double lpx_get_row_ub(glp_prob *lp, int i) { /* retrieve row upper bound */ double ub; ub = glp_get_row_ub(lp, i); if (ub == +DBL_MAX) ub = 0.0; return ub; }
double glpk_wrapper::get_row_value(int i) { double cstr_value = 0; if (solver_type == SIMPLEX || solver_type == EXACT) { int cstr_status = glp_get_row_stat(lp, i); if (cstr_status == GLP_BS) { // basic variable; cstr_status = glp_get_row_prim(lp, i); // or glp_get_row_dual } else if (cstr_status == GLP_NL || cstr_status == GLP_NS) { // non-basic variable on its lower bound, non-basic fixed variable. cstr_value = glp_get_row_lb(lp, i); } else if (cstr_status == GLP_NU) { // non-basic variable on its upper bound cstr_value = glp_get_row_ub(lp, i); } // TODO(dzufferey): should we do something for GLP_NF — non-basic free (unbounded) variable; } else { cstr_value = glp_ipt_row_prim(lp, i); // or glp_ipt_row_dual } return cstr_value; }
int glp_print_ranges(glp_prob *P, int len, const int list[], int flags, const char *fname) { /* print sensitivity analysis report */ glp_file *fp = NULL; GLPROW *row; GLPCOL *col; int m, n, pass, k, t, numb, type, stat, var1, var2, count, page, ret; double lb, ub, slack, coef, prim, dual, value1, value2, coef1, coef2, obj1, obj2; const char *name, *limit; char buf[13+1]; /* sanity checks */ if (P == NULL || P->magic != GLP_PROB_MAGIC) xerror("glp_print_ranges: P = %p; invalid problem object\n", P); m = P->m, n = P->n; if (len < 0) xerror("glp_print_ranges: len = %d; invalid list length\n", len); if (len > 0) { if (list == NULL) xerror("glp_print_ranges: list = %p: invalid parameter\n", list); for (t = 1; t <= len; t++) { k = list[t]; if (!(1 <= k && k <= m+n)) xerror("glp_print_ranges: list[%d] = %d; row/column numb" "er out of range\n", t, k); } } if (flags != 0) xerror("glp_print_ranges: flags = %d; invalid parameter\n", flags); if (fname == NULL) xerror("glp_print_ranges: fname = %p; invalid parameter\n", fname); if (glp_get_status(P) != GLP_OPT) { xprintf("glp_print_ranges: optimal basic solution required\n"); ret = 1; goto done; } if (!glp_bf_exists(P)) { xprintf("glp_print_ranges: basis factorization required\n"); ret = 2; goto done; } /* start reporting */ xprintf("Write sensitivity analysis report to '%s'...\n", fname); fp = glp_open(fname, "w"); if (fp == NULL) { xprintf("Unable to create '%s' - %s\n", fname, get_err_msg()); ret = 3; goto done; } page = count = 0; for (pass = 1; pass <= 2; pass++) for (t = 1; t <= (len == 0 ? m+n : len); t++) { if (t == 1) count = 0; k = (len == 0 ? t : list[t]); if (pass == 1 && k > m || pass == 2 && k <= m) continue; if (count == 0) { xfprintf(fp, "GLPK %-4s - SENSITIVITY ANALYSIS REPORT%73sPa" "ge%4d\n", glp_version(), "", ++page); xfprintf(fp, "\n"); xfprintf(fp, "%-12s%s\n", "Problem:", P->name == NULL ? "" : P->name); xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:", P->obj == NULL ? "" : P->obj, P->obj == NULL ? "" : " = ", P->obj_val, P->dir == GLP_MIN ? "MINimum" : P->dir == GLP_MAX ? "MAXimum" : "???"); xfprintf(fp, "\n"); xfprintf(fp, "%6s %-12s %2s %13s %13s %13s %13s %13s %13s " "%s\n", "No.", pass == 1 ? "Row name" : "Column name", "St", "Activity", pass == 1 ? "Slack" : "Obj coef", "Lower bound", "Activity", "Obj coef", "Obj value at", "Limiting"); xfprintf(fp, "%6s %-12s %2s %13s %13s %13s %13s %13s %13s " "%s\n", "", "", "", "", "Marginal", "Upper bound", "range", "range", "break point", "variable"); xfprintf(fp, "------ ------------ -- ------------- --------" "----- ------------- ------------- ------------- ------" "------- ------------\n"); } if (pass == 1) { numb = k; xassert(1 <= numb && numb <= m); row = P->row[numb]; name = row->name; type = row->type; lb = glp_get_row_lb(P, numb); ub = glp_get_row_ub(P, numb); coef = 0.0; stat = row->stat; prim = row->prim; if (type == GLP_FR) slack = - prim; else if (type == GLP_LO) slack = lb - prim; else if (type == GLP_UP || type == GLP_DB || type == GLP_FX) slack = ub - prim; dual = row->dual; } else { numb = k - m; xassert(1 <= numb && numb <= n); col = P->col[numb]; name = col->name; lb = glp_get_col_lb(P, numb); ub = glp_get_col_ub(P, numb); coef = col->coef; stat = col->stat; prim = col->prim; slack = 0.0; dual = col->dual; } if (stat != GLP_BS) { glp_analyze_bound(P, k, &value1, &var1, &value2, &var2); if (stat == GLP_NF) coef1 = coef2 = coef; else if (stat == GLP_NS) coef1 = -DBL_MAX, coef2 = +DBL_MAX; else if (stat == GLP_NL && P->dir == GLP_MIN || stat == GLP_NU && P->dir == GLP_MAX) coef1 = coef - dual, coef2 = +DBL_MAX; else coef1 = -DBL_MAX, coef2 = coef - dual; if (value1 == -DBL_MAX) { if (dual < -1e-9) obj1 = +DBL_MAX; else if (dual > +1e-9) obj1 = -DBL_MAX; else obj1 = P->obj_val; } else obj1 = P->obj_val + dual * (value1 - prim); if (value2 == +DBL_MAX) { if (dual < -1e-9) obj2 = -DBL_MAX; else if (dual > +1e-9) obj2 = +DBL_MAX; else obj2 = P->obj_val; } else obj2 = P->obj_val + dual * (value2 - prim); } else { glp_analyze_coef(P, k, &coef1, &var1, &value1, &coef2, &var2, &value2); if (coef1 == -DBL_MAX) { if (prim < -1e-9) obj1 = +DBL_MAX; else if (prim > +1e-9) obj1 = -DBL_MAX; else obj1 = P->obj_val; } else obj1 = P->obj_val + (coef1 - coef) * prim; if (coef2 == +DBL_MAX) { if (prim < -1e-9) obj2 = -DBL_MAX; else if (prim > +1e-9) obj2 = +DBL_MAX; else obj2 = P->obj_val; } else obj2 = P->obj_val + (coef2 - coef) * prim; } /*** first line ***/ /* row/column number */ xfprintf(fp, "%6d", numb); /* row/column name */ xfprintf(fp, " %-12.12s", name == NULL ? "" : name); if (name != NULL && strlen(name) > 12) xfprintf(fp, "%s\n%6s %12s", name+12, "", ""); /* row/column status */ xfprintf(fp, " %2s", stat == GLP_BS ? "BS" : stat == GLP_NL ? "NL" : stat == GLP_NU ? "NU" : stat == GLP_NF ? "NF" : stat == GLP_NS ? "NS" : "??"); /* row/column activity */ xfprintf(fp, " %s", format(buf, prim)); /* row slack, column objective coefficient */ xfprintf(fp, " %s", format(buf, k <= m ? slack : coef)); /* row/column lower bound */ xfprintf(fp, " %s", format(buf, lb)); /* row/column activity range */ xfprintf(fp, " %s", format(buf, value1)); /* row/column objective coefficient range */ xfprintf(fp, " %s", format(buf, coef1)); /* objective value at break point */ xfprintf(fp, " %s", format(buf, obj1)); /* limiting variable name */ if (var1 != 0) { if (var1 <= m) limit = glp_get_row_name(P, var1); else limit = glp_get_col_name(P, var1 - m); if (limit != NULL) xfprintf(fp, " %s", limit); } xfprintf(fp, "\n"); /*** second line ***/ xfprintf(fp, "%6s %-12s %2s %13s", "", "", "", ""); /* row/column reduced cost */ xfprintf(fp, " %s", format(buf, dual)); /* row/column upper bound */ xfprintf(fp, " %s", format(buf, ub)); /* row/column activity range */ xfprintf(fp, " %s", format(buf, value2)); /* row/column objective coefficient range */ xfprintf(fp, " %s", format(buf, coef2)); /* objective value at break point */ xfprintf(fp, " %s", format(buf, obj2)); /* limiting variable name */ if (var2 != 0) { if (var2 <= m) limit = glp_get_row_name(P, var2); else limit = glp_get_col_name(P, var2 - m); if (limit != NULL) xfprintf(fp, " %s", limit); } xfprintf(fp, "\n"); xfprintf(fp, "\n"); /* print 10 items per page */ count = (count + 1) % 10; } xfprintf(fp, "End of report\n"); #if 0 /* FIXME */ xfflush(fp); #endif if (glp_ioerr(fp)) { xprintf("Write error on '%s' - %s\n", fname, get_err_msg()); ret = 4; goto done; } ret = 0; done: if (fp != NULL) glp_close(fp); return ret; }
static void solve(char* file_name) { ppl_Constraint_System_t ppl_cs; #ifndef NDEBUG ppl_Constraint_System_t ppl_cs_copy; #endif ppl_Generator_t optimum_location; ppl_Linear_Expression_t ppl_le; int dimension, row, num_rows, column, nz, i, j, type; int* coefficient_index; double lb, ub; double* coefficient_value; mpq_t rational_lb, rational_ub; mpq_t* rational_coefficient; mpq_t* objective; ppl_Linear_Expression_t ppl_objective_le; ppl_Coefficient_t optimum_n; ppl_Coefficient_t optimum_d; mpq_t optimum; mpz_t den_lcm; int optimum_found; glp_mpscp glpk_mpscp; glpk_lp = glp_create_prob(); glp_init_mpscp(&glpk_mpscp); if (verbosity == 0) { /* FIXME: find a way to suppress output from glp_read_mps. */ } #ifdef PPL_LPSOL_SUPPORTS_TIMINGS if (print_timings) start_clock(); #endif /* defined(PPL_LPSOL_SUPPORTS_TIMINGS) */ if (glp_read_mps(glpk_lp, GLP_MPS_FILE, &glpk_mpscp, file_name) != 0) fatal("cannot read MPS file `%s'", file_name); #ifdef PPL_LPSOL_SUPPORTS_TIMINGS if (print_timings) { fprintf(stderr, "Time to read the input file: "); print_clock(stderr); fprintf(stderr, " s\n"); start_clock(); } #endif /* defined(PPL_LPSOL_SUPPORTS_TIMINGS) */ glpk_lp_num_int = glp_get_num_int(glpk_lp); if (glpk_lp_num_int > 0 && !no_mip && !use_simplex) fatal("the enumeration solving method can not handle MIP problems"); dimension = glp_get_num_cols(glpk_lp); /* Read variables constrained to be integer. */ if (glpk_lp_num_int > 0 && !no_mip && use_simplex) { if (verbosity >= 4) fprintf(output_file, "Integer variables:\n"); integer_variables = (ppl_dimension_type*) malloc((glpk_lp_num_int + 1)*sizeof(ppl_dimension_type)); for (i = 0, j = 0; i < dimension; ++i) { int col_kind = glp_get_col_kind(glpk_lp, i+1); if (col_kind == GLP_IV || col_kind == GLP_BV) { integer_variables[j] = i; if (verbosity >= 4) { ppl_io_fprint_variable(output_file, i); fprintf(output_file, " "); } ++j; } } } coefficient_index = (int*) malloc((dimension+1)*sizeof(int)); coefficient_value = (double*) malloc((dimension+1)*sizeof(double)); rational_coefficient = (mpq_t*) malloc((dimension+1)*sizeof(mpq_t)); ppl_new_Constraint_System(&ppl_cs); mpq_init(rational_lb); mpq_init(rational_ub); for (i = 1; i <= dimension; ++i) mpq_init(rational_coefficient[i]); mpz_init(den_lcm); if (verbosity >= 4) fprintf(output_file, "\nConstraints:\n"); /* Set up the row (ordinary) constraints. */ num_rows = glp_get_num_rows(glpk_lp); for (row = 1; row <= num_rows; ++row) { /* Initialize the least common multiple computation. */ mpz_set_si(den_lcm, 1); /* Set `nz' to the number of non-zero coefficients. */ nz = glp_get_mat_row(glpk_lp, row, coefficient_index, coefficient_value); for (i = 1; i <= nz; ++i) { set_mpq_t_from_double(rational_coefficient[i], coefficient_value[i]); /* Update den_lcm. */ mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_coefficient[i])); } lb = glp_get_row_lb(glpk_lp, row); ub = glp_get_row_ub(glpk_lp, row); set_mpq_t_from_double(rational_lb, lb); set_mpq_t_from_double(rational_ub, ub); mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_lb)); mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_ub)); ppl_new_Linear_Expression_with_dimension(&ppl_le, dimension); for (i = 1; i <= nz; ++i) { mpz_mul(tmp_z, den_lcm, mpq_numref(rational_coefficient[i])); mpz_divexact(tmp_z, tmp_z, mpq_denref(rational_coefficient[i])); ppl_assign_Coefficient_from_mpz_t(ppl_coeff, tmp_z); ppl_Linear_Expression_add_to_coefficient(ppl_le, coefficient_index[i]-1, ppl_coeff); } type = glp_get_row_type(glpk_lp, row); add_constraints(ppl_le, type, rational_lb, rational_ub, den_lcm, ppl_cs); ppl_delete_Linear_Expression(ppl_le); } free(coefficient_value); for (i = 1; i <= dimension; ++i) mpq_clear(rational_coefficient[i]); free(rational_coefficient); free(coefficient_index); #ifndef NDEBUG ppl_new_Constraint_System_from_Constraint_System(&ppl_cs_copy, ppl_cs); #endif /* FIXME: here we could build the polyhedron and minimize it before adding the variable bounds. */ /* Set up the columns constraints, i.e., variable bounds. */ for (column = 1; column <= dimension; ++column) { lb = glp_get_col_lb(glpk_lp, column); ub = glp_get_col_ub(glpk_lp, column); set_mpq_t_from_double(rational_lb, lb); set_mpq_t_from_double(rational_ub, ub); /* Initialize the least common multiple computation. */ mpz_set_si(den_lcm, 1); mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_lb)); mpz_lcm(den_lcm, den_lcm, mpq_denref(rational_ub)); ppl_new_Linear_Expression_with_dimension(&ppl_le, dimension); ppl_assign_Coefficient_from_mpz_t(ppl_coeff, den_lcm); ppl_Linear_Expression_add_to_coefficient(ppl_le, column-1, ppl_coeff); type = glp_get_col_type(glpk_lp, column); add_constraints(ppl_le, type, rational_lb, rational_ub, den_lcm, ppl_cs); ppl_delete_Linear_Expression(ppl_le); } mpq_clear(rational_ub); mpq_clear(rational_lb); /* Deal with the objective function. */ objective = (mpq_t*) malloc((dimension+1)*sizeof(mpq_t)); /* Initialize the least common multiple computation. */ mpz_set_si(den_lcm, 1); mpq_init(objective[0]); set_mpq_t_from_double(objective[0], glp_get_obj_coef(glpk_lp, 0)); for (i = 1; i <= dimension; ++i) { mpq_init(objective[i]); set_mpq_t_from_double(objective[i], glp_get_obj_coef(glpk_lp, i)); /* Update den_lcm. */ mpz_lcm(den_lcm, den_lcm, mpq_denref(objective[i])); } /* Set the ppl_objective_le to be the objective function. */ ppl_new_Linear_Expression_with_dimension(&ppl_objective_le, dimension); /* Set value for objective function's inhomogeneous term. */ mpz_mul(tmp_z, den_lcm, mpq_numref(objective[0])); mpz_divexact(tmp_z, tmp_z, mpq_denref(objective[0])); ppl_assign_Coefficient_from_mpz_t(ppl_coeff, tmp_z); ppl_Linear_Expression_add_to_inhomogeneous(ppl_objective_le, ppl_coeff); /* Set values for objective function's variable coefficients. */ for (i = 1; i <= dimension; ++i) { mpz_mul(tmp_z, den_lcm, mpq_numref(objective[i])); mpz_divexact(tmp_z, tmp_z, mpq_denref(objective[i])); ppl_assign_Coefficient_from_mpz_t(ppl_coeff, tmp_z); ppl_Linear_Expression_add_to_coefficient(ppl_objective_le, i-1, ppl_coeff); } if (verbosity >= 4) { fprintf(output_file, "Objective function:\n"); if (mpz_cmp_si(den_lcm, 1) != 0) fprintf(output_file, "("); ppl_io_fprint_Linear_Expression(output_file, ppl_objective_le); } for (i = 0; i <= dimension; ++i) mpq_clear(objective[i]); free(objective); if (verbosity >= 4) { if (mpz_cmp_si(den_lcm, 1) != 0) { fprintf(output_file, ")/"); mpz_out_str(output_file, 10, den_lcm); } fprintf(output_file, "\n%s\n", (maximize ? "Maximizing." : "Minimizing.")); } ppl_new_Coefficient(&optimum_n); ppl_new_Coefficient(&optimum_d); ppl_new_Generator_zero_dim_point(&optimum_location); optimum_found = use_simplex ? solve_with_simplex(ppl_cs, ppl_objective_le, optimum_n, optimum_d, optimum_location) : solve_with_generators(ppl_cs, ppl_objective_le, optimum_n, optimum_d, optimum_location); ppl_delete_Linear_Expression(ppl_objective_le); if (glpk_lp_num_int > 0) free(integer_variables); if (optimum_found) { mpq_init(optimum); ppl_Coefficient_to_mpz_t(optimum_n, tmp_z); mpq_set_num(optimum, tmp_z); ppl_Coefficient_to_mpz_t(optimum_d, tmp_z); mpz_mul(tmp_z, tmp_z, den_lcm); mpq_set_den(optimum, tmp_z); if (verbosity == 1) fprintf(output_file, "Optimized problem.\n"); if (verbosity >= 2) fprintf(output_file, "Optimum value: %.10g\n", mpq_get_d(optimum)); if (verbosity >= 3) { fprintf(output_file, "Optimum location:\n"); ppl_Generator_divisor(optimum_location, ppl_coeff); ppl_Coefficient_to_mpz_t(ppl_coeff, tmp_z); for (i = 0; i < dimension; ++i) { mpz_set(mpq_denref(tmp1_q), tmp_z); ppl_Generator_coefficient(optimum_location, i, ppl_coeff); ppl_Coefficient_to_mpz_t(ppl_coeff, mpq_numref(tmp1_q)); ppl_io_fprint_variable(output_file, i); fprintf(output_file, " = %.10g\n", mpq_get_d(tmp1_q)); } } #ifndef NDEBUG { ppl_Polyhedron_t ph; unsigned int relation; ppl_new_C_Polyhedron_recycle_Constraint_System(&ph, ppl_cs_copy); ppl_delete_Constraint_System(ppl_cs_copy); relation = ppl_Polyhedron_relation_with_Generator(ph, optimum_location); ppl_delete_Polyhedron(ph); assert(relation == PPL_POLY_GEN_RELATION_SUBSUMES); } #endif maybe_check_results(PPL_MIP_PROBLEM_STATUS_OPTIMIZED, mpq_get_d(optimum)); mpq_clear(optimum); } ppl_delete_Constraint_System(ppl_cs); ppl_delete_Coefficient(optimum_d); ppl_delete_Coefficient(optimum_n); ppl_delete_Generator(optimum_location); glp_delete_prob(glpk_lp); }
int ios_preprocess_node(glp_tree *tree, int max_pass) { glp_prob *mip = tree->mip; int m = mip->m; int n = mip->n; int i, j, nrs, *num, ret = 0; double *L, *U, *l, *u; /* the current subproblem must exist */ xassert(tree->curr != NULL); /* determine original row bounds */ L = xcalloc(1+m, sizeof(double)); U = xcalloc(1+m, sizeof(double)); switch (mip->mip_stat) { case GLP_UNDEF: L[0] = -DBL_MAX, U[0] = +DBL_MAX; break; case GLP_FEAS: switch (mip->dir) { case GLP_MIN: L[0] = -DBL_MAX, U[0] = mip->mip_obj - mip->c0; break; case GLP_MAX: L[0] = mip->mip_obj - mip->c0, U[0] = +DBL_MAX; break; default: xassert(mip != mip); } break; default: xassert(mip != mip); } for (i = 1; i <= m; i++) { L[i] = glp_get_row_lb(mip, i); U[i] = glp_get_row_ub(mip, i); } /* determine original column bounds */ l = xcalloc(1+n, sizeof(double)); u = xcalloc(1+n, sizeof(double)); for (j = 1; j <= n; j++) { l[j] = glp_get_col_lb(mip, j); u[j] = glp_get_col_ub(mip, j); } /* build the initial list of rows to be analyzed */ nrs = m + 1; num = xcalloc(1+nrs, sizeof(int)); for (i = 1; i <= nrs; i++) num[i] = i - 1; /* perform basic preprocessing */ if (basic_preprocessing(mip , L, U, l, u, nrs, num, max_pass)) { ret = 1; goto done; } /* set new actual (relaxed) row bounds */ for (i = 1; i <= m; i++) { /* consider only non-active rows to keep dual feasibility */ if (glp_get_row_stat(mip, i) == GLP_BS) { if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) glp_set_row_bnds(mip, i, GLP_FR, 0.0, 0.0); else if (U[i] == +DBL_MAX) glp_set_row_bnds(mip, i, GLP_LO, L[i], 0.0); else if (L[i] == -DBL_MAX) glp_set_row_bnds(mip, i, GLP_UP, 0.0, U[i]); } } /* set new actual (tightened) column bounds */ for (j = 1; j <= n; j++) { int type; if (l[j] == -DBL_MAX && u[j] == +DBL_MAX) type = GLP_FR; else if (u[j] == +DBL_MAX) type = GLP_LO; else if (l[j] == -DBL_MAX) type = GLP_UP; else if (l[j] != u[j]) type = GLP_DB; else type = GLP_FX; glp_set_col_bnds(mip, j, type, l[j], u[j]); } done: /* free working arrays and return */ xfree(L); xfree(U); xfree(l); xfree(u); xfree(num); return ret; }
double c_glp_get_row_ub (glp_prob *lp, int i){ return glp_get_row_ub (lp, i); }
// retrieve all missing values of LP/MILP void Rglpk_retrieve_MP_from_file (char **file, int *type, int *lp_n_constraints, int *lp_n_objective_vars, double *lp_objective_coefficients, int *lp_constraint_matrix_i, int *lp_constraint_matrix_j, double *lp_constraint_matrix_values, int *lp_direction_of_constraints, double *lp_right_hand_side, double *lp_left_hand_side, int *lp_objective_var_is_integer, int *lp_objective_var_is_binary, int *lp_bounds_type, double *lp_bounds_lower, double *lp_bounds_upper, int *lp_ignore_first_row, int *lp_verbosity, char **lp_constraint_names, char **lp_objective_vars_names ) { extern glp_prob *lp; glp_tran *tran; const char *str; int i, j, lp_column_kind, tmp; int ind_offset, status; // Turn on/off Terminal Output if (*lp_verbosity==1) glp_term_out(GLP_ON); else glp_term_out(GLP_OFF); // create problem object if (lp) glp_delete_prob(lp); lp = glp_create_prob(); // read file -> gets stored as an GLPK problem object 'lp' // which file type do we have? switch (*type){ case 1: // Fixed (ancient) MPS Format, param argument currently NULL status = glp_read_mps(lp, GLP_MPS_DECK, NULL, *file); break; case 2: // Free (modern) MPS format, param argument currently NULL status = glp_read_mps(lp, GLP_MPS_FILE, NULL, *file); break; case 3: // CPLEX LP Format status = glp_read_lp(lp, NULL, *file); break; case 4: // MATHPROG Format (based on lpx_read_model function) tran = glp_mpl_alloc_wksp(); status = glp_mpl_read_model(tran, *file, 0); if (!status) { status = glp_mpl_generate(tran, NULL); if (!status) { glp_mpl_build_prob(tran, lp); } } glp_mpl_free_wksp(tran); break; } // if file read successfully glp_read_* returns zero if ( status != 0 ) { glp_delete_prob(lp); lp = NULL; error("Reading file %c failed.", *file); } if(*lp_verbosity==1) Rprintf("Retrieve column specific data ...\n"); if(glp_get_num_cols(lp) != *lp_n_objective_vars) { glp_delete_prob(lp); lp = NULL; error("The number of columns is not as specified"); } // retrieve column specific data (values, bounds and type) for (i = 0; i < *lp_n_objective_vars; i++) { lp_objective_coefficients[i] = glp_get_obj_coef(lp, i+1); // Note that str must not be freed befor we have returned // from the .C call in R! str = glp_get_col_name(lp, i+1); if (str){ lp_objective_vars_names[i] = (char *) str; } lp_bounds_type[i] = glp_get_col_type(lp, i+1); lp_bounds_lower[i] = glp_get_col_lb (lp, i+1); lp_bounds_upper[i] = glp_get_col_ub (lp, i+1); lp_column_kind = glp_get_col_kind(lp, i+1); // set to TRUE if objective variable is integer or binary switch (lp_column_kind){ case GLP_IV: lp_objective_var_is_integer[i] = 1; break; case GLP_BV: lp_objective_var_is_binary[i] = 1; break; } } ind_offset = 0; if(*lp_verbosity==1) Rprintf("Retrieve row specific data ...\n"); if(glp_get_num_rows(lp) != *lp_n_constraints) { glp_delete_prob(lp); lp = NULL; error("The number of rows is not as specified"); } // retrieve row specific data (right hand side, direction of constraints) for (i = *lp_ignore_first_row; i < *lp_n_constraints; i++) { lp_direction_of_constraints[i] = glp_get_row_type(lp, i+1); str = glp_get_row_name(lp, i + 1); if (str) { lp_constraint_names[i] = (char *) str; } // the right hand side. Note we don't allow for double bounded or // free auxiliary variables if( lp_direction_of_constraints[i] == GLP_LO ) lp_right_hand_side[i] = glp_get_row_lb(lp, i+1); if( lp_direction_of_constraints[i] == GLP_UP ) lp_right_hand_side[i] = glp_get_row_ub(lp, i+1); if( lp_direction_of_constraints[i] == GLP_FX ) lp_right_hand_side[i] = glp_get_row_lb(lp, i+1); if( lp_direction_of_constraints[i] == GLP_DB ){ lp_right_hand_side[i] = glp_get_row_ub(lp, i+1); lp_left_hand_side[i] = glp_get_row_lb(lp, i+1); } tmp = glp_get_mat_row(lp, i+1, &lp_constraint_matrix_j[ind_offset-1], &lp_constraint_matrix_values[ind_offset-1]); if (tmp > 0) for (j = 0; j < tmp; j++) lp_constraint_matrix_i[ind_offset+j] = i+1; ind_offset += tmp; } if(*lp_verbosity==1) Rprintf("Done.\n"); }
int lpx_write_pb(LPX *lp, const char *fname, int normalized, int binarize) { FILE* fp; int m,n,i,j,k,o,nonfree=0, obj_dir, dbl, *ndx, row_type, emptylhs=0; double coeff, *val, bound, constant/*=0.0*/; char* objconstname = "dummy_one"; char* emptylhsname = "dummy_zero"; /* Variables needed for possible binarization */ /*LPX* tlp;*/ IPP *ipp = NULL; /*tlp=lp;*/ if(binarize) /* Transform integer variables to binary ones */ { ipp = ipp_create_wksp(); ipp_load_orig(ipp, lp); ipp_binarize(ipp); lp = ipp_build_prob(ipp); } fp = fopen(fname, "w"); if(fp!= NULL) { xprintf( "lpx_write_pb: writing problem in %sOPB format to `%s'...\n", (normalized?"normalized ":""), fname); m = glp_get_num_rows(lp); n = glp_get_num_cols(lp); for(i=1;i<=m;i++) { switch(glp_get_row_type(lp,i)) { case GLP_LO: case GLP_UP: case GLP_FX: { nonfree += 1; break; } case GLP_DB: { nonfree += 2; break; } } } constant=glp_get_obj_coef(lp,0); fprintf(fp,"* #variables = %d #constraints = %d\n", n + (constant == 0?1:0), nonfree + (constant == 0?1:0)); /* Objective function */ obj_dir = glp_get_obj_dir(lp); fprintf(fp,"min: "); for(i=1;i<=n;i++) { coeff = glp_get_obj_coef(lp,i); if(coeff != 0.0) { if(obj_dir == GLP_MAX) coeff=-coeff; if(normalized) fprintf(fp, " %d x%d", (int)coeff, i); else fprintf(fp, " %d*%s", (int)coeff, glp_get_col_name(lp,i)); } } if(constant) { if(normalized) fprintf(fp, " %d x%d", (int)constant, n+1); else fprintf(fp, " %d*%s", (int)constant, objconstname); } fprintf(fp,";\n"); if(normalized && !binarize) /* Name substitution */ { fprintf(fp,"* Variable name substitution:\n"); for(j=1;j<=n;j++) { fprintf(fp, "* x%d = %s\n", j, glp_get_col_name(lp,j)); } if(constant) fprintf(fp, "* x%d = %s\n", n+1, objconstname); } ndx = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(double)); /* Constraints */ for(j=1;j<=m;j++) { row_type=glp_get_row_type(lp,j); if(row_type!=GLP_FR) { if(row_type == GLP_DB) { dbl=2; row_type = GLP_UP; } else { dbl=1; } k=glp_get_mat_row(lp, j, ndx, val); for(o=1;o<=dbl;o++) { if(o==2) { row_type = GLP_LO; } if(k==0) /* Empty LHS */ { emptylhs = 1; if(normalized) { fprintf(fp, "0 x%d ", n+2); } else { fprintf(fp, "0*%s ", emptylhsname); } } for(i=1;i<=k;i++) { if(val[i] != 0.0) { if(normalized) { fprintf(fp, "%d x%d ", (row_type==GLP_UP)?(-(int)val[i]):((int)val[i]), ndx[i]); } else { fprintf(fp, "%d*%s ", (int)val[i], glp_get_col_name(lp,ndx[i])); } } } switch(row_type) { case GLP_LO: { fprintf(fp, ">="); bound = glp_get_row_lb(lp,j); break; } case GLP_UP: { if(normalized) { fprintf(fp, ">="); bound = -glp_get_row_ub(lp,j); } else { fprintf(fp, "<="); bound = glp_get_row_ub(lp,j); } break; } case GLP_FX: { fprintf(fp, "="); bound = glp_get_row_lb(lp,j); break; } } fprintf(fp," %d;\n",(int)bound); } } } xfree(ndx); xfree(val); if(constant) { xprintf( "lpx_write_pb: adding constant objective function variable\n"); if(normalized) fprintf(fp, "1 x%d = 1;\n", n+1); else fprintf(fp, "1*%s = 1;\n", objconstname); } if(emptylhs) { xprintf( "lpx_write_pb: adding dummy variable for empty left-hand si" "de constraint\n"); if(normalized) fprintf(fp, "1 x%d = 0;\n", n+2); else fprintf(fp, "1*%s = 0;\n", emptylhsname); } } else { xprintf("Problems opening file for writing: %s\n", fname); return(1); } fflush(fp); if (ferror(fp)) { xprintf("lpx_write_pb: can't write to `%s' - %s\n", fname, strerror(errno)); goto fail; } fclose(fp); if(binarize) { /* delete the resultant problem object */ if (lp != NULL) lpx_delete_prob(lp); /* delete MIP presolver workspace */ if (ipp != NULL) ipp_delete_wksp(ipp); /*lp=tlp;*/ } return 0; fail: if (fp != NULL) fclose(fp); return 1; }