コード例 #1
0
int glp_eval_tab_row(glp_prob *lp, int k, int ind[], double val[])
{     int m = lp->m;
      int n = lp->n;
      int i, t, len, lll, *iii;
      double alfa, *rho, *vvv;
      if (!(m == 0 || lp->valid))
         xerror("glp_eval_tab_row: basis factorization does not exist\n"
            );
      if (!(1 <= k && k <= m+n))
         xerror("glp_eval_tab_row: k = %d; variable number out of range"
            , k);
      /* determine xB[i] which corresponds to x[k] */
      if (k <= m)
         i = glp_get_row_bind(lp, k);
      else
         i = glp_get_col_bind(lp, k-m);
      if (i == 0)
         xerror("glp_eval_tab_row: k = %d; variable must be basic", k);
      xassert(1 <= i && i <= m);
      /* allocate working arrays */
      rho = xcalloc(1+m, sizeof(double));
      iii = xcalloc(1+m, sizeof(int));
      vvv = xcalloc(1+m, sizeof(double));
      /* compute i-th row of the inverse; see (8) */
      for (t = 1; t <= m; t++) rho[t] = 0.0;
      rho[i] = 1.0;
      glp_btran(lp, rho);
      /* compute i-th row of the simplex table */
      len = 0;
      for (k = 1; k <= m+n; k++)
      {  if (k <= m)
         {  /* x[k] is auxiliary variable, so N[k] is a unity column */
            if (glp_get_row_stat(lp, k) == GLP_BS) continue;
            /* compute alfa[i,j]; see (9) */
            alfa = - rho[k];
         }
         else
         {  /* x[k] is structural variable, so N[k] is a column of the
               original constraint matrix A with negative sign */
            if (glp_get_col_stat(lp, k-m) == GLP_BS) continue;
            /* compute alfa[i,j]; see (9) */
            lll = glp_get_mat_col(lp, k-m, iii, vvv);
            alfa = 0.0;
            for (t = 1; t <= lll; t++) alfa += rho[iii[t]] * vvv[t];
         }
         /* store alfa[i,j] */
         if (alfa != 0.0) len++, ind[len] = k, val[len] = alfa;
      }
      xassert(len <= n);
      /* free working arrays */
      xfree(rho);
      xfree(iii);
      xfree(vvv);
      /* return to the calling program */
      return len;
}
コード例 #2
0
int glp_eval_tab_col(glp_prob *lp, int k, int ind[], double val[])
{     int m = lp->m;
      int n = lp->n;
      int t, len, stat;
      double *col;
      if (!(m == 0 || lp->valid))
         xerror("glp_eval_tab_col: basis factorization does not exist\n"
            );
      if (!(1 <= k && k <= m+n))
         xerror("glp_eval_tab_col: k = %d; variable number out of range"
            , k);
      if (k <= m)
         stat = glp_get_row_stat(lp, k);
      else
         stat = glp_get_col_stat(lp, k-m);
      if (stat == GLP_BS)
         xerror("glp_eval_tab_col: k = %d; variable must be non-basic",
            k);
      /* obtain column N[k] with negative sign */
      col = xcalloc(1+m, sizeof(double));
      for (t = 1; t <= m; t++) col[t] = 0.0;
      if (k <= m)
      {  /* x[k] is auxiliary variable, so N[k] is a unity column */
         col[k] = -1.0;
      }
      else
      {  /* x[k] is structural variable, so N[k] is a column of the
            original constraint matrix A with negative sign */
         len = glp_get_mat_col(lp, k-m, ind, val);
         for (t = 1; t <= len; t++) col[ind[t]] = val[t];
      }
      /* compute column of the simplex table, which corresponds to the
         specified non-basic variable x[k] */
      glp_ftran(lp, col);
      len = 0;
      for (t = 1; t <= m; t++)
      {  if (col[t] != 0.0)
         {  len++;
            ind[len] = glp_get_bhead(lp, t);
            val[len] = col[t];
         }
      }
      xfree(col);
      /* return to the calling program */
      return len;
}
コード例 #3
0
ファイル: glplpx01.c プロジェクト: BohanHsu/developer
int lpx_get_col_stat(LPX *lp, int j)
{     /* retrieve column status (basic solution) */
      return glp_get_col_stat(lp, j) - GLP_BS + LPX_BS;
}
コード例 #4
0
ファイル: glpapi14.c プロジェクト: emersonxsu/glpk
int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol)
{     /* postsolve the model */
      int i, j, m, n, stat, ret;
      double prim, dual;
      if (!(tran->phase == 3 && !tran->flag_p))
         xerror("glp_mpl_postsolve: invalid call sequence\n");
      if (!(sol == GLP_SOL || sol == GLP_IPT || sol == GLP_MIP))
         xerror("glp_mpl_postsolve: sol = %d; invalid parameter\n",
            sol);
      m = mpl_get_num_rows(tran);
      n = mpl_get_num_cols(tran);
      if (!(m == glp_get_num_rows(prob) &&
            n == glp_get_num_cols(prob)))
         xerror("glp_mpl_postsolve: wrong problem object\n");
      if (!mpl_has_solve_stmt(tran))
      {  ret = 0;
         goto done;
      }
      for (i = 1; i <= m; i++)
      {  if (sol == GLP_SOL)
         {  stat = glp_get_row_stat(prob, i);
            prim = glp_get_row_prim(prob, i);
            dual = glp_get_row_dual(prob, i);
         }
         else if (sol == GLP_IPT)
         {  stat = 0;
            prim = glp_ipt_row_prim(prob, i);
            dual = glp_ipt_row_dual(prob, i);
         }
         else if (sol == GLP_MIP)
         {  stat = 0;
            prim = glp_mip_row_val(prob, i);
            dual = 0.0;
         }
         else
            xassert(sol != sol);
         if (fabs(prim) < 1e-9) prim = 0.0;
         if (fabs(dual) < 1e-9) dual = 0.0;
         mpl_put_row_soln(tran, i, stat, prim, dual);
      }
      for (j = 1; j <= n; j++)
      {  if (sol == GLP_SOL)
         {  stat = glp_get_col_stat(prob, j);
            prim = glp_get_col_prim(prob, j);
            dual = glp_get_col_dual(prob, j);
         }
         else if (sol == GLP_IPT)
         {  stat = 0;
            prim = glp_ipt_col_prim(prob, j);
            dual = glp_ipt_col_dual(prob, j);
         }
         else if (sol == GLP_MIP)
         {  stat = 0;
            prim = glp_mip_col_val(prob, j);
            dual = 0.0;
         }
         else
            xassert(sol != sol);
         if (fabs(prim) < 1e-9) prim = 0.0;
         if (fabs(dual) < 1e-9) dual = 0.0;
         mpl_put_col_soln(tran, j, stat, prim, dual);
      }
      ret = mpl_postsolve(tran);
      if (ret == 3)
         ret = 0;
      else if (ret == 4)
         ret = 1;
done: return ret;
}
コード例 #5
0
ファイル: glpios09.c プロジェクト: AlessiaWent/igraph
static int branch_drtom(glp_tree *T, int *_next)
{     glp_prob *mip = T->mip;
      int m = mip->m;
      int n = mip->n;
      char *non_int = T->non_int;
      int j, jj, k, t, next, kase, len, stat, *ind;
      double x, dk, alfa, delta_j, delta_k, delta_z, dz_dn, dz_up,
         dd_dn, dd_up, degrad, *val;
      /* basic solution of LP relaxation must be optimal */
      xassert(glp_get_status(mip) == GLP_OPT);
      /* allocate working arrays */
      ind = xcalloc(1+n, sizeof(int));
      val = xcalloc(1+n, sizeof(double));
      /* nothing has been chosen so far */
      jj = 0, degrad = -1.0;
      /* walk through the list of columns (structural variables) */
      for (j = 1; j <= n; j++)
      {  /* if j-th column is not marked as fractional, skip it */
         if (!non_int[j]) continue;
         /* obtain (fractional) value of j-th column in basic solution
            of LP relaxation */
         x = glp_get_col_prim(mip, j);
         /* since the value of j-th column is fractional, the column is
            basic; compute corresponding row of the simplex table */
         len = glp_eval_tab_row(mip, m+j, ind, val);
         /* the following fragment computes a change in the objective
            function: delta Z = new Z - old Z, where old Z is the
            objective value in the current optimal basis, and new Z is
            the objective value in the adjacent basis, for two cases:
            1) if new upper bound ub' = floor(x[j]) is introduced for
               j-th column (down branch);
            2) if new lower bound lb' = ceil(x[j]) is introduced for
               j-th column (up branch);
            since in both cases the solution remaining dual feasible
            becomes primal infeasible, one implicit simplex iteration
            is performed to determine the change delta Z;
            it is obvious that new Z, which is never better than old Z,
            is a lower (minimization) or upper (maximization) bound of
            the objective function for down- and up-branches. */
         for (kase = -1; kase <= +1; kase += 2)
         {  /* if kase < 0, the new upper bound of x[j] is introduced;
               in this case x[j] should decrease in order to leave the
               basis and go to its new upper bound */
            /* if kase > 0, the new lower bound of x[j] is introduced;
               in this case x[j] should increase in order to leave the
               basis and go to its new lower bound */
            /* apply the dual ratio test in order to determine which
               auxiliary or structural variable should enter the basis
               to keep dual feasibility */
            k = glp_dual_rtest(mip, len, ind, val, kase, 1e-9);
            if (k != 0) k = ind[k];
            /* if no non-basic variable has been chosen, LP relaxation
               of corresponding branch being primal infeasible and dual
               unbounded has no primal feasible solution; in this case
               the change delta Z is formally set to infinity */
            if (k == 0)
            {  delta_z =
                  (T->mip->dir == GLP_MIN ? +DBL_MAX : -DBL_MAX);
               goto skip;
            }
            /* row of the simplex table that corresponds to non-basic
               variable x[k] choosen by the dual ratio test is:
                  x[j] = ... + alfa * x[k] + ...
               where alfa is the influence coefficient (an element of
               the simplex table row) */
            /* determine the coefficient alfa */
            for (t = 1; t <= len; t++) if (ind[t] == k) break;
            xassert(1 <= t && t <= len);
            alfa = val[t];
            /* since in the adjacent basis the variable x[j] becomes
               non-basic, knowing its value in the current basis we can
               determine its change delta x[j] = new x[j] - old x[j] */
            delta_j = (kase < 0 ? floor(x) : ceil(x)) - x;
            /* and knowing the coefficient alfa we can determine the
               corresponding change delta x[k] = new x[k] - old x[k],
               where old x[k] is a value of x[k] in the current basis,
               and new x[k] is a value of x[k] in the adjacent basis */
            delta_k = delta_j / alfa;
            /* Tomlin noticed that if the variable x[k] is of integer
               kind, its change cannot be less (eventually) than one in
               the magnitude */
            if (k > m && glp_get_col_kind(mip, k-m) != GLP_CV)
            {  /* x[k] is structural integer variable */
               if (fabs(delta_k - floor(delta_k + 0.5)) > 1e-3)
               {  if (delta_k > 0.0)
                     delta_k = ceil(delta_k);  /* +3.14 -> +4 */
                  else
                     delta_k = floor(delta_k); /* -3.14 -> -4 */
               }
            }
            /* now determine the status and reduced cost of x[k] in the
               current basis */
            if (k <= m)
            {  stat = glp_get_row_stat(mip, k);
               dk = glp_get_row_dual(mip, k);
            }
            else
            {  stat = glp_get_col_stat(mip, k-m);
               dk = glp_get_col_dual(mip, k-m);
            }
            /* if the current basis is dual degenerate, some reduced
               costs which are close to zero may have wrong sign due to
               round-off errors, so correct the sign of d[k] */
            switch (T->mip->dir)
            {  case GLP_MIN:
                  if (stat == GLP_NL && dk < 0.0 ||
                      stat == GLP_NU && dk > 0.0 ||
                      stat == GLP_NF) dk = 0.0;
                  break;
               case GLP_MAX:
                  if (stat == GLP_NL && dk > 0.0 ||
                      stat == GLP_NU && dk < 0.0 ||
                      stat == GLP_NF) dk = 0.0;
                  break;
               default:
                  xassert(T != T);
            }
            /* now knowing the change of x[k] and its reduced cost d[k]
               we can compute the corresponding change in the objective
               function delta Z = new Z - old Z = d[k] * delta x[k];
               note that due to Tomlin's modification new Z can be even
               worse than in the adjacent basis */
            delta_z = dk * delta_k;
skip:       /* new Z is never better than old Z, therefore the change
               delta Z is always non-negative (in case of minimization)
               or non-positive (in case of maximization) */
            switch (T->mip->dir)
            {  case GLP_MIN: xassert(delta_z >= 0.0); break;
               case GLP_MAX: xassert(delta_z <= 0.0); break;
               default: xassert(T != T);
            }
            /* save the change in the objective fnction for down- and
               up-branches, respectively */
            if (kase < 0) dz_dn = delta_z; else dz_up = delta_z;
         }
         /* thus, in down-branch no integer feasible solution can be
            better than Z + dz_dn, and in up-branch no integer feasible
            solution can be better than Z + dz_up, where Z is value of
            the objective function in the current basis */
         /* following the heuristic by Driebeck and Tomlin we choose a
            column (i.e. structural variable) which provides largest
            degradation of the objective function in some of branches;
            besides, we select the branch with smaller degradation to
            be solved next and keep other branch with larger degradation
            in the active list hoping to minimize the number of further
            backtrackings */
         if (degrad < fabs(dz_dn) || degrad < fabs(dz_up))
         {  jj = j;
            if (fabs(dz_dn) < fabs(dz_up))
            {  /* select down branch to be solved next */
               next = GLP_DN_BRNCH;
               degrad = fabs(dz_up);
            }
            else
            {  /* select up branch to be solved next */
               next = GLP_UP_BRNCH;
               degrad = fabs(dz_dn);
            }
            /* save the objective changes for printing */
            dd_dn = dz_dn, dd_up = dz_up;
            /* if down- or up-branch has no feasible solution, we does
               not need to consider other candidates (in principle, the
               corresponding branch could be pruned right now) */
            if (degrad == DBL_MAX) break;
         }
      }
      /* free working arrays */
      xfree(ind);
      xfree(val);
      /* something must be chosen */
      xassert(1 <= jj && jj <= n);
#if 1 /* 02/XI-2009 */
      if (degrad < 1e-6 * (1.0 + 0.001 * fabs(mip->obj_val)))
      {  jj = branch_mostf(T, &next);
         goto done;
      }
#endif
      if (T->parm->msg_lev >= GLP_MSG_DBG)
      {  xprintf("branch_drtom: column %d chosen to branch on\n", jj);
         if (fabs(dd_dn) == DBL_MAX)
            xprintf("branch_drtom: down-branch is infeasible\n");
         else
            xprintf("branch_drtom: down-branch bound is %.9e\n",
               lpx_get_obj_val(mip) + dd_dn);
         if (fabs(dd_up) == DBL_MAX)
            xprintf("branch_drtom: up-branch   is infeasible\n");
         else
            xprintf("branch_drtom: up-branch   bound is %.9e\n",
               lpx_get_obj_val(mip) + dd_up);
      }
done: *_next = next;
      return jj;
}