void pyglpk_kkt_check(glp_prob *lp, int scaling, pyglpk_kkt_t *kkt) { #if GLPK_VERSION(4, 49) int m = glp_get_num_rows(lp); /* check primal equality constraints */ glp_check_kkt(lp, GLP_SOL, GLP_KKT_PE, &(kkt->pe_ae_max), &(kkt->pe_ae_row), &(kkt->pe_re_max), &(kkt->pe_re_row)); kkt->pe_quality = quality(kkt->pe_re_max); /* check primal bound constraints */ glp_check_kkt(lp, GLP_SOL, GLP_KKT_PB, &(kkt->pb_ae_max), &(kkt->pb_ae_ind), &(kkt->pb_re_max), &(kkt->pb_re_ind)); kkt->pb_quality = quality(kkt->pb_re_max); /* check dual equality constraints */ glp_check_kkt(lp, GLP_SOL, GLP_KKT_DE, &(kkt->de_ae_max), &(kkt->de_ae_col), &(kkt->de_re_max), &(kkt->de_re_col)); kkt->de_ae_col = kkt->de_ae_col == 0 ? 0 : kkt->de_ae_col - m; kkt->de_re_col = kkt->de_re_col == 0 ? 0 : kkt->de_re_col - m; kkt->de_quality = quality(kkt->de_re_max); /* check dual bound constraints */ glp_check_kkt(lp, GLP_SOL, GLP_KKT_DB, &(kkt->db_ae_max), &(kkt->db_ae_ind), &(kkt->db_re_max), &(kkt->db_re_ind)); kkt->db_quality = quality(kkt->db_re_max); #else lpx_check_kkt(lp, scaling, kkt); #endif }
static PyObject* LPX_getray(LPXObject *self, void *closure) { int ray = lpx_get_ray_info(LP), numrows; if (ray==0) Py_RETURN_NONE; numrows = glp_get_num_rows(LP); ray--; if (ray < numrows) return PySequence_GetItem(self->rows, ray); return PySequence_GetItem(self->cols, ray - numrows); }
void glp_unscale_prob(glp_prob *lp) { int m = glp_get_num_rows(lp); int n = glp_get_num_cols(lp); int i, j; for (i = 1; i <= m; i++) glp_set_rii(lp, i, 1.0); for (j = 1; j <= n; j++) glp_set_sjj(lp, j, 1.0); return; }
void glpk_wrapper::get_error_bounds(double * errors) { int n = domain.size(); int * nbr_non_zero = new int[n]; for (int i = 0; i < n; i++) { errors[i] = INFINITY; nbr_non_zero[i] = 0; } // get the error on the KKT condition int sol; if (solver_type == SIMPLEX || solver_type == EXACT) { sol = GLP_SOL; } else { sol = GLP_IPT; } double ae_max; // largest absolute error int ae_ind; // number of row (PE), column (DE), or variable (PB, DB) with the largest absolute error double re_max; // largest relative error int re_ind; // number of row (PE), column (DE), or variable (PB, DB) with the largest relative error // GLP_KKT_PE — check primal equality constraints glp_check_kkt(lp, sol, GLP_KKT_PE, &ae_max, &ae_ind, &re_max, &re_ind); // a sparse vector for the coeffs in the row int row_size = 1; int * row_idx = new int[n + 1]; double * row_coeff = new double[n + 1]; // PE // gives the distance between the auxiliary var and A * strucutral variable int m = glp_get_num_rows(lp); for (int i = 1; i <= m ; ++i) { // get the coeffs for that constraint row_size = glp_get_mat_row(lp, i, row_idx, row_coeff); for (int j = 1; j <= row_size; j++) { int v = row_idx[j] - 1; // GLPK indexing nbr_non_zero[v] += 1; int c = row_coeff[j]; // relative error errors[v] = std::min(errors[v], get_row_value(i) * re_max / c); // absolute error errors[v] = std::min(errors[v], ae_max / c); } } // variables that don't matter for (int i = 0; i < n; i++) { if (nbr_non_zero[i] == 0) { errors[i] = 0; } DREAL_LOG_INFO << "glpk_wrapper::get_error_bounds: error for " << domain.get_name(i) << " is " << errors[i]; } delete[] nbr_non_zero; delete[] row_idx; delete[] row_coeff; }
int GLPKAddConstraint(LinEquation* InEquation) { if (InEquation->QuadCoeff.size() > 0) { FErrorFile() << "GLPK solver cannot accept quadratic constraints." << endl; FlushErrorFile(); return FAIL; } if (GLPKModel == NULL) { FErrorFile() << "Could not add constraint because GLPK object does not exist." << endl; FlushErrorFile(); return FAIL; } int NumRows = glp_get_num_rows(GLPKModel); if (InEquation->Index >= NumRows) { glp_add_rows(GLPKModel, 1); } if (InEquation->EqualityType == EQUAL) { glp_set_row_bnds(GLPKModel, InEquation->Index+1, GLP_FX, InEquation->RightHandSide, InEquation->RightHandSide); } else if (InEquation->EqualityType == GREATER) { glp_set_row_bnds(GLPKModel, InEquation->Index+1, GLP_LO, InEquation->RightHandSide, InEquation->RightHandSide); } else if (InEquation->EqualityType == LESS) { glp_set_row_bnds(GLPKModel, InEquation->Index+1, GLP_UP, InEquation->RightHandSide, InEquation->RightHandSide); } else { FErrorFile() << "Could not add constraint because the constraint type was not recognized." << endl; FlushErrorFile(); return FAIL; } int NumColumns = glp_get_num_cols(GLPKModel); int* Indecies = new int[int(InEquation->Variables.size())+1]; double* Coeff = new double[int(InEquation->Variables.size())+1]; for (int i=0; i < int(InEquation->Variables.size()); i++) { if (InEquation->Variables[i]->Index < NumColumns) { if (InEquation->Variables[i]->Exclude) { Coeff[i+1] = 0; } else { Coeff[i+1] = InEquation->Coefficient[i]; } Indecies[i+1] = InEquation->Variables[i]->Index+1; } else { FErrorFile() << "Variable index found in constraint is out of the range found in GLPK problem" << endl; FlushErrorFile(); return FAIL; } } glp_set_mat_row(GLPKModel, InEquation->Index+1, int(InEquation->Variables.size()), Indecies, Coeff); delete [] Indecies; delete [] Coeff; return SUCCESS; }
int main(int argc, char *argv[]) { leEstradas(); glp_prob *lp = montarModeloInicial(); while(1){ glp_intopt(lp, NULL); // acha solucao com restricao de integralidade printf("Solucao Otima: %.3f\n", glp_mip_obj_val(lp)); printf("X1: %.3f\n", glp_mip_col_val(lp, 1)); printf("X2: %.3f\n", glp_mip_col_val(lp, 2)); printf("X3: %.3f\n", glp_mip_col_val(lp, 3)); int arestaEscolhida[1234]; for(int est = 1; est) { arestaEscolhida[est] = glp_mip_col_val(lp, est); } int verticesAlcancados[123]; for( ) ; // para contar se todos os vertices foram alcancados // se tiverem sido, de um break e mostre a resposta; encontraVerticesAlcancaveis(arestaEscolhida, verticesAlcancados); glp_add_row(lp, 1); int indCol[123]; double val[123]; int nCoef = 0; for (int e = 1; e <= nArestas; ++e) { Estrada estrada = estradas[e]; int nextremosAlcancados = verticesAlcancados[estrada.ori] + verticesAlcancados[estrada.dest]; if (nextremosAlcancados == 1) { indCol[nCoef + 1] = e; val[nCoef + 1] = 1.0; } } glp_set_mat_row(lp, glp_get_num_rows(lp), nCoef, indCol, val); glp_set_row_bnds(lp, glp_get_num_rows(lp), GLP_LO, 2.0, 2.0); system("PAUSE"); return EXIT_SUCCESS; }
PyObject *LPX_GetMatrix(LPXObject *self) { int row, numrows, listi, i, nnz, rownz; PyObject *retval; numrows = glp_get_num_rows(LP); nnz = glp_get_num_nz(LP); retval = PyList_New(nnz); if (nnz == 0 || retval == NULL) return retval; // We don't really need this much memory, but, eh... int *ind = (int*)calloc(nnz, sizeof(int)); double *val = (double*)calloc(nnz, sizeof(double)); listi = 0; for (row=1; row<=numrows; ++row) { rownz = glp_get_mat_row(LP, row, ind-1, val-1); if (rownz == 0) continue; for (i = 0; i < rownz; ++i) { PyList_SET_ITEM(retval, listi++, Py_BuildValue("iid", row - 1, ind[i] - 1, val[i])); } /* * Continue to downscale these vectors, freeing memory in C even * as we use more memory in Python. */ nnz -= rownz; if (nnz) { ind = (int*)realloc(ind, nnz*sizeof(int)); val = (double*)realloc(val, nnz*sizeof(double)); } } free(ind); free(val); if (PyList_Sort(retval)) { Py_DECREF(retval); return NULL; } return retval; }
vector<int> LinearProblem::ElasticFilter() const { LinearProblem tmp(*this); int realCols = glp_get_num_cols(tmp.lp_); for (int i = realCols; i > 0; --i) { // set old coefs to zero glp_set_obj_coef(tmp.lp_, i, 0); } int elasticCols = glp_get_num_rows(tmp.lp_); glp_add_cols(tmp.lp_, elasticCols); for (int i = 1; i <= elasticCols; ++i) { int indices[MAX_VARS]; double values[MAX_VARS]; int nonZeros = glp_get_mat_row(tmp.lp_, i, indices, values); indices[nonZeros + 1] = realCols + i; values[nonZeros + 1] = 1.0; glp_set_mat_row(tmp.lp_, i, nonZeros + 1, indices, values); glp_set_obj_coef(tmp.lp_, realCols + i, 1); glp_set_col_bnds(tmp.lp_, realCols + i, GLP_UP, 0.0, 0.0); } vector<int> suspects; glp_std_basis(tmp.lp_); int status = tmp.Solve(); while ((status != GLP_INFEAS) && (status != GLP_NOFEAS)) { for (int i = 1; i <= elasticCols; ++i) { if (glp_get_col_prim(tmp.lp_, realCols + i) < 0) { suspects.push_back(i); glp_set_col_bnds(tmp.lp_, realCols + i, GLP_FX, 0.0, 0.0); } } status = tmp.Solve(); } return suspects; }
int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol) { /* postsolve the model */ int j, m, n, ret; double x; if (!(tran->phase == 3 && !tran->flag_p)) xerror("glp_mpl_postsolve: invalid call sequence\n"); if (!(sol == GLP_SOL || sol == GLP_IPT || sol == GLP_MIP)) xerror("glp_mpl_postsolve: sol = %d; invalid parameter\n", sol); m = mpl_get_num_rows(tran); n = mpl_get_num_cols(tran); if (!(m == glp_get_num_rows(prob) && n == glp_get_num_cols(prob))) xerror("glp_mpl_postsolve: wrong problem object\n"); if (!mpl_has_solve_stmt(tran)) { ret = 0; goto done; } for (j = 1; j <= n; j++) { if (sol == GLP_SOL) x = glp_get_col_prim(prob, j); else if (sol == GLP_IPT) x = glp_ipt_col_prim(prob, j); else if (sol == GLP_MIP) x = glp_mip_col_val(prob, j); else xassert(sol != sol); if (fabs(x) < 1e-9) x = 0.0; mpl_put_col_value(tran, j, x); } ret = mpl_postsolve(tran); if (ret == 3) ret = 0; else if (ret == 4) ret = 1; done: return ret; }
int c_glp_get_num_rows (glp_prob *lp){ return glp_get_num_rows (lp); }
static void solve(char* file_name) { ppl_Constraint_System_t ppl_cs; #ifndef NDEBUG ppl_Constraint_System_t ppl_cs_copy; #endif ppl_Generator_t optimum_location; ppl_Linear_Expression_t ppl_le; int dimension, row, num_rows, column, nz, i, j, type; int* coefficient_index; double lb, ub; double* coefficient_value; mpq_t rational_lb, rational_ub; mpq_t* rational_coefficient; mpq_t* objective; ppl_Linear_Expression_t ppl_objective_le; ppl_Coefficient_t optimum_n; ppl_Coefficient_t optimum_d; mpq_t optimum; mpz_t den_lcm; int optimum_found; glp_mpscp glpk_mpscp; glpk_lp = glp_create_prob(); glp_init_mpscp(&glpk_mpscp); if (verbosity == 0) { /* FIXME: find a way to suppress output from glp_read_mps. */ } #ifdef PPL_LPSOL_SUPPORTS_TIMINGS if (print_timings) start_clock(); #endif /* defined(PPL_LPSOL_SUPPORTS_TIMINGS) */ if (glp_read_mps(glpk_lp, GLP_MPS_FILE, &glpk_mpscp, file_name) != 0) fatal("cannot read MPS file `%s'", file_name); #ifdef PPL_LPSOL_SUPPORTS_TIMINGS if (print_timings) { fprintf(stderr, "Time to read the input file: "); print_clock(stderr); fprintf(stderr, " s\n"); start_clock(); } #endif /* defined(PPL_LPSOL_SUPPORTS_TIMINGS) */ glpk_lp_num_int = glp_get_num_int(glpk_lp); if (glpk_lp_num_int > 0 && !no_mip && !use_simplex) fatal("the enumeration solving method can not handle MIP problems"); dimension = glp_get_num_cols(glpk_lp); /* Read variables constrained to be integer. */ if (glpk_lp_num_int > 0 && !no_mip && use_simplex) { if (verbosity >= 4) fprintf(output_file, "Integer variables:\n"); integer_variables = (ppl_dimension_type*) malloc((glpk_lp_num_int + 1)*sizeof(ppl_dimension_type)); for (i = 0, j = 0; i < dimension; ++i) { int col_kind = glp_get_col_kind(glpk_lp, i+1); if (col_kind == GLP_IV || col_kind == GLP_BV) { integer_variables[j] = i; if (verbosity >= 4) { ppl_io_fprint_variable(output_file, i); fprintf(output_file, " "); } ++j; } } } coefficient_index = (int*) malloc((dimension+1)*sizeof(int)); coefficient_value = (double*) malloc((dimension+1)*sizeof(double)); rational_coefficient = (mpq_t*) malloc((dimension+1)*sizeof(mpq_t)); ppl_new_Constraint_System(&ppl_cs); mpq_init(rational_lb); mpq_init(rational_ub); for (i = 1; i <= dimension; ++i) mpq_init(rational_coefficient[i]); mpz_init(den_lcm); if (verbosity >= 4) fprintf(output_file, "\nConstraints:\n"); /* Set up the row (ordinary) constraints. */ num_rows = glp_get_num_rows(glpk_lp); for (row = 1; row <= num_rows; ++row) { /* Initialize the least common multiple computation. */ mpz_set_si(den_lcm, 1); /* Set `nz' to the number of non-zero coefficients. */ nz = glp_get_mat_row(glpk_lp, row, coefficient_index, coefficient_value); for (i = 1; i <= nz; ++i) { set_mpq_t_from_double(rational_coefficient[i], coefficient_value[i]); /* Update den_lcm. */ mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_coefficient[i])); } lb = glp_get_row_lb(glpk_lp, row); ub = glp_get_row_ub(glpk_lp, row); set_mpq_t_from_double(rational_lb, lb); set_mpq_t_from_double(rational_ub, ub); mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_lb)); mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_ub)); ppl_new_Linear_Expression_with_dimension(&ppl_le, dimension); for (i = 1; i <= nz; ++i) { mpz_mul(tmp_z, den_lcm, mpq_numref(rational_coefficient[i])); mpz_divexact(tmp_z, tmp_z, mpq_denref(rational_coefficient[i])); ppl_assign_Coefficient_from_mpz_t(ppl_coeff, tmp_z); ppl_Linear_Expression_add_to_coefficient(ppl_le, coefficient_index[i]-1, ppl_coeff); } type = glp_get_row_type(glpk_lp, row); add_constraints(ppl_le, type, rational_lb, rational_ub, den_lcm, ppl_cs); ppl_delete_Linear_Expression(ppl_le); } free(coefficient_value); for (i = 1; i <= dimension; ++i) mpq_clear(rational_coefficient[i]); free(rational_coefficient); free(coefficient_index); #ifndef NDEBUG ppl_new_Constraint_System_from_Constraint_System(&ppl_cs_copy, ppl_cs); #endif /* FIXME: here we could build the polyhedron and minimize it before adding the variable bounds. */ /* Set up the columns constraints, i.e., variable bounds. */ for (column = 1; column <= dimension; ++column) { lb = glp_get_col_lb(glpk_lp, column); ub = glp_get_col_ub(glpk_lp, column); set_mpq_t_from_double(rational_lb, lb); set_mpq_t_from_double(rational_ub, ub); /* Initialize the least common multiple computation. */ mpz_set_si(den_lcm, 1); mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_lb)); mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_ub)); ppl_new_Linear_Expression_with_dimension(&ppl_le, dimension); ppl_assign_Coefficient_from_mpz_t(ppl_coeff, den_lcm); ppl_Linear_Expression_add_to_coefficient(ppl_le, column-1, ppl_coeff); type = glp_get_col_type(glpk_lp, column); add_constraints(ppl_le, type, rational_lb, rational_ub, den_lcm, ppl_cs); ppl_delete_Linear_Expression(ppl_le); } mpq_clear(rational_ub); mpq_clear(rational_lb); /* Deal with the objective function. */ objective = (mpq_t*) malloc((dimension+1)*sizeof(mpq_t)); /* Initialize the least common multiple computation. */ mpz_set_si(den_lcm, 1); mpq_init(objective[0]); set_mpq_t_from_double(objective[0], glp_get_obj_coef(glpk_lp, 0)); for (i = 1; i <= dimension; ++i) { mpq_init(objective[i]); set_mpq_t_from_double(objective[i], glp_get_obj_coef(glpk_lp, i)); /* Update den_lcm. */ mpz_lcm(den_lcm, den_lcm, mpq_denref(objective[i])); } /* Set the ppl_objective_le to be the objective function. */ ppl_new_Linear_Expression_with_dimension(&ppl_objective_le, dimension); /* Set value for objective function's inhomogeneous term. */ mpz_mul(tmp_z, den_lcm, mpq_numref(objective[0])); mpz_divexact(tmp_z, tmp_z, mpq_denref(objective[0])); ppl_assign_Coefficient_from_mpz_t(ppl_coeff, tmp_z); ppl_Linear_Expression_add_to_inhomogeneous(ppl_objective_le, ppl_coeff); /* Set values for objective function's variable coefficients. */ for (i = 1; i <= dimension; ++i) { mpz_mul(tmp_z, den_lcm, mpq_numref(objective[i])); mpz_divexact(tmp_z, tmp_z, mpq_denref(objective[i])); ppl_assign_Coefficient_from_mpz_t(ppl_coeff, tmp_z); ppl_Linear_Expression_add_to_coefficient(ppl_objective_le, i-1, ppl_coeff); } if (verbosity >= 4) { fprintf(output_file, "Objective function:\n"); if (mpz_cmp_si(den_lcm, 1) != 0) fprintf(output_file, "("); ppl_io_fprint_Linear_Expression(output_file, ppl_objective_le); } for (i = 0; i <= dimension; ++i) mpq_clear(objective[i]); free(objective); if (verbosity >= 4) { if (mpz_cmp_si(den_lcm, 1) != 0) { fprintf(output_file, ")/"); mpz_out_str(output_file, 10, den_lcm); } fprintf(output_file, "\n%s\n", (maximize ? "Maximizing." : "Minimizing.")); } ppl_new_Coefficient(&optimum_n); ppl_new_Coefficient(&optimum_d); ppl_new_Generator_zero_dim_point(&optimum_location); optimum_found = use_simplex ? solve_with_simplex(ppl_cs, ppl_objective_le, optimum_n, optimum_d, optimum_location) : solve_with_generators(ppl_cs, ppl_objective_le, optimum_n, optimum_d, optimum_location); ppl_delete_Linear_Expression(ppl_objective_le); if (glpk_lp_num_int > 0) free(integer_variables); if (optimum_found) { mpq_init(optimum); ppl_Coefficient_to_mpz_t(optimum_n, tmp_z); mpq_set_num(optimum, tmp_z); ppl_Coefficient_to_mpz_t(optimum_d, tmp_z); mpz_mul(tmp_z, tmp_z, den_lcm); mpq_set_den(optimum, tmp_z); if (verbosity == 1) fprintf(output_file, "Optimized problem.\n"); if (verbosity >= 2) fprintf(output_file, "Optimum value: %.10g\n", mpq_get_d(optimum)); if (verbosity >= 3) { fprintf(output_file, "Optimum location:\n"); ppl_Generator_divisor(optimum_location, ppl_coeff); ppl_Coefficient_to_mpz_t(ppl_coeff, tmp_z); for (i = 0; i < dimension; ++i) { mpz_set(mpq_denref(tmp1_q), tmp_z); ppl_Generator_coefficient(optimum_location, i, ppl_coeff); ppl_Coefficient_to_mpz_t(ppl_coeff, mpq_numref(tmp1_q)); ppl_io_fprint_variable(output_file, i); fprintf(output_file, " = %.10g\n", mpq_get_d(tmp1_q)); } } #ifndef NDEBUG { ppl_Polyhedron_t ph; unsigned int relation; ppl_new_C_Polyhedron_recycle_Constraint_System(&ph, ppl_cs_copy); ppl_delete_Constraint_System(ppl_cs_copy); relation = ppl_Polyhedron_relation_with_Generator(ph, optimum_location); ppl_delete_Polyhedron(ph); assert(relation == PPL_POLY_GEN_RELATION_SUBSUMES); } #endif maybe_check_results(PPL_MIP_PROBLEM_STATUS_OPTIMIZED, mpq_get_d(optimum)); mpq_clear(optimum); } ppl_delete_Constraint_System(ppl_cs); ppl_delete_Coefficient(optimum_d); ppl_delete_Coefficient(optimum_n); ppl_delete_Generator(optimum_location); glp_delete_prob(glpk_lp); }
int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol) { /* postsolve the model */ int i, j, m, n, stat, ret; double prim, dual; if (!(tran->phase == 3 && !tran->flag_p)) xerror("glp_mpl_postsolve: invalid call sequence\n"); if (!(sol == GLP_SOL || sol == GLP_IPT || sol == GLP_MIP)) xerror("glp_mpl_postsolve: sol = %d; invalid parameter\n", sol); m = mpl_get_num_rows(tran); n = mpl_get_num_cols(tran); if (!(m == glp_get_num_rows(prob) && n == glp_get_num_cols(prob))) xerror("glp_mpl_postsolve: wrong problem object\n"); if (!mpl_has_solve_stmt(tran)) { ret = 0; goto done; } for (i = 1; i <= m; i++) { if (sol == GLP_SOL) { stat = glp_get_row_stat(prob, i); prim = glp_get_row_prim(prob, i); dual = glp_get_row_dual(prob, i); } else if (sol == GLP_IPT) { stat = 0; prim = glp_ipt_row_prim(prob, i); dual = glp_ipt_row_dual(prob, i); } else if (sol == GLP_MIP) { stat = 0; prim = glp_mip_row_val(prob, i); dual = 0.0; } else xassert(sol != sol); if (fabs(prim) < 1e-9) prim = 0.0; if (fabs(dual) < 1e-9) dual = 0.0; mpl_put_row_soln(tran, i, stat, prim, dual); } for (j = 1; j <= n; j++) { if (sol == GLP_SOL) { stat = glp_get_col_stat(prob, j); prim = glp_get_col_prim(prob, j); dual = glp_get_col_dual(prob, j); } else if (sol == GLP_IPT) { stat = 0; prim = glp_ipt_col_prim(prob, j); dual = glp_ipt_col_dual(prob, j); } else if (sol == GLP_MIP) { stat = 0; prim = glp_mip_col_val(prob, j); dual = 0.0; } else xassert(sol != sol); if (fabs(prim) < 1e-9) prim = 0.0; if (fabs(dual) < 1e-9) dual = 0.0; mpl_put_col_soln(tran, j, stat, prim, dual); } ret = mpl_postsolve(tran); if (ret == 3) ret = 0; else if (ret == 4) ret = 1; done: return ret; }
int lpx_write_pb(LPX *lp, const char *fname, int normalized, int binarize) { FILE* fp; int m,n,i,j,k,o,nonfree=0, obj_dir, dbl, *ndx, row_type, emptylhs=0; double coeff, *val, bound, constant/*=0.0*/; char* objconstname = "dummy_one"; char* emptylhsname = "dummy_zero"; /* Variables needed for possible binarization */ /*LPX* tlp;*/ IPP *ipp = NULL; /*tlp=lp;*/ if(binarize) /* Transform integer variables to binary ones */ { ipp = ipp_create_wksp(); ipp_load_orig(ipp, lp); ipp_binarize(ipp); lp = ipp_build_prob(ipp); } fp = fopen(fname, "w"); if(fp!= NULL) { xprintf( "lpx_write_pb: writing problem in %sOPB format to `%s'...\n", (normalized?"normalized ":""), fname); m = glp_get_num_rows(lp); n = glp_get_num_cols(lp); for(i=1;i<=m;i++) { switch(glp_get_row_type(lp,i)) { case GLP_LO: case GLP_UP: case GLP_FX: { nonfree += 1; break; } case GLP_DB: { nonfree += 2; break; } } } constant=glp_get_obj_coef(lp,0); fprintf(fp,"* #variables = %d #constraints = %d\n", n + (constant == 0?1:0), nonfree + (constant == 0?1:0)); /* Objective function */ obj_dir = glp_get_obj_dir(lp); fprintf(fp,"min: "); for(i=1;i<=n;i++) { coeff = glp_get_obj_coef(lp,i); if(coeff != 0.0) { if(obj_dir == GLP_MAX) coeff=-coeff; if(normalized) fprintf(fp, " %d x%d", (int)coeff, i); else fprintf(fp, " %d*%s", (int)coeff, glp_get_col_name(lp,i)); } } if(constant) { if(normalized) fprintf(fp, " %d x%d", (int)constant, n+1); else fprintf(fp, " %d*%s", (int)constant, objconstname); } fprintf(fp,";\n"); if(normalized && !binarize) /* Name substitution */ { fprintf(fp,"* Variable name substitution:\n"); for(j=1;j<=n;j++) { fprintf(fp, "* x%d = %s\n", j, glp_get_col_name(lp,j)); } if(constant) fprintf(fp, "* x%d = %s\n", n+1, objconstname); } ndx = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(double)); /* Constraints */ for(j=1;j<=m;j++) { row_type=glp_get_row_type(lp,j); if(row_type!=GLP_FR) { if(row_type == GLP_DB) { dbl=2; row_type = GLP_UP; } else { dbl=1; } k=glp_get_mat_row(lp, j, ndx, val); for(o=1;o<=dbl;o++) { if(o==2) { row_type = GLP_LO; } if(k==0) /* Empty LHS */ { emptylhs = 1; if(normalized) { fprintf(fp, "0 x%d ", n+2); } else { fprintf(fp, "0*%s ", emptylhsname); } } for(i=1;i<=k;i++) { if(val[i] != 0.0) { if(normalized) { fprintf(fp, "%d x%d ", (row_type==GLP_UP)?(-(int)val[i]):((int)val[i]), ndx[i]); } else { fprintf(fp, "%d*%s ", (int)val[i], glp_get_col_name(lp,ndx[i])); } } } switch(row_type) { case GLP_LO: { fprintf(fp, ">="); bound = glp_get_row_lb(lp,j); break; } case GLP_UP: { if(normalized) { fprintf(fp, ">="); bound = -glp_get_row_ub(lp,j); } else { fprintf(fp, "<="); bound = glp_get_row_ub(lp,j); } break; } case GLP_FX: { fprintf(fp, "="); bound = glp_get_row_lb(lp,j); break; } } fprintf(fp," %d;\n",(int)bound); } } } xfree(ndx); xfree(val); if(constant) { xprintf( "lpx_write_pb: adding constant objective function variable\n"); if(normalized) fprintf(fp, "1 x%d = 1;\n", n+1); else fprintf(fp, "1*%s = 1;\n", objconstname); } if(emptylhs) { xprintf( "lpx_write_pb: adding dummy variable for empty left-hand si" "de constraint\n"); if(normalized) fprintf(fp, "1 x%d = 0;\n", n+2); else fprintf(fp, "1*%s = 0;\n", emptylhsname); } } else { xprintf("Problems opening file for writing: %s\n", fname); return(1); } fflush(fp); if (ferror(fp)) { xprintf("lpx_write_pb: can't write to `%s' - %s\n", fname, strerror(errno)); goto fail; } fclose(fp); if(binarize) { /* delete the resultant problem object */ if (lp != NULL) lpx_delete_prob(lp); /* delete MIP presolver workspace */ if (ipp != NULL) ipp_delete_wksp(ipp); /*lp=tlp;*/ } return 0; fail: if (fp != NULL) fclose(fp); return 1; }
static PyObject* LPX_Str(LPXObject *self) { // Returns a string representation of this object. return PyString_FromFormat ("<%s %d-by-%d at %p>", self->ob_type->tp_name, glp_get_num_rows(LP), glp_get_num_cols(LP), self); }
int lpx_get_num_rows(LPX *lp) { /* retrieve number of rows */ return glp_get_num_rows(lp); }
// read in all necessary elements for retrieving the LP/MILP void Rglpk_read_file (char **file, int *type, int *lp_direction_of_optimization, int *lp_n_constraints, int *lp_n_objective_vars, int *lp_n_values_in_constraint_matrix, int *lp_n_integer_vars, int *lp_n_binary_vars, char **lp_prob_name, char **lp_obj_name, int *lp_verbosity) { int status; extern glp_prob *lp; glp_tran *tran; const char *str; // Turn on/off Terminal Output if (*lp_verbosity==1) glp_term_out(GLP_ON); else glp_term_out(GLP_OFF); // create problem object if (lp) glp_delete_prob(lp); lp = glp_create_prob(); // read file -> gets stored as an GLPK problem object 'lp' // which file type do we have? switch (*type){ case 1: // Fixed (ancient) MPS Format, param argument currently NULL status = glp_read_mps(lp, GLP_MPS_DECK, NULL, *file); break; case 2: // Free (modern) MPS format, param argument currently NULL status = glp_read_mps(lp, GLP_MPS_FILE, NULL, *file); break; case 3: // CPLEX LP Format status = glp_read_lp(lp, NULL, *file); break; case 4: // MATHPROG Format (based on lpx_read_model function) tran = glp_mpl_alloc_wksp(); status = glp_mpl_read_model(tran, *file, 0); if (!status) { status = glp_mpl_generate(tran, NULL); if (!status) { glp_mpl_build_prob(tran, lp); } } glp_mpl_free_wksp(tran); break; } // if file read successfully glp_read_* returns zero if ( status != 0 ) { glp_delete_prob(lp); lp = NULL; error("Reading file %s failed", *file); } // retrieve problem name str = glp_get_prob_name(lp); if (str){ *lp_prob_name = (char *) str; } // retrieve name of objective function str = glp_get_obj_name(lp); if (str){ *lp_obj_name = (char *) str; } // retrieve optimization direction flag *lp_direction_of_optimization = glp_get_obj_dir(lp); // retrieve number of constraints *lp_n_constraints = glp_get_num_rows(lp); // retrieve number of objective variables *lp_n_objective_vars = glp_get_num_cols(lp); // retrieve number of non-zero elements in constraint matrix *lp_n_values_in_constraint_matrix = glp_get_num_nz(lp); // retrieve number of integer variables *lp_n_integer_vars = glp_get_num_int(lp); // retrieve number of binary variables *lp_n_binary_vars = glp_get_num_bin(lp); }
// retrieve all missing values of LP/MILP void Rglpk_retrieve_MP_from_file (char **file, int *type, int *lp_n_constraints, int *lp_n_objective_vars, double *lp_objective_coefficients, int *lp_constraint_matrix_i, int *lp_constraint_matrix_j, double *lp_constraint_matrix_values, int *lp_direction_of_constraints, double *lp_right_hand_side, double *lp_left_hand_side, int *lp_objective_var_is_integer, int *lp_objective_var_is_binary, int *lp_bounds_type, double *lp_bounds_lower, double *lp_bounds_upper, int *lp_ignore_first_row, int *lp_verbosity, char **lp_constraint_names, char **lp_objective_vars_names ) { extern glp_prob *lp; glp_tran *tran; const char *str; int i, j, lp_column_kind, tmp; int ind_offset, status; // Turn on/off Terminal Output if (*lp_verbosity==1) glp_term_out(GLP_ON); else glp_term_out(GLP_OFF); // create problem object if (lp) glp_delete_prob(lp); lp = glp_create_prob(); // read file -> gets stored as an GLPK problem object 'lp' // which file type do we have? switch (*type){ case 1: // Fixed (ancient) MPS Format, param argument currently NULL status = glp_read_mps(lp, GLP_MPS_DECK, NULL, *file); break; case 2: // Free (modern) MPS format, param argument currently NULL status = glp_read_mps(lp, GLP_MPS_FILE, NULL, *file); break; case 3: // CPLEX LP Format status = glp_read_lp(lp, NULL, *file); break; case 4: // MATHPROG Format (based on lpx_read_model function) tran = glp_mpl_alloc_wksp(); status = glp_mpl_read_model(tran, *file, 0); if (!status) { status = glp_mpl_generate(tran, NULL); if (!status) { glp_mpl_build_prob(tran, lp); } } glp_mpl_free_wksp(tran); break; } // if file read successfully glp_read_* returns zero if ( status != 0 ) { glp_delete_prob(lp); lp = NULL; error("Reading file %c failed.", *file); } if(*lp_verbosity==1) Rprintf("Retrieve column specific data ...\n"); if(glp_get_num_cols(lp) != *lp_n_objective_vars) { glp_delete_prob(lp); lp = NULL; error("The number of columns is not as specified"); } // retrieve column specific data (values, bounds and type) for (i = 0; i < *lp_n_objective_vars; i++) { lp_objective_coefficients[i] = glp_get_obj_coef(lp, i+1); // Note that str must not be freed befor we have returned // from the .C call in R! str = glp_get_col_name(lp, i+1); if (str){ lp_objective_vars_names[i] = (char *) str; } lp_bounds_type[i] = glp_get_col_type(lp, i+1); lp_bounds_lower[i] = glp_get_col_lb (lp, i+1); lp_bounds_upper[i] = glp_get_col_ub (lp, i+1); lp_column_kind = glp_get_col_kind(lp, i+1); // set to TRUE if objective variable is integer or binary switch (lp_column_kind){ case GLP_IV: lp_objective_var_is_integer[i] = 1; break; case GLP_BV: lp_objective_var_is_binary[i] = 1; break; } } ind_offset = 0; if(*lp_verbosity==1) Rprintf("Retrieve row specific data ...\n"); if(glp_get_num_rows(lp) != *lp_n_constraints) { glp_delete_prob(lp); lp = NULL; error("The number of rows is not as specified"); } // retrieve row specific data (right hand side, direction of constraints) for (i = *lp_ignore_first_row; i < *lp_n_constraints; i++) { lp_direction_of_constraints[i] = glp_get_row_type(lp, i+1); str = glp_get_row_name(lp, i + 1); if (str) { lp_constraint_names[i] = (char *) str; } // the right hand side. Note we don't allow for double bounded or // free auxiliary variables if( lp_direction_of_constraints[i] == GLP_LO ) lp_right_hand_side[i] = glp_get_row_lb(lp, i+1); if( lp_direction_of_constraints[i] == GLP_UP ) lp_right_hand_side[i] = glp_get_row_ub(lp, i+1); if( lp_direction_of_constraints[i] == GLP_FX ) lp_right_hand_side[i] = glp_get_row_lb(lp, i+1); if( lp_direction_of_constraints[i] == GLP_DB ){ lp_right_hand_side[i] = glp_get_row_ub(lp, i+1); lp_left_hand_side[i] = glp_get_row_lb(lp, i+1); } tmp = glp_get_mat_row(lp, i+1, &lp_constraint_matrix_j[ind_offset-1], &lp_constraint_matrix_values[ind_offset-1]); if (tmp > 0) for (j = 0; j < tmp; j++) lp_constraint_matrix_i[ind_offset+j] = i+1; ind_offset += tmp; } if(*lp_verbosity==1) Rprintf("Done.\n"); }