コード例 #1
0
ファイル: kkt.c プロジェクト: bradfordboyle/pyglpk
void pyglpk_kkt_check(glp_prob *lp, int scaling, pyglpk_kkt_t *kkt)
{
#if GLPK_VERSION(4, 49)
  int m = glp_get_num_rows(lp);

  /* check primal equality constraints */
  glp_check_kkt(lp, GLP_SOL, GLP_KKT_PE,
                &(kkt->pe_ae_max), &(kkt->pe_ae_row),
                &(kkt->pe_re_max), &(kkt->pe_re_row));
  kkt->pe_quality = quality(kkt->pe_re_max);

  /* check primal bound constraints */
  glp_check_kkt(lp, GLP_SOL, GLP_KKT_PB,
                &(kkt->pb_ae_max), &(kkt->pb_ae_ind),
                &(kkt->pb_re_max), &(kkt->pb_re_ind));
  kkt->pb_quality = quality(kkt->pb_re_max);

  /* check dual equality constraints */
  glp_check_kkt(lp, GLP_SOL, GLP_KKT_DE,
                &(kkt->de_ae_max), &(kkt->de_ae_col),
                &(kkt->de_re_max), &(kkt->de_re_col));
  kkt->de_ae_col = kkt->de_ae_col == 0 ? 0 : kkt->de_ae_col - m;
  kkt->de_re_col = kkt->de_re_col == 0 ? 0 : kkt->de_re_col - m;
  kkt->de_quality = quality(kkt->de_re_max);

  /* check dual bound constraints */
  glp_check_kkt(lp, GLP_SOL, GLP_KKT_DB,
                &(kkt->db_ae_max), &(kkt->db_ae_ind),
                &(kkt->db_re_max), &(kkt->db_re_ind));
  kkt->db_quality = quality(kkt->db_re_max);
#else
  lpx_check_kkt(lp, scaling, kkt);
#endif
}
コード例 #2
0
ファイル: lp.c プロジェクト: kleptog/pyglpk
static PyObject* LPX_getray(LPXObject *self, void *closure) {
  int ray = lpx_get_ray_info(LP), numrows;
  if (ray==0) Py_RETURN_NONE;
  numrows = glp_get_num_rows(LP);
  ray--;
  if (ray < numrows) return PySequence_GetItem(self->rows, ray);
  return PySequence_GetItem(self->cols, ray - numrows);
}
コード例 #3
0
ファイル: glpapi04.c プロジェクト: Shicheng-Guo/methylFlow
void glp_unscale_prob(glp_prob *lp)
{     int m = glp_get_num_rows(lp);
      int n = glp_get_num_cols(lp);
      int i, j;
      for (i = 1; i <= m; i++) glp_set_rii(lp, i, 1.0);
      for (j = 1; j <= n; j++) glp_set_sjj(lp, j, 1.0);
      return;
}
コード例 #4
0
ファイル: glpk_wrapper.cpp プロジェクト: jadecastro/dreal3
void glpk_wrapper::get_error_bounds(double * errors) {
    int n = domain.size();
    int * nbr_non_zero = new int[n];
    for (int i = 0; i < n; i++) {
        errors[i] = INFINITY;
        nbr_non_zero[i] = 0;
    }

    // get the error on the KKT condition
    int sol;
    if (solver_type == SIMPLEX || solver_type == EXACT) {
        sol = GLP_SOL;
    } else {
        sol = GLP_IPT;
    }

    double ae_max;  // largest absolute error
    int ae_ind;     // number of row (PE), column (DE), or variable (PB, DB) with the largest absolute error
    double re_max;  // largest relative error
    int re_ind;     // number of row (PE), column (DE), or variable (PB, DB) with the largest relative error

    // GLP_KKT_PE — check primal equality constraints
    glp_check_kkt(lp, sol, GLP_KKT_PE, &ae_max, &ae_ind, &re_max, &re_ind);

    // a sparse vector for the coeffs in the row
    int row_size = 1;
    int * row_idx = new int[n + 1];
    double * row_coeff = new double[n + 1];

    // PE
    //  gives the distance between the auxiliary var and A * strucutral variable
    int m = glp_get_num_rows(lp);
    for (int i = 1; i <= m ; ++i) {
        // get the coeffs for that constraint
        row_size = glp_get_mat_row(lp, i, row_idx, row_coeff);
        for (int j = 1; j <= row_size; j++) {
            int v = row_idx[j] - 1;  // GLPK indexing
            nbr_non_zero[v] += 1;
            int c = row_coeff[j];
            // relative error
            errors[v] = std::min(errors[v], get_row_value(i) * re_max / c);
            // absolute error
            errors[v] = std::min(errors[v], ae_max / c);
        }
    }

    // variables that don't matter
    for (int i = 0; i < n; i++) {
        if (nbr_non_zero[i] == 0) {
            errors[i] = 0;
        }
        DREAL_LOG_INFO << "glpk_wrapper::get_error_bounds: error for " << domain.get_name(i) << " is " << errors[i];
    }

    delete[] nbr_non_zero;
    delete[] row_idx;
    delete[] row_coeff;
}
コード例 #5
0
int GLPKAddConstraint(LinEquation* InEquation) {
	if (InEquation->QuadCoeff.size() > 0) {
		FErrorFile() << "GLPK solver cannot accept quadratic constraints." << endl;
		FlushErrorFile();
		return FAIL;
	}

	if (GLPKModel == NULL) {
		FErrorFile() << "Could not add constraint because GLPK object does not exist." << endl;
		FlushErrorFile();
		return FAIL;
	}

	int NumRows = glp_get_num_rows(GLPKModel);

	if (InEquation->Index >= NumRows) {
		glp_add_rows(GLPKModel, 1);
	}

	if (InEquation->EqualityType == EQUAL) {
		glp_set_row_bnds(GLPKModel, InEquation->Index+1, GLP_FX, InEquation->RightHandSide, InEquation->RightHandSide);
	} else if (InEquation->EqualityType == GREATER) {
		glp_set_row_bnds(GLPKModel, InEquation->Index+1, GLP_LO, InEquation->RightHandSide, InEquation->RightHandSide);
	} else if (InEquation->EqualityType == LESS) {
		glp_set_row_bnds(GLPKModel, InEquation->Index+1, GLP_UP, InEquation->RightHandSide, InEquation->RightHandSide);
	} else {
		FErrorFile() << "Could not add constraint because the constraint type was not recognized." << endl;
		FlushErrorFile();
		return FAIL;
	}

	int NumColumns = glp_get_num_cols(GLPKModel);

	int* Indecies = new int[int(InEquation->Variables.size())+1];
	double* Coeff = new double[int(InEquation->Variables.size())+1];
	for (int i=0; i < int(InEquation->Variables.size()); i++) {
		if (InEquation->Variables[i]->Index < NumColumns) {
			if (InEquation->Variables[i]->Exclude) {
				Coeff[i+1] = 0;
			} else {
				Coeff[i+1] = InEquation->Coefficient[i];
			}
			Indecies[i+1] = InEquation->Variables[i]->Index+1;
		} else {
			FErrorFile() << "Variable index found in constraint is out of the range found in GLPK problem" << endl;
			FlushErrorFile();
			return FAIL;
		}
	}

	glp_set_mat_row(GLPKModel, InEquation->Index+1, int(InEquation->Variables.size()), Indecies, Coeff);

	delete [] Indecies;
	delete [] Coeff;

	return SUCCESS;
}
コード例 #6
0
int main(int argc, char *argv[])
{
    leEstradas();
    glp_prob *lp = montarModeloInicial();

while(1){     
     glp_intopt(lp, NULL); // acha solucao com restricao de integralidade

     printf("Solucao Otima: %.3f\n", glp_mip_obj_val(lp));     
     printf("X1: %.3f\n", glp_mip_col_val(lp, 1));     
     printf("X2: %.3f\n", glp_mip_col_val(lp, 2));     
     printf("X3: %.3f\n", glp_mip_col_val(lp, 3));
     int arestaEscolhida[1234];
     for(int est = 1; est) {
             arestaEscolhida[est] = glp_mip_col_val(lp, est);
     }
     int verticesAlcancados[123];
     for( ) ; // para contar se todos os vertices foram alcancados
     // se tiverem sido, de um break e mostre a resposta;
     encontraVerticesAlcancaveis(arestaEscolhida, verticesAlcancados);

     glp_add_row(lp, 1);
          int indCol[123];
          double val[123];
          int nCoef = 0;
     for (int e = 1; e <= nArestas; ++e) {
         Estrada estrada = estradas[e];
         int nextremosAlcancados = verticesAlcancados[estrada.ori] + 
             verticesAlcancados[estrada.dest];
         if (nextremosAlcancados == 1) {
            indCol[nCoef + 1] = e;
            val[nCoef + 1] = 1.0;
         } 
     }
     glp_set_mat_row(lp, glp_get_num_rows(lp), nCoef, indCol, val);
     glp_set_row_bnds(lp, glp_get_num_rows(lp), GLP_LO, 2.0, 2.0);
    system("PAUSE");
    return EXIT_SUCCESS;
}
コード例 #7
0
ファイル: lp.c プロジェクト: danielriosgarza/pyglpk
PyObject *LPX_GetMatrix(LPXObject *self)
{
	int row, numrows, listi, i, nnz, rownz;
	PyObject *retval;

	numrows = glp_get_num_rows(LP);
	nnz = glp_get_num_nz(LP);
	retval = PyList_New(nnz);
	if (nnz == 0 || retval == NULL)
		return retval;

	// We don't really need this much memory, but, eh...
	int *ind = (int*)calloc(nnz, sizeof(int));
	double *val = (double*)calloc(nnz, sizeof(double));

	listi = 0;
	for (row=1; row<=numrows; ++row) {
		rownz = glp_get_mat_row(LP, row, ind-1, val-1);
		if (rownz == 0)
			continue;
		for (i = 0; i < rownz; ++i) {
			PyList_SET_ITEM(retval, listi++, Py_BuildValue("iid", row - 1, ind[i] - 1, val[i]));
		}
		/*
		 * Continue to downscale these vectors, freeing memory in C even
		 * as we use more memory in Python.
		 */
		nnz -= rownz;
		if (nnz) {
			ind = (int*)realloc(ind, nnz*sizeof(int));
			val = (double*)realloc(val, nnz*sizeof(double));
		}
	}
	free(ind);
	free(val);
	if (PyList_Sort(retval)) {
		Py_DECREF(retval);
		return NULL;
	}
		return retval;
}
コード例 #8
0
ファイル: LinearProblem.cpp プロジェクト: eidavc/boa
vector<int> LinearProblem::ElasticFilter() const {
  LinearProblem tmp(*this);

  int realCols = glp_get_num_cols(tmp.lp_);
  for (int i = realCols; i > 0; --i) { // set old coefs to zero
    glp_set_obj_coef(tmp.lp_, i,  0);
  }

  int elasticCols = glp_get_num_rows(tmp.lp_);
  glp_add_cols(tmp.lp_, elasticCols);
  for (int i = 1; i <= elasticCols; ++i) {
    int indices[MAX_VARS];
    double values[MAX_VARS];
    int nonZeros = glp_get_mat_row(tmp.lp_, i, indices, values);

    indices[nonZeros + 1] = realCols + i;
    values[nonZeros + 1] = 1.0;

    glp_set_mat_row(tmp.lp_, i, nonZeros + 1, indices, values);
    glp_set_obj_coef(tmp.lp_, realCols + i,  1);
    glp_set_col_bnds(tmp.lp_, realCols + i, GLP_UP, 0.0, 0.0);
  }

  vector<int> suspects;
  glp_std_basis(tmp.lp_);
  int status = tmp.Solve();
  while ((status != GLP_INFEAS) && (status != GLP_NOFEAS)) {
    for (int i = 1; i <= elasticCols; ++i) {
      if (glp_get_col_prim(tmp.lp_, realCols + i) < 0) {
        suspects.push_back(i);
        glp_set_col_bnds(tmp.lp_, realCols + i, GLP_FX, 0.0, 0.0);
      }
    }
    status = tmp.Solve();
  }

  return suspects;
}
コード例 #9
0
ファイル: glpapi17.c プロジェクト: cran/farmR
int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol)
{     /* postsolve the model */
      int j, m, n, ret;
      double x;
      if (!(tran->phase == 3 && !tran->flag_p))
         xerror("glp_mpl_postsolve: invalid call sequence\n");
      if (!(sol == GLP_SOL || sol == GLP_IPT || sol == GLP_MIP))
         xerror("glp_mpl_postsolve: sol = %d; invalid parameter\n",
            sol);
      m = mpl_get_num_rows(tran);
      n = mpl_get_num_cols(tran);
      if (!(m == glp_get_num_rows(prob) &&
            n == glp_get_num_cols(prob)))
         xerror("glp_mpl_postsolve: wrong problem object\n");
      if (!mpl_has_solve_stmt(tran))
      {  ret = 0;
         goto done;
      }
      for (j = 1; j <= n; j++)
      {  if (sol == GLP_SOL)
            x = glp_get_col_prim(prob, j);
         else if (sol == GLP_IPT)
            x = glp_ipt_col_prim(prob, j);
         else if (sol == GLP_MIP)
            x = glp_mip_col_val(prob, j);
         else
            xassert(sol != sol);
         if (fabs(x) < 1e-9) x = 0.0;
         mpl_put_col_value(tran, j, x);
      }
      ret = mpl_postsolve(tran);
      if (ret == 3)
         ret = 0;
      else if (ret == 4)
         ret = 1;
done: return ret;
}
コード例 #10
0
ファイル: glpk.c プロジェクト: joshcc3/HaskellMiniProjects
int c_glp_get_num_rows (glp_prob *lp){
  	return glp_get_num_rows (lp);
}
コード例 #11
0
ファイル: ppl_lpsol.c プロジェクト: hnxiao/ppl
static void
solve(char* file_name) {
  ppl_Constraint_System_t ppl_cs;
#ifndef NDEBUG
  ppl_Constraint_System_t ppl_cs_copy;
#endif
  ppl_Generator_t optimum_location;
  ppl_Linear_Expression_t ppl_le;
  int dimension, row, num_rows, column, nz, i, j, type;
  int* coefficient_index;
  double lb, ub;
  double* coefficient_value;
  mpq_t rational_lb, rational_ub;
  mpq_t* rational_coefficient;
  mpq_t* objective;
  ppl_Linear_Expression_t ppl_objective_le;
  ppl_Coefficient_t optimum_n;
  ppl_Coefficient_t optimum_d;
  mpq_t optimum;
  mpz_t den_lcm;
  int optimum_found;
  glp_mpscp glpk_mpscp;

  glpk_lp = glp_create_prob();
  glp_init_mpscp(&glpk_mpscp);

  if (verbosity == 0) {
    /* FIXME: find a way to suppress output from glp_read_mps. */
  }

#ifdef PPL_LPSOL_SUPPORTS_TIMINGS

  if (print_timings)
    start_clock();

#endif /* defined(PPL_LPSOL_SUPPORTS_TIMINGS) */

  if (glp_read_mps(glpk_lp, GLP_MPS_FILE, &glpk_mpscp, file_name) != 0)
    fatal("cannot read MPS file `%s'", file_name);

#ifdef PPL_LPSOL_SUPPORTS_TIMINGS

  if (print_timings) {
    fprintf(stderr, "Time to read the input file: ");
    print_clock(stderr);
    fprintf(stderr, " s\n");
    start_clock();
  }

#endif /* defined(PPL_LPSOL_SUPPORTS_TIMINGS) */

  glpk_lp_num_int = glp_get_num_int(glpk_lp);

  if (glpk_lp_num_int > 0 && !no_mip && !use_simplex)
     fatal("the enumeration solving method can not handle MIP problems");

  dimension = glp_get_num_cols(glpk_lp);

  /* Read variables constrained to be integer. */
  if (glpk_lp_num_int > 0 && !no_mip && use_simplex) {
    if (verbosity >= 4)
      fprintf(output_file, "Integer variables:\n");
    integer_variables = (ppl_dimension_type*)
      malloc((glpk_lp_num_int + 1)*sizeof(ppl_dimension_type));
    for (i = 0, j = 0; i < dimension; ++i) {
      int col_kind = glp_get_col_kind(glpk_lp, i+1);
      if (col_kind == GLP_IV || col_kind == GLP_BV) {
        integer_variables[j] = i;
        if (verbosity >= 4) {
          ppl_io_fprint_variable(output_file, i);
          fprintf(output_file, " ");
        }
        ++j;
      }
    }
  }
  coefficient_index = (int*) malloc((dimension+1)*sizeof(int));
  coefficient_value = (double*) malloc((dimension+1)*sizeof(double));
  rational_coefficient = (mpq_t*) malloc((dimension+1)*sizeof(mpq_t));


  ppl_new_Constraint_System(&ppl_cs);

  mpq_init(rational_lb);
  mpq_init(rational_ub);
  for (i = 1; i <= dimension; ++i)
    mpq_init(rational_coefficient[i]);

  mpz_init(den_lcm);

  if (verbosity >= 4)
    fprintf(output_file, "\nConstraints:\n");

  /* Set up the row (ordinary) constraints. */
  num_rows = glp_get_num_rows(glpk_lp);
  for (row = 1; row <= num_rows; ++row) {
    /* Initialize the least common multiple computation. */
    mpz_set_si(den_lcm, 1);
    /* Set `nz' to the number of non-zero coefficients. */
    nz = glp_get_mat_row(glpk_lp, row, coefficient_index, coefficient_value);
    for (i = 1; i <= nz; ++i) {
      set_mpq_t_from_double(rational_coefficient[i], coefficient_value[i]);
      /* Update den_lcm. */
      mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_coefficient[i]));
    }

    lb = glp_get_row_lb(glpk_lp, row);
    ub = glp_get_row_ub(glpk_lp, row);

    set_mpq_t_from_double(rational_lb, lb);
    set_mpq_t_from_double(rational_ub, ub);

    mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_lb));
    mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_ub));

    ppl_new_Linear_Expression_with_dimension(&ppl_le, dimension);

    for (i = 1; i <= nz; ++i) {
      mpz_mul(tmp_z, den_lcm, mpq_numref(rational_coefficient[i]));
      mpz_divexact(tmp_z, tmp_z, mpq_denref(rational_coefficient[i]));
      ppl_assign_Coefficient_from_mpz_t(ppl_coeff, tmp_z);
      ppl_Linear_Expression_add_to_coefficient(ppl_le, coefficient_index[i]-1,
                                               ppl_coeff);
    }

    type = glp_get_row_type(glpk_lp, row);
    add_constraints(ppl_le, type, rational_lb, rational_ub, den_lcm, ppl_cs);

    ppl_delete_Linear_Expression(ppl_le);
  }

  free(coefficient_value);
  for (i = 1; i <= dimension; ++i)
    mpq_clear(rational_coefficient[i]);
  free(rational_coefficient);
  free(coefficient_index);

#ifndef NDEBUG
  ppl_new_Constraint_System_from_Constraint_System(&ppl_cs_copy, ppl_cs);
#endif

  /*
    FIXME: here we could build the polyhedron and minimize it before
    adding the variable bounds.
  */

  /* Set up the columns constraints, i.e., variable bounds. */
  for (column = 1; column <= dimension; ++column) {

    lb = glp_get_col_lb(glpk_lp, column);
    ub = glp_get_col_ub(glpk_lp, column);

    set_mpq_t_from_double(rational_lb, lb);
    set_mpq_t_from_double(rational_ub, ub);

    /* Initialize the least common multiple computation. */
    mpz_set_si(den_lcm, 1);
    mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_lb));
    mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_ub));

    ppl_new_Linear_Expression_with_dimension(&ppl_le, dimension);
    ppl_assign_Coefficient_from_mpz_t(ppl_coeff, den_lcm);
    ppl_Linear_Expression_add_to_coefficient(ppl_le, column-1, ppl_coeff);

    type = glp_get_col_type(glpk_lp, column);
    add_constraints(ppl_le, type, rational_lb, rational_ub, den_lcm, ppl_cs);

    ppl_delete_Linear_Expression(ppl_le);
  }

  mpq_clear(rational_ub);
  mpq_clear(rational_lb);

  /* Deal with the objective function. */
  objective = (mpq_t*) malloc((dimension+1)*sizeof(mpq_t));

  /* Initialize the least common multiple computation. */
  mpz_set_si(den_lcm, 1);

  mpq_init(objective[0]);
  set_mpq_t_from_double(objective[0], glp_get_obj_coef(glpk_lp, 0));
  for (i = 1; i <= dimension; ++i) {
    mpq_init(objective[i]);
    set_mpq_t_from_double(objective[i], glp_get_obj_coef(glpk_lp, i));
    /* Update den_lcm. */
    mpz_lcm(den_lcm, den_lcm, mpq_denref(objective[i]));
  }

  /* Set the ppl_objective_le to be the objective function. */
  ppl_new_Linear_Expression_with_dimension(&ppl_objective_le, dimension);
  /* Set value for objective function's inhomogeneous term. */
  mpz_mul(tmp_z, den_lcm, mpq_numref(objective[0]));
  mpz_divexact(tmp_z, tmp_z, mpq_denref(objective[0]));
  ppl_assign_Coefficient_from_mpz_t(ppl_coeff, tmp_z);
  ppl_Linear_Expression_add_to_inhomogeneous(ppl_objective_le, ppl_coeff);
  /* Set values for objective function's variable coefficients. */
  for (i = 1; i <= dimension; ++i) {
    mpz_mul(tmp_z, den_lcm, mpq_numref(objective[i]));
    mpz_divexact(tmp_z, tmp_z, mpq_denref(objective[i]));
    ppl_assign_Coefficient_from_mpz_t(ppl_coeff, tmp_z);
    ppl_Linear_Expression_add_to_coefficient(ppl_objective_le, i-1, ppl_coeff);
  }

  if (verbosity >= 4) {
    fprintf(output_file, "Objective function:\n");
    if (mpz_cmp_si(den_lcm, 1) != 0)
      fprintf(output_file, "(");
    ppl_io_fprint_Linear_Expression(output_file, ppl_objective_le);
  }

  for (i = 0; i <= dimension; ++i)
    mpq_clear(objective[i]);
  free(objective);

  if (verbosity >= 4) {
    if (mpz_cmp_si(den_lcm, 1) != 0) {
      fprintf(output_file, ")/");
      mpz_out_str(output_file, 10, den_lcm);
    }
    fprintf(output_file, "\n%s\n",
            (maximize ? "Maximizing." : "Minimizing."));
  }

  ppl_new_Coefficient(&optimum_n);
  ppl_new_Coefficient(&optimum_d);
  ppl_new_Generator_zero_dim_point(&optimum_location);

  optimum_found = use_simplex
    ? solve_with_simplex(ppl_cs,
                         ppl_objective_le,
                         optimum_n,
                         optimum_d,
                         optimum_location)
    : solve_with_generators(ppl_cs,
                            ppl_objective_le,
                            optimum_n,
                            optimum_d,
                            optimum_location);

  ppl_delete_Linear_Expression(ppl_objective_le);

  if (glpk_lp_num_int > 0)
      free(integer_variables);

  if (optimum_found) {
    mpq_init(optimum);
    ppl_Coefficient_to_mpz_t(optimum_n, tmp_z);
    mpq_set_num(optimum, tmp_z);
    ppl_Coefficient_to_mpz_t(optimum_d, tmp_z);
    mpz_mul(tmp_z, tmp_z, den_lcm);
    mpq_set_den(optimum, tmp_z);
    if (verbosity == 1)
      fprintf(output_file, "Optimized problem.\n");
    if (verbosity >= 2)
      fprintf(output_file, "Optimum value: %.10g\n", mpq_get_d(optimum));
    if (verbosity >= 3) {
      fprintf(output_file, "Optimum location:\n");
      ppl_Generator_divisor(optimum_location, ppl_coeff);
      ppl_Coefficient_to_mpz_t(ppl_coeff, tmp_z);
      for (i = 0; i < dimension; ++i) {
        mpz_set(mpq_denref(tmp1_q), tmp_z);
        ppl_Generator_coefficient(optimum_location, i, ppl_coeff);
        ppl_Coefficient_to_mpz_t(ppl_coeff, mpq_numref(tmp1_q));
        ppl_io_fprint_variable(output_file, i);
        fprintf(output_file, " = %.10g\n", mpq_get_d(tmp1_q));
      }
    }
#ifndef NDEBUG
    {
      ppl_Polyhedron_t ph;
      unsigned int relation;
      ppl_new_C_Polyhedron_recycle_Constraint_System(&ph, ppl_cs_copy);
      ppl_delete_Constraint_System(ppl_cs_copy);
      relation = ppl_Polyhedron_relation_with_Generator(ph, optimum_location);
      ppl_delete_Polyhedron(ph);
      assert(relation == PPL_POLY_GEN_RELATION_SUBSUMES);
    }
#endif
    maybe_check_results(PPL_MIP_PROBLEM_STATUS_OPTIMIZED,
                        mpq_get_d(optimum));
    mpq_clear(optimum);
  }

  ppl_delete_Constraint_System(ppl_cs);
  ppl_delete_Coefficient(optimum_d);
  ppl_delete_Coefficient(optimum_n);
  ppl_delete_Generator(optimum_location);

  glp_delete_prob(glpk_lp);
}
コード例 #12
0
ファイル: glpapi14.c プロジェクト: emersonxsu/glpk
int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol)
{     /* postsolve the model */
      int i, j, m, n, stat, ret;
      double prim, dual;
      if (!(tran->phase == 3 && !tran->flag_p))
         xerror("glp_mpl_postsolve: invalid call sequence\n");
      if (!(sol == GLP_SOL || sol == GLP_IPT || sol == GLP_MIP))
         xerror("glp_mpl_postsolve: sol = %d; invalid parameter\n",
            sol);
      m = mpl_get_num_rows(tran);
      n = mpl_get_num_cols(tran);
      if (!(m == glp_get_num_rows(prob) &&
            n == glp_get_num_cols(prob)))
         xerror("glp_mpl_postsolve: wrong problem object\n");
      if (!mpl_has_solve_stmt(tran))
      {  ret = 0;
         goto done;
      }
      for (i = 1; i <= m; i++)
      {  if (sol == GLP_SOL)
         {  stat = glp_get_row_stat(prob, i);
            prim = glp_get_row_prim(prob, i);
            dual = glp_get_row_dual(prob, i);
         }
         else if (sol == GLP_IPT)
         {  stat = 0;
            prim = glp_ipt_row_prim(prob, i);
            dual = glp_ipt_row_dual(prob, i);
         }
         else if (sol == GLP_MIP)
         {  stat = 0;
            prim = glp_mip_row_val(prob, i);
            dual = 0.0;
         }
         else
            xassert(sol != sol);
         if (fabs(prim) < 1e-9) prim = 0.0;
         if (fabs(dual) < 1e-9) dual = 0.0;
         mpl_put_row_soln(tran, i, stat, prim, dual);
      }
      for (j = 1; j <= n; j++)
      {  if (sol == GLP_SOL)
         {  stat = glp_get_col_stat(prob, j);
            prim = glp_get_col_prim(prob, j);
            dual = glp_get_col_dual(prob, j);
         }
         else if (sol == GLP_IPT)
         {  stat = 0;
            prim = glp_ipt_col_prim(prob, j);
            dual = glp_ipt_col_dual(prob, j);
         }
         else if (sol == GLP_MIP)
         {  stat = 0;
            prim = glp_mip_col_val(prob, j);
            dual = 0.0;
         }
         else
            xassert(sol != sol);
         if (fabs(prim) < 1e-9) prim = 0.0;
         if (fabs(dual) < 1e-9) dual = 0.0;
         mpl_put_col_soln(tran, j, stat, prim, dual);
      }
      ret = mpl_postsolve(tran);
      if (ret == 3)
         ret = 0;
      else if (ret == 4)
         ret = 1;
done: return ret;
}
コード例 #13
0
ファイル: glplpx03.c プロジェクト: Shicheng-Guo/methylFlow
int lpx_write_pb(LPX *lp, const char *fname, int normalized,
      int binarize)
{
  FILE* fp;
  int m,n,i,j,k,o,nonfree=0, obj_dir, dbl, *ndx, row_type, emptylhs=0;
  double coeff, *val, bound, constant/*=0.0*/;
  char* objconstname = "dummy_one";
  char* emptylhsname = "dummy_zero";

  /* Variables needed for possible binarization */
  /*LPX* tlp;*/
  IPP *ipp = NULL;
  /*tlp=lp;*/

  if(binarize) /* Transform integer variables to binary ones */
    {
      ipp = ipp_create_wksp();
      ipp_load_orig(ipp, lp);
      ipp_binarize(ipp);
      lp = ipp_build_prob(ipp);
    }
  fp = fopen(fname, "w");

  if(fp!= NULL)
    {
      xprintf(
          "lpx_write_pb: writing problem in %sOPB format to `%s'...\n",
              (normalized?"normalized ":""), fname);

      m = glp_get_num_rows(lp);
      n = glp_get_num_cols(lp);
      for(i=1;i<=m;i++)
        {
          switch(glp_get_row_type(lp,i))
            {
            case GLP_LO:
            case GLP_UP:
            case GLP_FX:
              {
                nonfree += 1;
                break;
              }
            case GLP_DB:
              {
                nonfree += 2;
                break;
              }
            }
        }
      constant=glp_get_obj_coef(lp,0);
      fprintf(fp,"* #variables = %d #constraints = %d\n",
         n + (constant == 0?1:0), nonfree + (constant == 0?1:0));
      /* Objective function */
      obj_dir = glp_get_obj_dir(lp);
      fprintf(fp,"min: ");
      for(i=1;i<=n;i++)
        {
          coeff = glp_get_obj_coef(lp,i);
          if(coeff != 0.0)
            {
              if(obj_dir == GLP_MAX)
                coeff=-coeff;
              if(normalized)
                fprintf(fp, " %d x%d", (int)coeff, i);
              else
                fprintf(fp, " %d*%s", (int)coeff,
                  glp_get_col_name(lp,i));

            }
        }
      if(constant)
        {
          if(normalized)
            fprintf(fp, " %d x%d", (int)constant, n+1);
          else
            fprintf(fp, " %d*%s", (int)constant, objconstname);
        }
      fprintf(fp,";\n");

      if(normalized && !binarize)  /* Name substitution */
        {
          fprintf(fp,"* Variable name substitution:\n");
          for(j=1;j<=n;j++)
            {
              fprintf(fp, "* x%d = %s\n", j, glp_get_col_name(lp,j));
            }
          if(constant)
            fprintf(fp, "* x%d = %s\n", n+1, objconstname);
        }

      ndx = xcalloc(1+n, sizeof(int));
      val = xcalloc(1+n, sizeof(double));

      /* Constraints */
      for(j=1;j<=m;j++)
        {
          row_type=glp_get_row_type(lp,j);
          if(row_type!=GLP_FR)
            {
              if(row_type == GLP_DB)
                {
                  dbl=2;
                  row_type = GLP_UP;
                }
              else
                {
                  dbl=1;
                }
              k=glp_get_mat_row(lp, j, ndx, val);
              for(o=1;o<=dbl;o++)
                {
                  if(o==2)
                    {
                      row_type = GLP_LO;
                    }
                  if(k==0) /* Empty LHS */
                    {
                      emptylhs = 1;
                      if(normalized)
                        {
                          fprintf(fp, "0 x%d ", n+2);
                        }
                      else
                        {
                          fprintf(fp, "0*%s ", emptylhsname);
                        }
                    }

                  for(i=1;i<=k;i++)
                    {
                      if(val[i] != 0.0)
                        {

                          if(normalized)
                            {
                              fprintf(fp, "%d x%d ",
              (row_type==GLP_UP)?(-(int)val[i]):((int)val[i]), ndx[i]);
                            }
                          else
                            {
                              fprintf(fp, "%d*%s ", (int)val[i],
                                      glp_get_col_name(lp,ndx[i]));
                            }
                        }
                    }
                  switch(row_type)
                    {
                    case GLP_LO:
                      {
                        fprintf(fp, ">=");
                        bound = glp_get_row_lb(lp,j);
                        break;
                      }
                    case GLP_UP:
                      {
                        if(normalized)
                          {
                            fprintf(fp, ">=");
                            bound = -glp_get_row_ub(lp,j);
                          }
                        else
                          {
                            fprintf(fp, "<=");
                            bound = glp_get_row_ub(lp,j);
                          }

                        break;
                      }
                    case GLP_FX:
                      {
                        fprintf(fp, "=");
                        bound = glp_get_row_lb(lp,j);
                        break;
                      }
                    }
                  fprintf(fp," %d;\n",(int)bound);
                }
            }
        }
      xfree(ndx);
      xfree(val);

      if(constant)
        {
          xprintf(
        "lpx_write_pb: adding constant objective function variable\n");

          if(normalized)
            fprintf(fp, "1 x%d = 1;\n", n+1);
          else
            fprintf(fp, "1*%s = 1;\n", objconstname);
        }
      if(emptylhs)
        {
          xprintf(
            "lpx_write_pb: adding dummy variable for empty left-hand si"
            "de constraint\n");

          if(normalized)
            fprintf(fp, "1 x%d = 0;\n", n+2);
          else
            fprintf(fp, "1*%s = 0;\n", emptylhsname);
        }

    }
  else
    {
      xprintf("Problems opening file for writing: %s\n", fname);
      return(1);
    }
  fflush(fp);
  if (ferror(fp))
    {  xprintf("lpx_write_pb: can't write to `%s' - %s\n", fname,
               strerror(errno));
    goto fail;
    }
  fclose(fp);


  if(binarize)
    {
      /* delete the resultant problem object */
      if (lp != NULL) lpx_delete_prob(lp);
      /* delete MIP presolver workspace */
      if (ipp != NULL) ipp_delete_wksp(ipp);
      /*lp=tlp;*/
    }
  return 0;
 fail: if (fp != NULL) fclose(fp);
  return 1;
}
コード例 #14
0
ファイル: lp.c プロジェクト: kleptog/pyglpk
static PyObject* LPX_Str(LPXObject *self) {
  // Returns a string representation of this object.
  return PyString_FromFormat
    ("<%s %d-by-%d at %p>", self->ob_type->tp_name,
     glp_get_num_rows(LP), glp_get_num_cols(LP), self);
}
コード例 #15
0
ファイル: glplpx01.c プロジェクト: BohanHsu/developer
int lpx_get_num_rows(LPX *lp)
{     /* retrieve number of rows */
      return glp_get_num_rows(lp);
}
コード例 #16
0
ファイル: Rglpk_read_file.c プロジェクト: TraME-Project/Rglpk
// read in all necessary elements for retrieving the LP/MILP
void Rglpk_read_file (char **file, int *type, 
		      int *lp_direction_of_optimization,
		      int *lp_n_constraints, int *lp_n_objective_vars,
		      int *lp_n_values_in_constraint_matrix,
		      int *lp_n_integer_vars, int *lp_n_binary_vars, 
		      char **lp_prob_name,
		      char **lp_obj_name,
		      int *lp_verbosity) {

  int status;
  extern glp_prob *lp;
  glp_tran *tran;
  const char *str; 
  
  // Turn on/off Terminal Output
  if (*lp_verbosity==1)
    glp_term_out(GLP_ON);
  else
    glp_term_out(GLP_OFF);

  // create problem object 
  if (lp)
    glp_delete_prob(lp);
  lp = glp_create_prob();

  // read file -> gets stored as an GLPK problem object 'lp'
  // which file type do we have?
  switch (*type){
  case 1: 
    // Fixed (ancient) MPS Format, param argument currently NULL
    status = glp_read_mps(lp, GLP_MPS_DECK, NULL, *file);
    break;
  case 2:
    // Free (modern) MPS format, param argument currently NULL
    status = glp_read_mps(lp, GLP_MPS_FILE, NULL, *file);
    break;
  case 3:
    // CPLEX LP Format
    status = glp_read_lp(lp, NULL, *file);
    break;
  case 4:
    // MATHPROG Format (based on lpx_read_model function)
    tran = glp_mpl_alloc_wksp();

    status = glp_mpl_read_model(tran, *file, 0);

    if (!status) {
        status = glp_mpl_generate(tran, NULL);
        if (!status) {
            glp_mpl_build_prob(tran, lp);
        }
    }
    glp_mpl_free_wksp(tran);
    break;    
  } 

  // if file read successfully glp_read_* returns zero
  if ( status != 0 ) {
    glp_delete_prob(lp);
    lp = NULL;
    error("Reading file %s failed", *file);
  }

  // retrieve problem name
  str = glp_get_prob_name(lp);
  if (str){
    *lp_prob_name = (char *) str;
  }

  // retrieve name of objective function
  str = glp_get_obj_name(lp);
  if (str){
    *lp_obj_name = (char *) str;
  }
  
  // retrieve optimization direction flag
  *lp_direction_of_optimization = glp_get_obj_dir(lp);  

  // retrieve number of constraints
  *lp_n_constraints = glp_get_num_rows(lp);  

  // retrieve number of objective variables
  *lp_n_objective_vars = glp_get_num_cols(lp);

  // retrieve number of non-zero elements in constraint matrix
  *lp_n_values_in_constraint_matrix = glp_get_num_nz(lp);

  // retrieve number of integer variables
  *lp_n_integer_vars = glp_get_num_int(lp);
  
  // retrieve number of binary variables
  *lp_n_binary_vars = glp_get_num_bin(lp);
}
コード例 #17
0
ファイル: Rglpk_read_file.c プロジェクト: TraME-Project/Rglpk
// retrieve all missing values of LP/MILP
void Rglpk_retrieve_MP_from_file (char **file, int *type,
				  int *lp_n_constraints,
				  int *lp_n_objective_vars,
				  double *lp_objective_coefficients,
				  int *lp_constraint_matrix_i,
				  int *lp_constraint_matrix_j,
				  double *lp_constraint_matrix_values,
				  int *lp_direction_of_constraints,
				  double *lp_right_hand_side,
				  double *lp_left_hand_side,
				  int *lp_objective_var_is_integer,
				  int *lp_objective_var_is_binary,
				  int *lp_bounds_type,
				  double *lp_bounds_lower,
				  double *lp_bounds_upper,
				  int *lp_ignore_first_row,
				  int *lp_verbosity,
				  char **lp_constraint_names,
				  char **lp_objective_vars_names
				  ) {
  extern glp_prob *lp;
  glp_tran *tran;
  const char *str; 
  
  int i, j, lp_column_kind, tmp;
  int ind_offset, status;

  // Turn on/off Terminal Output
  if (*lp_verbosity==1)
    glp_term_out(GLP_ON);
  else
    glp_term_out(GLP_OFF);

  // create problem object
  if (lp)
    glp_delete_prob(lp);
  lp = glp_create_prob();

  // read file -> gets stored as an GLPK problem object 'lp'
  // which file type do we have?
  switch (*type){
  case 1: 
    // Fixed (ancient) MPS Format, param argument currently NULL
    status = glp_read_mps(lp, GLP_MPS_DECK, NULL, *file);
    break;
  case 2:
    // Free (modern) MPS format, param argument currently NULL
    status = glp_read_mps(lp, GLP_MPS_FILE, NULL, *file);
    break;
  case 3:
    // CPLEX LP Format
    status = glp_read_lp(lp, NULL, *file);
    break;
  case 4:
    // MATHPROG Format (based on lpx_read_model function)
    tran = glp_mpl_alloc_wksp();

    status = glp_mpl_read_model(tran, *file, 0);

    if (!status) {
        status = glp_mpl_generate(tran, NULL);
        if (!status) {
            glp_mpl_build_prob(tran, lp);
        }
    }
    glp_mpl_free_wksp(tran);
    break;    
  } 

  // if file read successfully glp_read_* returns zero
  if ( status != 0 ) {
    glp_delete_prob(lp);
    lp = NULL;
    error("Reading file %c failed.", *file);
  }
  
  if(*lp_verbosity==1)
    Rprintf("Retrieve column specific data ...\n");

  if(glp_get_num_cols(lp) != *lp_n_objective_vars) {
    glp_delete_prob(lp);
    lp = NULL;
    error("The number of columns is not as specified");
  }

  // retrieve column specific data (values, bounds and type)
  for (i = 0; i < *lp_n_objective_vars; i++) {
    lp_objective_coefficients[i] = glp_get_obj_coef(lp, i+1);
    
    // Note that str must not be freed befor we have returned
    // from the .C call in R! 
    str = glp_get_col_name(lp, i+1);    
    if (str){
      lp_objective_vars_names[i] = (char *) str;
    }
    
    lp_bounds_type[i]            = glp_get_col_type(lp, i+1);
    lp_bounds_lower[i]           = glp_get_col_lb  (lp, i+1);
    lp_bounds_upper[i]           = glp_get_col_ub  (lp, i+1);
    lp_column_kind               = glp_get_col_kind(lp, i+1);
    // set to TRUE if objective variable is integer or binary  
    switch (lp_column_kind){
    case GLP_IV: 
      lp_objective_var_is_integer[i] = 1;
      break;
    case GLP_BV:
      lp_objective_var_is_binary[i] = 1;
      break;
    }
  }
  
  ind_offset = 0;

  if(*lp_verbosity==1)
    Rprintf("Retrieve row specific data ...\n");

  if(glp_get_num_rows(lp) != *lp_n_constraints) {
    glp_delete_prob(lp);
    lp = NULL;
    error("The number of rows is not as specified");
  }

  // retrieve row specific data (right hand side, direction of constraints)
  for (i = *lp_ignore_first_row; i < *lp_n_constraints; i++) {
    lp_direction_of_constraints[i] = glp_get_row_type(lp, i+1);
    
    str = glp_get_row_name(lp, i + 1);
    if (str) { 
      lp_constraint_names[i] = (char *) str;
    }
    
    // the right hand side. Note we don't allow for double bounded or
    // free auxiliary variables 
    if( lp_direction_of_constraints[i] == GLP_LO )
      lp_right_hand_side[i] = glp_get_row_lb(lp, i+1);
    if( lp_direction_of_constraints[i] == GLP_UP )
      lp_right_hand_side[i] = glp_get_row_ub(lp, i+1);
    if( lp_direction_of_constraints[i] == GLP_FX )
      lp_right_hand_side[i] = glp_get_row_lb(lp, i+1);
    if( lp_direction_of_constraints[i] == GLP_DB  ){
      lp_right_hand_side[i] = glp_get_row_ub(lp, i+1);
      lp_left_hand_side[i] =  glp_get_row_lb(lp, i+1);
    }

    tmp = glp_get_mat_row(lp, i+1, &lp_constraint_matrix_j[ind_offset-1],
			           &lp_constraint_matrix_values[ind_offset-1]);
    if (tmp > 0)
      for (j = 0; j < tmp; j++)
	lp_constraint_matrix_i[ind_offset+j] = i+1;
	ind_offset += tmp; 
  }
  
  if(*lp_verbosity==1)
    Rprintf("Done.\n");

}