_jump_insns will be just folded.  Otherwise try
	 to use range info if available.  */
      if (code == PLUS_EXPR && CONST_INT_P (op0))
	{
	  rtx tem = op0;
	  op0 = op1;
	  op1 = tem;
	}
      else if (CONST_INT_P (op1))
	;
      else if (code == PLUS_EXPR && TREE_CODE (arg0) == SSA_NAME)
	{
	  wide_int arg0_min, arg0_max;
	  if (get_range_info (arg0, &arg0_min, &arg0_max) == VR_RANGE)
	    {
	      if (!wi::neg_p (arg0_min, TYPE_SIGN (TREE_TYPE (arg0))))
		pos_neg = 1;
	      else if (wi::neg_p (arg0_max, TYPE_SIGN (TREE_TYPE (arg0))))
		pos_neg = 2;
	    }
	  if (pos_neg != 3)
	    {
	      rtx tem = op0;
	      op0 = op1;
	      op1 = tem;
	    }
	}
      if (pos_neg == 3 && !CONST_INT_P (op1) && TREE_CODE (arg1) == SSA_NAME)
	{
	  wide_int arg1_min, arg1_max;
	  if (get_range_info (arg1, &arg1_min, &arg1_max) == VR_RANGE)
	    {
	      if (!wi::neg_p (arg1_min, TYPE_SIGN (TREE_TYPE (arg1))))
		pos_neg = 1;
	      else if (wi::neg_p (arg1_max, TYPE_SIGN (TREE_TYPE (arg1))))
		pos_neg = 2;
	    }
	}

      /* If the op1 is negative, we have to use a different check.  */
      if (pos_neg == 3)
	emit_cmp_and_jump_insns (op1, const0_rtx, LT, NULL_RTX, mode,
				 false, sub_check, PROB_EVEN);

      /* Compare the result of the operation with one of the operands.  */
      if (pos_neg & 1)
	emit_cmp_and_jump_insns (res, op0, code == PLUS_EXPR ? GE : LE,
				 NULL_RTX, mode, false, done_label,
				 PROB_VERY_LIKELY);

      /* If we get here, we have to print the error.  */
      if (pos_neg == 3)
	{
	  emit_jump (do_error);

	  emit_label (sub_check);
	}

      /* We have k = a + b for b < 0 here.  k <= a must hold.  */
      if (pos_neg & 2)
	emit_cmp_and_jump_insns (res, op0, code == PLUS_EXPR ? LE : GE,
				 NULL_RTX, mode, false, done_label,
				 PROB_VERY_LIKELY);
    }

  emit_label (do_error);
  /* Expand the ubsan builtin call.  */
  push_temp_slots ();
  fn = ubsan_build_overflow_builtin (code, gimple_location (stmt),
				     TREE_TYPE (arg0), arg0, arg1);
  expand_normal (fn);
  pop_temp_slots ();
  do_pending_stack_adjust ();

  /* We're done.  */
  emit_label (done_label);

  if (lhs)
    emit_move_insn (target, res);
}
コード例 #30
0
ファイル: tree-tailcall.c プロジェクト: CookieChen/gcc
static void
eliminate_tail_call (struct tailcall *t)
{
  tree param, rslt;
  gimple stmt, call;
  tree arg;
  size_t idx;
  basic_block bb, first;
  edge e;
  gimple phi;
  gimple_stmt_iterator gsi;
  gimple orig_stmt;

  stmt = orig_stmt = gsi_stmt (t->call_gsi);
  bb = gsi_bb (t->call_gsi);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
	       bb->index);
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  gcc_assert (is_gimple_call (stmt));

  first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));

  /* Remove the code after call_gsi that will become unreachable.  The
     possibly unreachable code in other blocks is removed later in
     cfg cleanup.  */
  gsi = t->call_gsi;
  gsi_next (&gsi);
  while (!gsi_end_p (gsi))
    {
      gimple t = gsi_stmt (gsi);
      /* Do not remove the return statement, so that redirect_edge_and_branch
	 sees how the block ends.  */
      if (gimple_code (t) == GIMPLE_RETURN)
	break;

      gsi_remove (&gsi, true);
      release_defs (t);
    }

  /* Number of executions of function has reduced by the tailcall.  */
  e = single_succ_edge (gsi_bb (t->call_gsi));
  decrease_profile (EXIT_BLOCK_PTR_FOR_FN (cfun), e->count, EDGE_FREQUENCY (e));
  decrease_profile (ENTRY_BLOCK_PTR_FOR_FN (cfun), e->count,
		    EDGE_FREQUENCY (e));
  if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
    decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));

  /* Replace the call by a jump to the start of function.  */
  e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
				first);
  gcc_assert (e);
  PENDING_STMT (e) = NULL;

  /* Add phi node entries for arguments.  The ordering of the phi nodes should
     be the same as the ordering of the arguments.  */
  for (param = DECL_ARGUMENTS (current_function_decl),
	 idx = 0, gsi = gsi_start_phis (first);
       param;
       param = DECL_CHAIN (param), idx++)
    {
      if (!arg_needs_copy_p (param))
	continue;

      arg = gimple_call_arg (stmt, idx);
      phi = gsi_stmt (gsi);
      gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));

      add_phi_arg (phi, arg, e, gimple_location (stmt));
      gsi_next (&gsi);
    }

  /* Update the values of accumulators.  */
  adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);

  call = gsi_stmt (t->call_gsi);
  rslt = gimple_call_lhs (call);
  if (rslt != NULL_TREE)
    {
      /* Result of the call will no longer be defined.  So adjust the
	 SSA_NAME_DEF_STMT accordingly.  */
      SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
    }

  gsi_remove (&t->call_gsi, true);
  release_defs (call);
}