/* || L ||_p^p in dimension n (L may be a scalar) */ static GEN normlp(GEN L, long p, long n) { long i,l, t = typ(L); GEN z; if (!is_vec_t(t)) return gmulsg(n, gpowgs(L, p)); l = lg(L); z = gen_0; /* assert(n == l-1); */ for (i=1; i<l; i++) z = gadd(z, gpowgs(gel(L,i), p)); return z; }
GEN bnflogdegree(GEN nf, GEN A, GEN ell) { pari_sp av = avma; GEN AZ, A0Z, NA0; long vAZ; if (typ(ell) != t_INT) pari_err_TYPE("bnflogdegree", ell); nf = checknf(nf); A = idealhnf(nf, A); AZ = gcoeff(A,1,1); vAZ = Z_pvalrem(AZ, ell, &A0Z); if (is_pm1(A0Z)) NA0 = gen_1; else (void)Z_pvalrem(idealnorm(nf,A), ell, &NA0); if (vAZ) { GEN Aell = ZM_hnfmodid(A, powiu(ell,vAZ)); GEN S = idealprimedec(nf, ell), T; long l, i, s = 0; T = padicfact(nf, S, 100); l = lg(S); for (i = 1; i < l; i++) { GEN P = gel(S,i); long v = idealval(nf, Aell, P); if (v) s += v * ftilde(nf, P, gel(T,i)); } if (s) NA0 = gmul(NA0, gpowgs(ell1(ell), s)); } return gerepileupto(av, NA0); }
/* return the characteristic polynomial of alpha over nf, where alpha is an element of the algebra nf[X]/(T) given as a polynomial in X */ GEN rnfcharpoly(GEN nf, GEN T, GEN alpha, long v) { long vnf, vT, lT; pari_sp av = avma; GEN p1; nf=checknf(nf); vnf = varn(nf[1]); if (v<0) v = 0; T = fix_relative_pol(nf,T,1); if (typ(alpha) == t_POLMOD) alpha = lift_to_pol(alpha); lT = lg(T); if (typ(alpha) != t_POL || varn(alpha) == vnf) return gerepileupto(av, gpowgs(gsub(pol_x[v], alpha), lT - 3)); vT = varn(T); if (varn(alpha) != vT || varncmp(v, vnf)>=0) pari_err(talker,"incorrect variables in rnfcharpoly"); if (lg(alpha) >= lT) alpha = RgX_rem(alpha, T); if (lT <= 4) return gerepileupto(av, gsub(pol_x[v], alpha)); p1 = caract2(T, unifpol(nf,alpha, t_POLMOD), v); return gerepileupto(av, unifpol(nf, p1, t_POLMOD)); }
/* Naive recombination of modular factors: combine up to maxK modular * factors, degree <= klim and divisible by hint * * target = polynomial we want to factor * famod = array of modular factors. Product should be congruent to * target/lc(target) modulo p^a * For true factors: S1,S2 <= p^b, with b <= a and p^(b-a) < 2^31 */ static GEN nfcmbf(nfcmbf_t *T, GEN p, long a, long maxK, long klim) { GEN pol = T->pol, nf = T->nf, famod = T->fact, dn = T->dn; GEN bound = T->bound; GEN nfpol = gel(nf,1); long K = 1, cnt = 1, i,j,k, curdeg, lfamod = lg(famod)-1, dnf = degpol(nfpol); GEN res = cgetg(3, t_VEC); pari_sp av0 = avma; GEN pk = gpowgs(p,a), pks2 = shifti(pk,-1); GEN ind = cgetg(lfamod+1, t_VECSMALL); GEN degpol = cgetg(lfamod+1, t_VECSMALL); GEN degsofar = cgetg(lfamod+1, t_VECSMALL); GEN listmod = cgetg(lfamod+1, t_COL); GEN fa = cgetg(lfamod+1, t_COL); GEN lc = absi(leading_term(pol)), lt = is_pm1(lc)? NULL: lc; GEN C2ltpol, C = T->L->topowden, Tpk = T->L->Tpk; GEN Clt = mul_content(C, lt); GEN C2lt = mul_content(C,Clt); const double Bhigh = get_Bhigh(lfamod, dnf); trace_data _T1, _T2, *T1, *T2; pari_timer ti; TIMERstart(&ti); if (maxK < 0) maxK = lfamod-1; C2ltpol = C2lt? gmul(C2lt,pol): pol; { GEN q = ceil_safe(sqrtr(T->BS_2)); GEN t1,t2, ltdn, lt2dn; GEN trace1 = cgetg(lfamod+1, t_MAT); GEN trace2 = cgetg(lfamod+1, t_MAT); ltdn = mul_content(lt, dn); lt2dn= mul_content(ltdn, lt); for (i=1; i <= lfamod; i++) { pari_sp av = avma; GEN P = gel(famod,i); long d = degpol(P); degpol[i] = d; P += 2; t1 = gel(P,d-1);/* = - S_1 */ t2 = gsqr(t1); if (d > 1) t2 = gsub(t2, gmul2n(gel(P,d-2), 1)); /* t2 = S_2 Newton sum */ t2 = typ(t2)!=t_INT? FpX_rem(t2, Tpk, pk): modii(t2, pk); if (lt) { if (typ(t2)!=t_INT) { t1 = FpX_red(gmul(ltdn, t1), pk); t2 = FpX_red(gmul(lt2dn,t2), pk); } else { t1 = remii(mulii(ltdn, t1), pk); t2 = remii(mulii(lt2dn,t2), pk); } } gel(trace1,i) = gclone( nf_bestlift(t1, NULL, T->L) ); gel(trace2,i) = gclone( nf_bestlift(t2, NULL, T->L) ); avma = av; } T1 = init_trace(&_T1, trace1, T->L, q); T2 = init_trace(&_T2, trace2, T->L, q); for (i=1; i <= lfamod; i++) { gunclone(gel(trace1,i)); gunclone(gel(trace2,i)); } } degsofar[0] = 0; /* sentinel */ /* ind runs through strictly increasing sequences of length K, * 1 <= ind[i] <= lfamod */ nextK: if (K > maxK || 2*K > lfamod) goto END; if (DEBUGLEVEL > 3) fprintferr("\n### K = %d, %Z combinations\n", K,binomial(utoipos(lfamod), K)); setlg(ind, K+1); ind[1] = 1; i = 1; curdeg = degpol[ind[1]]; for(;;) { /* try all combinations of K factors */ for (j = i; j < K; j++) { degsofar[j] = curdeg; ind[j+1] = ind[j]+1; curdeg += degpol[ind[j+1]]; } if (curdeg <= klim && curdeg % T->hint == 0) /* trial divide */ { GEN t, y, q, list; pari_sp av; av = avma; /* d - 1 test */ if (T1) { t = get_trace(ind, T1); if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh) { if (DEBUGLEVEL>6) fprintferr("."); avma = av; goto NEXT; } } /* d - 2 test */ if (T2) { t = get_trace(ind, T2); if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh) { if (DEBUGLEVEL>3) fprintferr("|"); avma = av; goto NEXT; } } avma = av; y = lt; /* full computation */ for (i=1; i<=K; i++) { GEN q = gel(famod, ind[i]); if (y) q = gmul(y, q); y = FqX_centermod(q, Tpk, pk, pks2); } y = nf_pol_lift(y, bound, T); if (!y) { if (DEBUGLEVEL>3) fprintferr("@"); avma = av; goto NEXT; } /* try out the new combination: y is the candidate factor */ q = RgXQX_divrem(C2ltpol, y, nfpol, ONLY_DIVIDES); if (!q) { if (DEBUGLEVEL>3) fprintferr("*"); avma = av; goto NEXT; } /* found a factor */ list = cgetg(K+1, t_VEC); gel(listmod,cnt) = list; for (i=1; i<=K; i++) list[i] = famod[ind[i]]; y = Q_primpart(y); gel(fa,cnt++) = QXQX_normalize(y, nfpol); /* fix up pol */ pol = q; for (i=j=k=1; i <= lfamod; i++) { /* remove used factors */ if (j <= K && i == ind[j]) j++; else { famod[k] = famod[i]; update_trace(T1, k, i); update_trace(T2, k, i); degpol[k] = degpol[i]; k++; } } lfamod -= K; if (lfamod < 2*K) goto END; i = 1; curdeg = degpol[ind[1]]; if (C2lt) pol = Q_primpart(pol); if (lt) lt = absi(leading_term(pol)); Clt = mul_content(C, lt); C2lt = mul_content(C,Clt); C2ltpol = C2lt? gmul(C2lt,pol): pol; if (DEBUGLEVEL > 2) { fprintferr("\n"); msgTIMER(&ti, "to find factor %Z",y); fprintferr("remaining modular factor(s): %ld\n", lfamod); } continue; } NEXT: for (i = K+1;;) { if (--i == 0) { K++; goto nextK; } if (++ind[i] <= lfamod - K + i) { curdeg = degsofar[i-1] + degpol[ind[i]]; if (curdeg <= klim) break; } } } END: if (degpol(pol) > 0) { /* leftover factor */ if (signe(leading_term(pol)) < 0) pol = gneg_i(pol); if (C2lt && lfamod < 2*K) pol = QXQX_normalize(Q_primpart(pol), nfpol); setlg(famod, lfamod+1); gel(listmod,cnt) = shallowcopy(famod); gel(fa,cnt++) = pol; } if (DEBUGLEVEL>6) fprintferr("\n"); if (cnt == 2) { avma = av0; gel(res,1) = mkvec(T->pol); gel(res,2) = mkvec(T->fact); } else { setlg(listmod, cnt); setlg(fa, cnt); gel(res,1) = fa; gel(res,2) = listmod; res = gerepilecopy(av0, res); } return res; }
static long nf_pick_prime(long ct, GEN nf, GEN polbase, long fl, GEN *lt, GEN *Fa, GEN *pr, GEN *Tp) { GEN nfpol = gel(nf,1), dk, bad; long maxf, n = degpol(nfpol), dpol = degpol(polbase), nbf = 0; byteptr pt = diffptr; ulong pp = 0; *lt = leading_term(polbase); /* t_INT */ if (gcmp1(*lt)) *lt = NULL; dk = absi(gel(nf,3)); bad = mulii(dk,gel(nf,4)); if (*lt) bad = mulii(bad, *lt); /* FIXME: slow factorization of large polynomials over large Fq */ maxf = 1; if (ct > 1) { if (dpol > 100) /* tough */ { if (n >= 20) maxf = 4; } else { if (n >= 15) maxf = 4; } } for (ct = 5;;) { GEN aT, apr, ap, modpr, red; long anbf; pari_timer ti_pr; GEN list, r = NULL, fa = NULL; pari_sp av2 = avma; if (DEBUGLEVEL>3) TIMERstart(&ti_pr); for (;;) { NEXT_PRIME_VIADIFF_CHECK(pp, pt); if (! umodiu(bad,pp)) continue; ap = utoipos(pp); list = (GEN)FpX_factor(nfpol, ap)[1]; if (maxf == 1) { /* deg.1 factors are best */ r = gel(list,1); if (degpol(r) == 1) break; } else { /* otherwise, pick factor of largish degree */ long i, dr; for (i = lg(list)-1; i > 0; i--) { r = gel(list,i); dr = degpol(r); if (dr <= maxf) break; } if (i > 0) break; } avma = av2; } apr = primedec_apply_kummer(nf,r,1,ap); modpr = zk_to_ff_init(nf,&apr,&aT,&ap); red = modprX(polbase, nf, modpr); if (!aT) { /* degree 1 */ red = ZX_to_Flx(red, pp); if (!Flx_is_squarefree(red, pp)) { avma = av2; continue; } anbf = fl? Flx_nbroots(red, pp): Flx_nbfact(red, pp); } else { GEN q; if (!FqX_is_squarefree(red,aT,ap)) { avma = av2; continue; } q = gpowgs(ap, degpol(aT)); anbf = fl? FqX_split_deg1(&fa, red, q, aT, ap) : FqX_split_by_degree(&fa, red, q, aT, ap); } if (fl == 2 && anbf < dpol) return anbf; if (anbf <= 1) { if (!fl) return anbf; /* irreducible */ if (!anbf) return 0; /* no root */ } if (!nbf || anbf < nbf || (anbf == nbf && cmpii(gel(apr,4), gel(*pr,4)) > 0)) { nbf = anbf; *pr = apr; *Tp = aT; *Fa = fa; } else avma = av2; if (DEBUGLEVEL>3) fprintferr("%3ld %s at prime\n %Z\nTime: %ld\n", anbf, fl?"roots": "factors", apr, TIMER(&ti_pr)); if (--ct <= 0) return nbf; } }
static GEN nf_LLL_cmbf(nfcmbf_t *T, GEN p, long k, long rec) { nflift_t *L = T->L; GEN pk = L->pk, PRK = L->prk, PRKinv = L->iprk, GSmin = L->GSmin; GEN Tpk = L->Tpk; GEN famod = T->fact, nf = T->nf, ZC = T->ZC, Br = T->Br; GEN Pbase = T->polbase, P = T->pol, dn = T->dn; GEN nfT = gel(nf,1); GEN Btra; long dnf = degpol(nfT), dP = degpol(P); double BitPerFactor = 0.5; /* nb bits / modular factor */ long i, C, tmax, n0; GEN lP, Bnorm, Tra, T2, TT, CM_L, m, list, ZERO; double Bhigh; pari_sp av, av2, lim; long ti_LLL = 0, ti_CF = 0; pari_timer ti2, TI; lP = absi(leading_term(P)); if (is_pm1(lP)) lP = NULL; n0 = lg(famod) - 1; /* Lattice: (S PRK), small vector (vS vP). To find k bound for the image, * write S = S1 q + S0, P = P1 q + P0 * |S1 vS + P1 vP|^2 <= Bhigh for all (vS,vP) assoc. to true factors */ Btra = mulrr(ZC, mulsr(dP*dP, normlp(Br, 2, dnf))); Bhigh = get_Bhigh(n0, dnf); C = (long)ceil(sqrt(Bhigh/n0)) + 1; /* C^2 n0 ~ Bhigh */ Bnorm = dbltor( n0 * C * C + Bhigh ); ZERO = zeromat(n0, dnf); av = avma; lim = stack_lim(av, 1); TT = cgetg(n0+1, t_VEC); Tra = cgetg(n0+1, t_MAT); for (i=1; i<=n0; i++) TT[i] = 0; CM_L = gscalsmat(C, n0); /* tmax = current number of traces used (and computed so far) */ for(tmax = 0;; tmax++) { long a, b, bmin, bgood, delta, tnew = tmax + 1, r = lg(CM_L)-1; GEN oldCM_L, M_L, q, S1, P1, VV; int first = 1; /* bound for f . S_k(genuine factor) = ZC * bound for T_2(S_tnew) */ Btra = mulrr(ZC, mulsr(dP*dP, normlp(Br, 2*tnew, dnf))); bmin = logint(ceil_safe(sqrtr(Btra)), gen_2, NULL); if (DEBUGLEVEL>2) fprintferr("\nLLL_cmbf: %ld potential factors (tmax = %ld, bmin = %ld)\n", r, tmax, bmin); /* compute Newton sums (possibly relifting first) */ if (gcmp(GSmin, Btra) < 0) { nflift_t L1; GEN polred; bestlift_init(k<<1, nf, T->pr, Btra, &L1); polred = ZqX_normalize(Pbase, lP, &L1); k = L1.k; pk = L1.pk; PRK = L1.prk; PRKinv = L1.iprk; GSmin = L1.GSmin; Tpk = L1.Tpk; famod = hensel_lift_fact(polred, famod, Tpk, p, pk, k); for (i=1; i<=n0; i++) TT[i] = 0; } for (i=1; i<=n0; i++) { GEN h, lPpow = lP? gpowgs(lP, tnew): NULL; GEN z = polsym_gen(gel(famod,i), gel(TT,i), tnew, Tpk, pk); gel(TT,i) = z; h = gel(z,tnew+1); /* make Newton sums integral */ lPpow = mul_content(lPpow, dn); if (lPpow) h = FpX_red(gmul(h,lPpow), pk); gel(Tra,i) = nf_bestlift(h, NULL, L); /* S_tnew(famod) */ } /* compute truncation parameter */ if (DEBUGLEVEL>2) { TIMERstart(&ti2); TIMERstart(&TI); } oldCM_L = CM_L; av2 = avma; b = delta = 0; /* -Wall */ AGAIN: M_L = Q_div_to_int(CM_L, utoipos(C)); VV = get_V(Tra, M_L, PRK, PRKinv, pk, &a); if (first) { /* initialize lattice, using few p-adic digits for traces */ bgood = (long)(a - max(32, BitPerFactor * r)); b = max(bmin, bgood); delta = a - b; } else { /* add more p-adic digits and continue reduction */ if (a < b) b = a; b = max(b-delta, bmin); if (b - delta/2 < bmin) b = bmin; /* near there. Go all the way */ } /* restart with truncated entries */ q = int2n(b); P1 = gdivround(PRK, q); S1 = gdivround(Tra, q); T2 = gsub(gmul(S1, M_L), gmul(P1, VV)); m = vconcat( CM_L, T2 ); if (first) { first = 0; m = shallowconcat( m, vconcat(ZERO, P1) ); /* [ C M_L 0 ] * m = [ ] square matrix * [ T2' PRK ] T2' = Tra * M_L truncated */ } CM_L = LLL_check_progress(Bnorm, n0, m, b == bmin, /*dbg:*/ &ti_LLL); if (DEBUGLEVEL>2) fprintferr("LLL_cmbf: (a,b) =%4ld,%4ld; r =%3ld -->%3ld, time = %ld\n", a,b, lg(m)-1, CM_L? lg(CM_L)-1: 1, TIMER(&TI)); if (!CM_L) { list = mkcol(QXQX_normalize(P,nfT)); break; } if (b > bmin) { CM_L = gerepilecopy(av2, CM_L); goto AGAIN; } if (DEBUGLEVEL>2) msgTIMER(&ti2, "for this trace"); i = lg(CM_L) - 1; if (i == r && gequal(CM_L, oldCM_L)) { CM_L = oldCM_L; avma = av2; continue; } if (i <= r && i*rec < n0) { pari_timer ti; if (DEBUGLEVEL>2) TIMERstart(&ti); list = nf_chk_factors(T, P, Q_div_to_int(CM_L,utoipos(C)), famod, pk); if (DEBUGLEVEL>2) ti_CF += TIMER(&ti); if (list) break; CM_L = gerepilecopy(av2, CM_L); } if (low_stack(lim, stack_lim(av,1))) { if(DEBUGMEM>1) pari_warn(warnmem,"nf_LLL_cmbf"); gerepileall(av, Tpk? 9: 8, &CM_L,&TT,&Tra,&famod,&pk,&GSmin,&PRK,&PRKinv,&Tpk); } } if (DEBUGLEVEL>2) fprintferr("* Time LLL: %ld\n* Time Check Factor: %ld\n",ti_LLL,ti_CF); return list; }
/* d = requested degree for subfield. Return DATA, valid for given pol, S and d * If DATA != NULL, translate pol [ --> pol(X+1) ] and update DATA * 1: polynomial pol * 2: p^e (for Hensel lifts) such that p^e > max(M), * 3: Hensel lift to precision p^e of DATA[4] * 4: roots of pol in F_(p^S->lcm), * 5: number of polynomial changes (translations) * 6: Bezout coefficients associated to the S->ff[i] * 7: Hadamard bound for coefficients of h(x) such that g o h = 0 mod pol. * 8: bound M for polynomials defining subfields x PD->den * 9: *[i] = interpolation polynomial for S->ff[i] [= 1 on the first root S->firstroot[i], 0 on the others] */ static void compute_data(blockdata *B) { GEN ffL, roo, pe, p1, p2, fk, fhk, MM, maxroot, pol; primedata *S = B->S; GEN p = S->p, T = S->T, ff = S->ff, DATA = B->DATA; long i, j, l, e, N, lff = lg(ff); if (DEBUGLEVEL>1) fprintferr("Entering compute_data()\n\n"); pol = B->PD->pol; N = degpol(pol); roo = B->PD->roo; if (DATA) /* update (translate) an existing DATA */ { GEN Xm1 = gsub(pol_x[varn(pol)], gen_1); GEN TR = addis(gel(DATA,5), 1); GEN mTR = negi(TR), interp, bezoutC; gel(DATA,5) = TR; pol = translate_pol(gel(DATA,1), gen_m1); l = lg(roo); p1 = cgetg(l, t_VEC); for (i=1; i<l; i++) gel(p1,i) = gadd(TR, gel(roo,i)); roo = p1; fk = gel(DATA,4); l = lg(fk); for (i=1; i<l; i++) gel(fk,i) = gsub(Xm1, gel(fk,i)); bezoutC = gel(DATA,6); l = lg(bezoutC); interp = gel(DATA,9); for (i=1; i<l; i++) { if (degpol(interp[i]) > 0) /* do not turn pol_1[0] into gen_1 */ { p1 = translate_pol(gel(interp,i), gen_m1); gel(interp,i) = FpXX_red(p1, p); } if (degpol(bezoutC[i]) > 0) { p1 = translate_pol(gel(bezoutC,i), gen_m1); gel(bezoutC,i) = FpXX_red(p1, p); } } ff = cgetg(lff, t_VEC); /* copy, don't overwrite! */ for (i=1; i<lff; i++) gel(ff,i) = FpX_red(translate_pol((GEN)S->ff[i], mTR), p); } else { DATA = cgetg(10,t_VEC); fk = S->fk; gel(DATA,5) = gen_0; gel(DATA,6) = shallowcopy(S->bezoutC); gel(DATA,9) = shallowcopy(S->interp); } gel(DATA,1) = pol; MM = gmul2n(bound_for_coeff(B->d, roo, &maxroot), 1); gel(DATA,8) = MM; e = logint(shifti(vecmax(MM),20), p, &pe); /* overlift 2^20 [for d-1 test] */ gel(DATA,2) = pe; gel(DATA,4) = roots_from_deg1(fk); /* compute fhk = hensel_lift_fact(pol,fk,T,p,pe,e) in 2 steps * 1) lift in Zp to precision p^e */ ffL = hensel_lift_fact(pol, ff, NULL, p, pe, e); fhk = NULL; for (l=i=1; i<lff; i++) { /* 2) lift factorization of ff[i] in Qp[X] / T */ GEN F, L = gel(ffL,i); long di = degpol(L); F = cgetg(di+1, t_VEC); for (j=1; j<=di; j++) F[j] = fk[l++]; L = hensel_lift_fact(L, F, T, p, pe, e); fhk = fhk? shallowconcat(fhk, L): L; } gel(DATA,3) = roots_from_deg1(fhk); p1 = mulsr(N, gsqrt(gpowgs(utoipos(N-1),N-1),DEFAULTPREC)); p2 = gpowgs(maxroot, B->size + N*(N-1)/2); p1 = gdiv(gmul(p1,p2), gsqrt(B->PD->dis,DEFAULTPREC)); gel(DATA,7) = mulii(shifti(ceil_safe(p1), 1), B->PD->den); if (DEBUGLEVEL>1) { fprintferr("f = %Z\n",DATA[1]); fprintferr("p = %Z, lift to p^%ld\n", p, e); fprintferr("2 * Hadamard bound * ind = %Z\n",DATA[7]); fprintferr("2 * M = %Z\n",DATA[8]); } if (B->DATA) { DATA = gclone(DATA); if (isclone(B->DATA)) gunclone(B->DATA); } B->DATA = DATA; }