コード例 #1
0
ファイル: gpstest.c プロジェクト: BackupTheBerlios/rundfunker
void gpsNmeaTest(void)
{
	// set the baud rate of UART 1 for NMEA
	uartSetBaudRate(1,4800);

	// clear screen
	vt100ClearScreen();
	// initialize gps library
	gpsInit();
	// initialize gps packet decoder 
	nmeaInit();

	// begin gps packet processing loop
	while(1)
	{
		// process received gps packets until receive buffer is exhausted
		while( nmeaProcess(uartGetRxBuffer(1)) );

		// set cursor position to top left of screen
		vt100SetCursorPos(0,0);
		// print/dump current formatted GPS data
		gpsInfoPrint();
		// print UART 1 overflow status to verify that we're processing packets
		// fast enough and that our receive buffer is large enough
		rprintf("Uart1RxOvfl: %d\r\n",uartRxOverflow[1]);
		// pause for 100ms
		timerPause(100);
	}
}
コード例 #2
0
ファイル: drv_system.c プロジェクト: UIKit0/AQ32Plus
void systemInit(void)
{
	// Init cycle counter
    cycleCounterInit();

    // SysTick
    SysTick_Config(SystemCoreClock / 1000);

    ///////////////////////////////////

    checkFirstTime(false);
	readEEPROM();

	if (eepromConfig.receiverType == SPEKTRUM)
		checkSpektrumBind();

	checkResetType();

	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);  // 2 bits for pre-emption priority, 2 bits for subpriority

	initMixer();

    ledInit();
    cliInit();

    BLUE_LED_ON;

    delay(20000);  // 20 sec total delay for sensor stabilization - probably not long enough.....

    adcInit();
    batteryInit();
    gpsInit();
    i2cInit(I2C1);
    i2cInit(I2C2);
    pwmEscInit(eepromConfig.escPwmRate);
    pwmServoInit(eepromConfig.servoPwmRate);
    rxInit();
    spiInit(SPI2);
    spiInit(SPI3);
    telemetryInit();
    timingFunctionsInit();

    initFirstOrderFilter();
    initGPS();
    initMax7456();
    initPID();

    GREEN_LED_ON;

    initMPU6000();
    initMag(HMC5883L_I2C);
    initPressure(MS5611_I2C);
}
コード例 #3
0
ファイル: interProcCommMaster.c プロジェクト: boboll/SLUGS
void sensorMCUInit(void) {
    gpsInit();
    uartInit();
    loggerInit();
    spiMasterInit();
    protParserInit();
#ifndef NO_MAGNETO
    magnetoInit();
#endif
    cubeInit();
    aknControlData.sensorReboot =1;
}
コード例 #4
0
void valuesInit(void)
{
	timeout = devReg.timeOut * 20;

	gpsInit(&root);

	/* App info */
	veItemAddChildByUid(&root, "Mgmt/ProcessName", &processName);
	veItemAddChildByUid(&root, "Mgmt/ProcessVersion", &processVersion);
	veItemAddChildByUid(&root, "Mgmt/Connection", &connection);
	veItemSetFmt(&processName, veVariantFmt, &none);
	veItemSetFmt(&processVersion, veVariantFmt, &none);
	veItemSetFmt(&connection, veVariantFmt, &none);
}
コード例 #5
0
ファイル: reconnApp.c プロジェクト: mcarrier/RECONN
static void PeripheralInit() 
{
    int status = RECONN_SUCCESS;

    gEqptDescriptors.powerMeterFd = -1;
#if 0 // GPS has been removed from the reconn box
    if((status = gpsInit(&(gEqptDescriptors.gpsFd))) != RECONN_SUCCESS)
    {
        reconnDebugPrint("%s: GPS Init Failed\n", __FUNCTION__);
        gpsEnabled = FALSE;
    } 
    else
    {
        reconnDebugPrint("GPS Initialized\n");
    }
    /* end GPS Init - GPS now configured */
#endif

    if((status = SpectrumAnalyzerInit(&(gEqptDescriptors.analyzerFd))) != RECONN_SUCCESS) 
    {
        reconnDebugPrint("Spectrum Analyzer Init Failed\n");
        analyzerEnabled = FALSE;
    }
    else 
    {
        reconnDebugPrint("Spectrum Analyzer Initialized\n");
    }

    if((status = dmmInit(&(gEqptDescriptors.dmmFd))) != RECONN_SUCCESS)
    {
        reconnDebugPrint("%s: DMM Init Failed\n", __FUNCTION__);
        dmmEnabled = FALSE;
    }
    else
    {
        reconnDebugPrint("%s: DMM Initialized\n", __FUNCTION__);
    }
    // Power up the Wifi chip
    if((status = reconnGpioAction(GPIO_57, ENABLE, NULL)) == RECONN_FAILURE)
    {
        reconnDebugPrint("%s: Could not power up WiFi device \n", __FUNCTION__);
    }
    else
    {   
        reconnDebugPrint("%s: Wifi powered\n", __FUNCTION__);
    }
}
コード例 #6
0
ファイル: sensors.c プロジェクト: Bamfax/TestCode3
void SensorDetectAndINI(void)                                     // "enabledSensors" is "0" in config.c so all sensors disabled per default
{
    int16_t deg, min;
    uint8_t sig          = 0;
    bool    ack          = false;
    bool    haveMpu6k    = false;

    GyroScale16 = (16.0f / 16.4f) * RADX;                         // GYRO part. RAD per SECOND, take into account that gyrodata are div by X
    if (mpu6050Detect(&acc, &gyro))                               // Autodetect gyro hardware. We have MPU3050 or MPU6050.
    {
        haveMpu6k = true;                                         // this filled up  acc.* struct with init values
    }
    else if (l3g4200dDetect(&gyro))
    {
        havel3g4200d = true;
        GyroScale16 = (16.0f / 14.2857f) * RADX;                  // GYRO part. RAD per SECOND, take into account that gyrodata are div by X
    }
    else if (!mpu3050Detect(&gyro))
    {
        failureMode(3);                                           // if this fails, we get a beep + blink pattern. we're doomed, no gyro or i2c error.
    }

    sensorsSet(SENSOR_ACC);                                       // ACC part. Will be cleared if not available
retry:
    switch (cfg.acc_hdw)
    {
    case 0:                                                       // autodetect
    case 1:                                                       // ADXL345
        if (adxl345Detect(&acc)) accHardware = ACC_ADXL345;
        if (cfg.acc_hdw == ACC_ADXL345) break;
    case 2:                                                       // MPU6050
        if (haveMpu6k)
        {
            mpu6050Detect(&acc, &gyro);                           // yes, i'm rerunning it again.  re-fill acc struct
            accHardware = ACC_MPU6050;
            if (cfg.acc_hdw == ACC_MPU6050) break;
        }
    case 3:                                                       // MMA8452
        if (mma8452Detect(&acc))
        {
            accHardware = ACC_MMA8452;
            if (cfg.acc_hdw == ACC_MMA8452) break;
        }
    }

    if (accHardware == ACC_DEFAULT)                               // Found anything? Check if user f****d up or ACC is really missing.
    {
        if (cfg.acc_hdw > ACC_DEFAULT)
        {
            cfg.acc_hdw = ACC_DEFAULT;                            // Nothing was found and we have a forced sensor type. User probably chose a sensor that isn't present.
            goto retry;
        }
        else sensorsClear(SENSOR_ACC);                            // We're really screwed
    }

    if (sensors(SENSOR_ACC)) acc.init();
    if (haveMpu6k && accHardware == ACC_MPU6050) MpuSpecial = true;
    else MpuSpecial = false;

    if (feature(FEATURE_PASS)) return;                            // Stop here we need just ACC for Vibrationmonitoring if present
    if (feature(FEATURE_GPS) && !SerialRCRX) gpsInit(cfg.gps_baudrate);// SerialRX and GPS can not coexist.
    gyro.init();                                                  // this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here.
    if (havel3g4200d) l3g4200dConfig();
    else if (!haveMpu6k) mpu3050Config();
    Gyro_Calibrate();                                             // Do Gyrocalibration here (is blocking), provides nice Warmuptime for the following rest!
#ifdef MAG
    if (hmc5883lDetect())
    {
        sensorsSet(SENSOR_MAG);
        hmc5883lInit(magCal);                                     // Crashpilot: Calculate Gains / Scale
        deg = cfg.mag_dec / 100;                                  // calculate magnetic declination
        min = cfg.mag_dec % 100;
        magneticDeclination = ((float)deg + ((float)min / 60.0f));// heading is in decimaldeg units NO 0.1 deg shit here
    }
#endif
#ifdef BARO                                                       // No delay necessary since Gyrocal blocked a lot already
    ack = i2cRead(0x77, 0x77, 1, &sig);                           // Check Baroadr.(MS & BMP) BMP will say hello here, MS not
    if ( ack) ack = bmp085Detect(&baro);                          // Are we really dealing with BMP?
    if (!ack) ack = ms5611Detect(&baro);                          // No, Check for MS Baro
    if (ack) sensorsSet(SENSOR_BARO);
    if(cfg.esc_nfly) ESCnoFlyThrottle = constrain_int(cfg.esc_nfly, cfg.esc_min, cfg.esc_max); // Set the ESC PWM signal threshold for not flyable RPM
    else ESCnoFlyThrottle = cfg.esc_min + (((cfg.esc_max - cfg.esc_min) * 5) / 100); // If not configured, take 5% above esc_min
#endif
#ifdef SONAR
    if (feature(FEATURE_SONAR)) Sonar_init();                     // Initialize Sonars here depending on Rc configuration.
    SonarLandWanted = cfg.snr_land;                               // Variable may be overwritten by failsave
#endif
    MainDptCut = RCconstPI / (float)cfg.maincuthz;                // Initialize Cut off frequencies for mainpid D
}
コード例 #7
0
ファイル: boot.c プロジェクト: FenomPL/cleanflight
void init(void)
{
    drv_pwm_config_t pwm_params;

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(systemConfig()->emf_avoidance);
#endif
    i2cSetOverclock(systemConfig()->i2c_highspeed);

    systemInit();

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

    // initialize IO (needed for all IO operations)
    IOInitGlobal();

    debugMode = debugConfig()->debug_mode;

#ifdef USE_EXTI
    EXTIInit();
#endif

#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_1) {
        ledInit(false);
    } else {
        ledInit(true);
    }
#else
    ledInit(false);
#endif

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .gpioPeripheral = BEEP_PERIPHERAL,
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,
#ifdef BEEPER_INVERTED
        .gpioMode = Mode_Out_PP,
        .isInverted = true
#else
        .gpioMode = Mode_Out_OD,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.gpioMode = Mode_Out_PP;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef BUTTONS
    buttonsInit();

    if (!isMPUSoftReset()) {
        buttonsHandleColdBootButtonPresses();
    }
#endif

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (rxConfig()->serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(rxConfig());
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    dmaInit();


    serialInit(feature(FEATURE_SOFTSERIAL));

    mixerInit(customMotorMixer(0));
#ifdef USE_SERVOS
    mixerInitServos(customServoMixer(0));
#endif

    memset(&pwm_params, 0, sizeof(pwm_params));

#ifdef SONAR
    const sonarHardware_t *sonarHardware = NULL;
    sonarGPIOConfig_t sonarGPIOConfig;
    if (feature(FEATURE_SONAR)) {
        bool usingCurrentMeterIOPins = (feature(FEATURE_AMPERAGE_METER) && batteryConfig()->amperageMeterSource == AMPERAGE_METER_ADC);
        sonarHardware = sonarGetHardwareConfiguration(usingCurrentMeterIOPins);
        sonarGPIOConfig.triggerGPIO = sonarHardware->trigger_gpio;
        sonarGPIOConfig.triggerPin = sonarHardware->trigger_pin;
        sonarGPIOConfig.echoGPIO = sonarHardware->echo_gpio;
        sonarGPIOConfig.echoPin = sonarHardware->echo_pin;
        pwm_params.sonarGPIOConfig = &sonarGPIOConfig;
    }
#endif

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (mixerConfig()->mixerMode == MIXER_AIRPLANE || mixerConfig()->mixerMode == MIXER_FLYING_WING || mixerConfig()->mixerMode == MIXER_CUSTOM_AIRPLANE)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_UART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_UART2);
#endif
#if defined(USE_UART3)
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_UART3);
#endif
#if defined(USE_UART4)
    pwm_params.useUART4 = doesConfigurationUsePort(SERIAL_PORT_UART4);
#endif
#if defined(USE_UART5)
    pwm_params.useUART5 = doesConfigurationUsePort(SERIAL_PORT_UART5);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = (
        feature(FEATURE_AMPERAGE_METER)
        && batteryConfig()->amperageMeterSource == AMPERAGE_METER_ADC
    );
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);
#ifdef SONAR
    pwm_params.useSonar = feature(FEATURE_SONAR);
#endif

#ifdef USE_SERVOS
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
    pwm_params.servoCenterPulse = servoConfig()->servoCenterPulse;
    pwm_params.servoPwmRate = servoConfig()->servo_pwm_rate;
#endif

    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.motorPwmRate = motorConfig()->motor_pwm_rate;
    pwm_params.idlePulse = calculateMotorOff();
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors

    pwmRxInit();

    // pwmInit() needs to be called as soon as possible for ESC compatibility reasons
    pwmIOConfiguration_t *pwmIOConfiguration = pwmInit(&pwm_params);

    mixerUsePWMIOConfiguration(pwmIOConfiguration);

#ifdef DEBUG_PWM_CONFIGURATION
    debug[2] = pwmIOConfiguration->pwmInputCount;
    debug[3] = pwmIOConfiguration->ppmInputCount;
#endif

    if (!feature(FEATURE_ONESHOT125))
        motorControlEnable = true;

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
#ifdef STM32F303xC
#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_2) {
        spiInit(SPI3);
    }
#else
    spiInit(SPI3);
#endif
#endif
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_UART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif

#if defined(SPRACINGF3MINI) && defined(SONAR) && defined(USE_SOFTSERIAL1)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL1);
    }
#endif


#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE);
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.channelMask = 0;

#ifdef ADC_BATTERY
    adc_params.channelMask = (feature(FEATURE_VBAT) ? ADC_CHANNEL_MASK(ADC_BATTERY) : 0);
#endif
#ifdef ADC_RSSI
    adc_params.channelMask |= (feature(FEATURE_RSSI_ADC) ? ADC_CHANNEL_MASK(ADC_RSSI) : 0);
#endif
#ifdef ADC_AMPERAGE
    adc_params.channelMask |=  (feature(FEATURE_AMPERAGE_METER) ? ADC_CHANNEL_MASK(ADC_AMPERAGE) : 0);
#endif

#ifdef ADC_POWER_12V
    adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_12V);
#endif
#ifdef ADC_POWER_5V
    adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_5V);
#endif
#ifdef ADC_POWER_3V
    adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_3V);
#endif

#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.channelMask |= (hardwareRevision >= NAZE32_REV5) ? ADC_CHANNEL_MASK(ADC_EXTERNAL) : 0;
#endif

    adcInit(&adc_params);
#endif

    initBoardAlignment();

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit();
    }
#endif

#ifdef NAZE
    if (hardwareRevision < NAZE32_REV5) {
        gyroConfig()->gyro_sync = 0;
    }
#endif

    if (!sensorsAutodetect()) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    flashLedsAndBeep();

    mspInit();
    mspSerialInit();

    const uint16_t pidPeriodUs = US_FROM_HZ(gyro.sampleFrequencyHz);
    pidSetTargetLooptime(pidPeriodUs * gyroConfig()->pid_process_denom);
    pidInitFilters(pidProfile());

#ifdef USE_SERVOS
    mixerInitialiseServoFiltering(targetPidLooptime);
#endif

    imuInit();


#ifdef USE_CLI
    cliInit();
#endif

    failsafeInit();

    rxInit(modeActivationProfile()->modeActivationConditions);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit();
        navigationInit(pidProfile());
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit(sonarHardware);
    }
#endif

#ifdef LED_STRIP
    ledStripInit();

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USB_CABLE_DETECTION
    usbCableDetectInit();
#endif

#ifdef TRANSPONDER
    if (feature(FEATURE_TRANSPONDER)) {
        transponderInit(transponderConfig()->data);
        transponderEnable();
        transponderStartRepeating();
        systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED;
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init();
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init();
#endif

    flashfsInit();
#endif

#ifdef USE_SDCARD
    bool sdcardUseDMA = false;

    sdcardInsertionDetectInit();

#ifdef SDCARD_DMA_CHANNEL_TX

#if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL)
    // Ensure the SPI Tx DMA doesn't overlap with the led strip
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL;
#else
    sdcardUseDMA = true;
#endif

#endif

    sdcard_init(sdcardUseDMA);

    afatfs_init();
#endif

#ifdef BLACKBOX
    initBlackbox();
#endif

    if (mixerConfig()->mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif


    if (feature(FEATURE_VBAT)) {
        // Now that everything has powered up the voltage and cell count be determined.

        voltageMeterInit();
        batteryInit();
    }

    if (feature(FEATURE_AMPERAGE_METER)) {
        amperageMeterInit();
    }

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

void configureScheduler(void)
{
    schedulerInit();
    setTaskEnabled(TASK_SYSTEM, true);

    uint16_t gyroPeriodUs = US_FROM_HZ(gyro.sampleFrequencyHz);
    rescheduleTask(TASK_GYRO, gyroPeriodUs);
    setTaskEnabled(TASK_GYRO, true);

    rescheduleTask(TASK_PID, gyroPeriodUs);
    setTaskEnabled(TASK_PID, true);

    if (sensors(SENSOR_ACC)) {
        setTaskEnabled(TASK_ACCEL, true);
    }

    setTaskEnabled(TASK_ATTITUDE, sensors(SENSOR_ACC));
    setTaskEnabled(TASK_SERIAL, true);
#ifdef BEEPER
    setTaskEnabled(TASK_BEEPER, true);
#endif
    setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_AMPERAGE_METER));
    setTaskEnabled(TASK_RX, true);
#ifdef GPS
    setTaskEnabled(TASK_GPS, feature(FEATURE_GPS));
#endif
#ifdef MAG
    setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG));
#if defined(MPU6500_SPI_INSTANCE) && defined(USE_MAG_AK8963)
    // fixme temporary solution for AK6983 via slave I2C on MPU9250
    rescheduleTask(TASK_COMPASS, 1000000 / 40);
#endif
#endif
#ifdef BARO
    setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO));
#endif
#ifdef SONAR
    setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR));
#endif
#if defined(BARO) || defined(SONAR)
    setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || sensors(SENSOR_SONAR));
#endif
#ifdef DISPLAY
    setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY));
#endif
#ifdef TELEMETRY
    setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY));
#endif
#ifdef LED_STRIP
    setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP));
#endif
#ifdef TRANSPONDER
    setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER));
#endif
}
コード例 #8
0
ファイル: circBufferDriver.c プロジェクト: hkang/dsPicMidg
int main(int argc, char* argv[])
{
   char i;
   /*
	//CBRef A = newCircBuffer(10);
   //CBRef B = newCircBuffer(20);
   struct CircBuffer Anp;
   struct CircBuffer Bnp;
   
	CBRef A = &Anp;
	CBRef B = &Bnp; 
	
	newCircBuffer(A);
	newCircBuffer(B);
	
   for(i=0; i<=12; i++)
   {
      writeBack(B, i);
      writeBack(A, 15-i);
   }
   //printCircBuf(A);
   //printCircBuf(B);
   printf("\n");
   printf("\n");

   for(i=0; i<=12; i++)
   {
	printf("Read byte A: %d\n", readFront(A));
	printf("Read byte B: %d\n", readFront(B));
	//printCircBuf(A);
   }

	makeEmpty(A);
	//printCircBuf(A);

	freeCircBuffer(&A);
	freeCircBuffer(&B);
	
	*/
	
	unsigned char msg1 [] = "@$GPRMC,040302.663,A,3939.7,N,10506.6,W,5.27,358.86,200804,,*1A\r\n";
	unsigned char msg2 [] = "N$GPGGA,213924.000,4221.1129,N,07102.9146,W,1,04,3.9,129.7,M,-33.7,M,,0000*68\r\n";
	unsigned char msg3 [] = "&$GPGGA,213922.000,4221.1129,N,07102.91";
	unsigned char msg4 [] = "(46,W,1,04,3.9,129.7,M,-33.7,M,,0000*6E\r\n";
	
	unsigned char outBuffer [128] ={0}, parsedData[128]={0};
	
	gpsInit();
	
	printf("Message 1\n");
	gpsSeparate(msg2, outBuffer);	
		printf("\n");
		printf(outBuffer);
		printf("\nValid: %d Type:%d", outBuffer[MSIZE-1], outBuffer[0]);
		printf("\n");
		printf(msg2);
	
	gpsParse(outBuffer, parsedData);
	
	for(i=0;i<6;i++){
		printf("%d ", parsedData[i]);
	}
	
	tFloatToChar flCh;
	tIntToChar inCh;
	
	flCh.chData[0] = parsedData[6];
	flCh.chData[1] = parsedData[7];
	flCh.chData[2] = parsedData[8];
	flCh.chData[3] = parsedData[9];
	printf("%f ", flCh.flData);
	
	flCh.chData[0] = parsedData[10];
	flCh.chData[1] = parsedData[11];
	flCh.chData[2] = parsedData[12];
	flCh.chData[3] = parsedData[13];
	printf("%f ", flCh.flData);

	flCh.chData[0] = parsedData[14];
	flCh.chData[1] = parsedData[15];
	flCh.chData[2] = parsedData[16];
	flCh.chData[3] = parsedData[17];
	printf("%f ", flCh.flData);
	
	inCh.chData[0] = parsedData[18];
	inCh.chData[1] = parsedData[19];
	printf("%d ", inCh.inData);

	inCh.chData[0] = parsedData[20];
	inCh.chData[1] = parsedData[21];
	printf("%d ", inCh.inData);
	
	inCh.chData[0] = parsedData[22];
	inCh.chData[1] = parsedData[23];
	printf("%d ", inCh.inData);
	
	for(i=24;i<26;i++){
		printf("%d ", parsedData[i]);
	}
	
	printf("\n");
	
	unsigned char thischr [] = "$PMTK251,19200*22\r\n";
	printf("Baud Rate %d", getChecksum(thischr, 17));
	
	unsigned char thischr2 [] = "$PMTK300,200,0,0,0,0*2F\r\n";
	printf("Frequency %d", getChecksum(thischr2, 23));
	
	unsigned char thischr3 [] = "$PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*28\r\n";
	printf("Sentences %d", getChecksum(thischr3, 49));
				
	/*printf("Message 2\n");
	gpsSeparate(msg2, outBuffer);	
		printf("\n");
		printf(outBuffer);
		printf("\nValid: %d Type:%d", outBuffer[MSIZE-1], outBuffer[0]);
		printf("\n");
		printf(msg2);
	


	printf("First Call to GPS Separate\n");
	gpsSeparate(msg3, outBuffer);	
	printf("============================\n");
	
	printf("Second Call to GPS Separate\n");	
	gpsSeparate(msg4, outBuffer);	
	printf("============================\n");
	
	printf(outBuffer);
	printf("\nValid: %d Type:%d", outBuffer[MSIZE-1], outBuffer[0]);
	printf("\n");
	printf(msg3);
	printf(msg4);

	printf("============================\n");
	printf("============================\n");
	printf("============================\n");
	printf("============================\n");
	printf("Char: %d, Short: %d, Int: %d, Float: %d, Long:%d", sizeof(char), sizeof(short), sizeof(int), sizeof(float), sizeof(long));
	printf("\n");	
	*/
   return(0);
}
コード例 #9
0
int main(void)
{
//***********************************DEBUG********************************************/
#if 0

nmeaPOS p1,p2;
nmeaINFO info;
info.lat = 5547.1206;
info.lon = 4906.2111;
nmea_info2pos(&info, &p1);
info.lat = 5547.1221;
info.lon = 4906.208;
nmea_info2pos(&info, &p2);

m += 23;

u32 t    = nmea_distance(&p1, &p2);
if(m)
#endif
//***********************************END OF DEBUG********************************************/
  NVIC_Configuration();	//for  all peripheria
  if (SysTick_Config(SystemCoreClock / 1000))  //1ms
     { 
       /* Capture error */ 
       while (1);
     }
  Delay(500);


  USBIniPin();
  	  
  signUSBMass = USBDetectPin();
  signUSBMass = 0;  //deb
  #if not defined (VER_3)
    USBCommonIni(); 
  #endif
  if(signUSBMass)
    {
	 #if defined (VER_3)
	 USBCommonIni();
	 #endif
     while (bDeviceState != CONFIGURED);
	}
  else //if(!signUSBMass)
   {

  	 /* Flash unlock */
     FLASH_Unlock();
     /* Clear All pending flags */
     FLASH_ClearFlag(FLASH_FLAG_BSY | FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPRTERR);	

//***********************************DEBUG********************************************/

     
//***********************************END OF DEBUG********************************************/
  /* Enable CRC clock */
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_CRC, ENABLE);
    
  ledDioGPIOInit();
  led_dn(BOARD_LED_ON);
  led_mid(BOARD_LED_ON);
#if defined (VER_3)
  led_up(BOARD_LED_ON);
  ibuttonInit();
  rfmodemInit();
#endif
  Delay(1000);
  alarmInit();
  BKPInit();

  //timer6Init();

  //rs485Init();
#if not defined (VER_3)
  ais326dq_init();
#endif

  //ais326dq_data(&ais326dq_out);
  /*ADC*/
  adcInit();
  /*GPS*/
  gpsInit();

  /* reading settings */
  readConfig();
  /*MODEM*/
  gprsModemInit();
  gprsModemOn(innerState.activeSIMCard);
//***********************************DEBUG********************************************/
  //GSMSpeaker(1);
//***********************************END OF DEBUG********************************************/

#ifndef BRIDGE_USB_GSM
  setupGSM();
  ftpGSMPrepare();
  packetsIni();
#endif

  led_dn(BOARD_LED_OFF);
  led_mid(BOARD_LED_OFF);
#if defined (VER_3)
  led_up(BOARD_LED_OFF);
#endif

  rtc_init();
  rtc_gettime(&rtc);

#if 1			  /* WATCH DOG */
  /* IWDG timeout equal to 3.27 sec (the timeout may varies due to LSI frequency dispersion) */
  /* Enable write access to IWDG_PR and IWDG_RLR registers */
  IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
  /* IWDG counter clock: 40KHz(LSI) / 32 = 1.25 KHz */
  IWDG_SetPrescaler(IWDG_Prescaler_64);	//32
  /* Set counter reload value to 0xFFF */
  IWDG_SetReload(0xFFF);
  /* Reload IWDG counter */
  IWDG_ReloadCounter();
  /* Enable IWDG (the LSI oscillator will be enabled by hardware) */
  IWDG_Enable();
  setTimerIWDG(ONE_SEC);
#endif

  initSD();
#if defined (VER_3)
  //DACInit();
#endif

  /* Log  */
  saveSDInfo((u8 *)"TURN ON BLOCK ",strlen((u8 *)"TURN ON BLOCK "), SD_SENDED, SD_TYPE_MSG_LOG );
  //saveSDInfo((u8 *)readRTCTime(&rtc),strlen((const char *)readRTCTime(&rtc)), SD_SENDED, SD_TYPE_MSG_LOG );
#if defined (VER_3)  
  //DACSpeaker(1);
  //wp_play("0:/sound.wav");
  //DACSpeaker(0);
#endif 

  }	 //if(!signUSBMass)

  while (1)
  {
    if(!signUSBMass)
	  {
		 monitorWatchDog();

		 #ifndef BRIDGE_USB_GPS
	     if(!innerState.bootFTPStarted)
	         gpsHandling();
		 #endif

		 #ifndef BRIDGE_USB_GSM
		 if(!innerState.flagTmpDebug)
		    loopGSM();
			loopFTP();
            UpdatingFlash();
			if(!innerState.bootFTPStarted)
			   naviPacketHandle();
			rcvPacketHandle();
            rcvPacketHandleUSB();
		 #endif 

		 #if !defined (VER_3)
			 buttonScan();
		     accelScan();
		 #endif
		 
		 //rs485Analyse();
		 handleFOS();
		 executeDelayedCmd();
#if defined (VER_3)
		 #if 0 
		 if(innerState.flagDebug)
		 {
  			DACSpeaker(1);
	        /* Start DAC Channel1 conversion by software */
		    //a += 300;
    		//DAC_SetChannel1Data(DAC_Align_12b_R, 4000);
    		//DAC_SetChannel1Data(DAC_Align_12b_L, a);  //for saw
    		//DAC_SetChannel1Data(DAC_Align_8b_R, a);
			
			//DAC_SetChannel1Data(DAC_Align_12b_R, 4095);
			//DAC_SetChannel1Data(DAC_Align_12b_R, 0);
			//for (a = 0; a<4095; ++a)
			//for(;;)
			//  DAC_SetChannel1Data(DAC_Align_12b_R, 0);

			//DAC_SetChannel1Data(DAC_Align_12b_R, 0);
			//for ( ; ; )
			//{
			//   DAC_SoftwareTriggerCmd(DAC_Channel_1, ENABLE);
			//}
 

	        DAC_SoftwareTriggerCmd(DAC_Channel_1, ENABLE);  //debugga
		 }
		 else
		 {
		     DACSpeaker(0);
		 }
	  #endif
#endif
	 }
	else
	  handleUSBPresent();
  }	   //while(1)
}
コード例 #10
0
ファイル: main.c プロジェクト: mmiers/betaflight
void init(void)
{
#ifdef USE_HAL_DRIVER
    HAL_Init();
#endif

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

    systemInit();

    //i2cSetOverclock(masterConfig.i2c_overclock);

    // initialize IO (needed for all IO operations)
    IOInitGlobal();

    debugMode = masterConfig.debug_mode;

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

#ifdef ALIENFLIGHTF3
    ledInit(hardwareRevision == AFF3_REV_1 ? false : true);
#else
    ledInit(false);
#endif
    LED2_ON;

#ifdef USE_EXTI
    EXTIInit();
#endif

#if defined(BUTTONS)
    gpio_config_t buttonAGpioConfig = {
        BUTTON_A_PIN,
        Mode_IPU,
        Speed_2MHz
    };
    gpioInit(BUTTON_A_PORT, &buttonAGpioConfig);

    gpio_config_t buttonBGpioConfig = {
        BUTTON_B_PIN,
        Mode_IPU,
        Speed_2MHz
    };
    gpioInit(BUTTON_B_PORT, &buttonBGpioConfig);

    // Check status of bind plug and exit if not active
    delayMicroseconds(10);  // allow GPIO configuration to settle

    if (!isMPUSoftReset()) {
        uint8_t secondsRemaining = 5;
        bool bothButtonsHeld;
        do {
            bothButtonsHeld = !digitalIn(BUTTON_A_PORT, BUTTON_A_PIN) && !digitalIn(BUTTON_B_PORT, BUTTON_B_PIN);
            if (bothButtonsHeld) {
                if (--secondsRemaining == 0) {
                    resetEEPROM();
                    systemReset();
                }
                delay(1000);
                LED0_TOGGLE;
            }
        } while (bothButtonsHeld);
    }
#endif

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

#if !defined(USE_HAL_DRIVER)
    dmaInit();
#endif

#if defined(AVOID_UART1_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART1 : SERIAL_PORT_NONE);
#elif defined(AVOID_UART2_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART2 : SERIAL_PORT_NONE);
#elif defined(AVOID_UART3_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART3 : SERIAL_PORT_NONE);
#else
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), SERIAL_PORT_NONE);
#endif

    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer);
#ifdef USE_SERVOS
    servoMixerInit(masterConfig.customServoMixer);
#endif

    uint16_t idlePulse = masterConfig.motorConfig.mincommand;
    if (feature(FEATURE_3D)) {
        idlePulse = masterConfig.flight3DConfig.neutral3d;
    }

    if (masterConfig.motorConfig.motorPwmProtocol == PWM_TYPE_BRUSHED) {
        featureClear(FEATURE_3D);
        idlePulse = 0; // brushed motors
    }

#ifdef USE_QUAD_MIXER_ONLY
    motorInit(&masterConfig.motorConfig, idlePulse, QUAD_MOTOR_COUNT);
#else
    motorInit(&masterConfig.motorConfig, idlePulse, mixers[masterConfig.mixerMode].motorCount);
#endif

#ifdef USE_SERVOS
    if (isMixerUsingServos()) {
        //pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
        servoInit(&masterConfig.servoConfig);
    }
#endif

#ifndef SKIP_RX_PWM_PPM
    if (feature(FEATURE_RX_PPM)) {
        ppmRxInit(&masterConfig.ppmConfig, masterConfig.motorConfig.motorPwmProtocol);
    } else if (feature(FEATURE_RX_PARALLEL_PWM)) {
        pwmRxInit(&masterConfig.pwmConfig);        
    }
    pwmRxSetInputFilteringMode(masterConfig.inputFilteringMode);
#endif

    mixerConfigureOutput();
#ifdef USE_SERVOS
    servoConfigureOutput();
#endif
    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef BEEPER
    beeperInit(&masterConfig.beeperConfig);
#endif
/* temp until PGs are implemented. */
#ifdef INVERTER
    initInverter();
#endif

#ifdef USE_BST
    bstInit(BST_DEVICE);
#endif

#ifdef USE_SPI
#ifdef USE_SPI_DEVICE_1
    spiInit(SPIDEV_1);
#endif
#ifdef USE_SPI_DEVICE_2
    spiInit(SPIDEV_2);
#endif
#ifdef USE_SPI_DEVICE_3
#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_2) {
        spiInit(SPIDEV_3);
    }
#else
    spiInit(SPIDEV_3);
#endif
#endif
#ifdef USE_SPI_DEVICE_4
    spiInit(SPIDEV_4);
#endif
#endif

#ifdef VTX
    vtxInit();
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_USART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif

#if defined(SPRACINGF3MINI) || defined(OMNIBUS) || defined(X_RACERSPI)
#if defined(SONAR) && defined(USE_SOFTSERIAL1)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL1);
    }
#endif
#endif

#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE);
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif


    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

#ifdef USE_RTC6705
    if (feature(FEATURE_VTX)) {
        rtc6705_soft_spi_init();
        current_vtx_channel = masterConfig.vtx_channel;
        rtc6705_soft_spi_set_channel(vtx_freq[current_vtx_channel]);
        rtc6705_soft_spi_set_rf_power(masterConfig.vtx_power);
    }
#endif

#ifdef OSD
    if (feature(FEATURE_OSD)) {
        osdInit();
    }
#endif

    if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig,
            masterConfig.acc_hardware,
            masterConfig.mag_hardware,
            masterConfig.baro_hardware,
            masterConfig.mag_declination,
            masterConfig.gyro_lpf,
            masterConfig.gyro_sync_denom)) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    LED1_ON;
    LED0_OFF;
    LED2_OFF;

    for (int i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        if (!(getBeeperOffMask() & (1 << (BEEPER_SYSTEM_INIT - 1)))) BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    imuInit();

    mspFcInit();
    mspSerialInit();

#ifdef USE_CLI
    cliInit(&masterConfig.serialConfig);
#endif

    failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);

    rxInit(&masterConfig.rxConfig, masterConfig.modeActivationConditions);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &masterConfig.gpsProfile,
            &currentProfile->pidProfile
        );
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit(&masterConfig.sonarConfig);
    }
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors, masterConfig.modeColors, &masterConfig.specialColors);

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USB_CABLE_DETECTION
    usbCableDetectInit();
#endif

#ifdef TRANSPONDER
    if (feature(FEATURE_TRANSPONDER)) {
        transponderInit(masterConfig.transponderData);
        transponderEnable();
        transponderStartRepeating();
        systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED;
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init(IO_TAG_NONE);
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init(IO_TAG_NONE);
#endif

    flashfsInit();
#endif

#ifdef USE_SDCARD
    bool sdcardUseDMA = false;

    sdcardInsertionDetectInit();

#ifdef SDCARD_DMA_CHANNEL_TX

#if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL)
    // Ensure the SPI Tx DMA doesn't overlap with the led strip
#if defined(STM32F4) || defined(STM32F7)
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_STREAM;
#else
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL;
#endif
#else
    sdcardUseDMA = true;
#endif

#endif

    sdcard_init(sdcardUseDMA);

    afatfs_init();
#endif

    if (masterConfig.gyro_lpf > 0 && masterConfig.gyro_lpf < 7) {
        masterConfig.pid_process_denom = 1; // When gyro set to 1khz always set pid speed 1:1 to sampling speed
        masterConfig.gyro_sync_denom = 1;
    }

    setTargetPidLooptime((gyro.targetLooptime + LOOPTIME_SUSPEND_TIME) * masterConfig.pid_process_denom); // Initialize pid looptime

#ifdef BLACKBOX
    initBlackbox();
#endif

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles();
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit(&masterConfig.batteryConfig);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    fcTasksInit();
    systemState |= SYSTEM_STATE_READY;
}
コード例 #11
0
ファイル: main.c プロジェクト: Cyberpilot360/cleanflight
void init(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;
    bool sensorsOK = false;

    initPrintfSupport();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(masterConfig.emf_avoidance);
#endif

#ifdef NAZE
    detectHardwareRevision();
#endif

    systemInit();

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    ledInit();

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .gpioMode = Mode_Out_OD,
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,
        .gpioPeripheral = BEEP_PERIPHERAL,
        .isInverted = false
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.gpioMode = Mode_Out_PP;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
#endif

#ifdef NAZE
    updateHardwareRevision();
#endif

#ifdef USE_I2C
#ifdef NAZE
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    }
#else
    // Configure the rest of the stuff
    i2cInit(I2C_DEVICE);
#endif
#endif

#if !defined(SPARKY)
    drv_adc_config_t adc_params;

    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif


    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

    // We have these sensors; SENSORS_SET defined in board.h depending on hardware platform
    sensorsSet(SENSORS_SET);
    // drop out any sensors that don't seem to work, init all the others. halt if gyro is dead.
    sensorsOK = sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, currentProfile->mag_declination);

    // if gyro was not detected due to whatever reason, we give up now.
    if (!sensorsOK)
        failureMode(3);

    LED1_ON;
    LED0_OFF;
    for (i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

    imuInit();
    mixerInit(masterConfig.mixerMode, masterConfig.customMixer);

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    serialInit(&masterConfig.serialConfig);

    memset(&pwm_params, 0, sizeof(pwm_params));
    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(SERIAL_PORT_USART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER);
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.extraServos = currentProfile->gimbalConfig.gimbal_flags & GIMBAL_FORWARDAUX;
    pwm_params.motorPwmRate = masterConfig.motor_pwm_rate;
    pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;
    pwm_params.idlePulse = PULSE_1MS; // standard PWM for brushless ESC (default, overridden below)
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors
    pwm_params.servoCenterPulse = masterConfig.rxConfig.midrc;

    pwmRxInit(masterConfig.inputFilteringMode);

    pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params);

    mixerUsePWMOutputConfiguration(pwmOutputConfiguration);

    failsafe = failsafeInit(&masterConfig.rxConfig);
    beepcodeInit(failsafe);
    rxInit(&masterConfig.rxConfig, failsafe);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &currentProfile->gpsProfile,
            &currentProfile->pidProfile
        );
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        Sonar_init();
    }
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors, failsafe);

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY))
        initTelemetry();
#endif

    previousTime = micros();

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    // Check battery type/voltage
    if (feature(FEATURE_VBAT))
        batteryInit(&masterConfig.batteryConfig);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayEnablePageCycling();
#endif
    }
#endif
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialTotalBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

int main(void) {
    init();

    while (1) {
        loop();
        processLoopback();
    }
}
コード例 #12
0
int main(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;
    drv_adc_config_t adc_params;

#if 0
    // PC12, PA15
    // using this to write asm for bootloader :)
    RCC->APB2ENR |= RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO; // GPIOA/C+AFIO only
    AFIO->MAPR &= 0xF0FFFFFF;
    AFIO->MAPR = 0x02000000;
    GPIOA->CRH = 0x34444444; // PIN 15 Output 50MHz
    GPIOA->BRR = 0x8000; // set low 15
    GPIOC->CRH = 0x44434444; // PIN 12 Output 50MHz
    GPIOC->BRR = 0x1000; // set low 12
#endif

#if 0
    // using this to write asm for bootloader :)
    RCC->APB2ENR |= RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO; // GPIOB + AFIO
    AFIO->MAPR &= 0xF0FFFFFF;
    AFIO->MAPR = 0x02000000;
    GPIOB->BRR = 0x18; // set low 4 & 3
    GPIOB->CRL = 0x44433444; // PIN 4 & 3 Output 50MHz
#endif

    systemInit();
		#ifdef USE_LAME_PRINTF
    init_printf(NULL, _putc);
		#endif

    checkFirstTime(false);
    readEEPROM();

    // configure power ADC
    if (mcfg.power_adc_channel > 0 && (mcfg.power_adc_channel == 1 || mcfg.power_adc_channel == 9))
        adc_params.powerAdcChannel = mcfg.power_adc_channel;
    else {
        adc_params.powerAdcChannel = 0;
        mcfg.power_adc_channel = 0;
    }

    adcInit(&adc_params);

    // We have these sensors; SENSORS_SET defined in board.h depending on hardware platform
    sensorsSet(SENSORS_SET);

    mixerInit(); // this will set useServo var depending on mixer type
    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (mcfg.mixerConfiguration == MULTITYPE_AIRPLANE || mcfg.mixerConfiguration == MULTITYPE_FLYING_WING)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
    pwm_params.useUART = feature(FEATURE_GPS) || feature(FEATURE_SPEKTRUM); // spektrum support uses UART too
    pwm_params.usePPM = feature(FEATURE_PPM);
    pwm_params.enableInput = !feature(FEATURE_SPEKTRUM); // disable inputs if using spektrum
    pwm_params.useServos = useServo;
    pwm_params.extraServos = cfg.gimbal_flags & GIMBAL_FORWARDAUX;
    pwm_params.motorPwmRate = mcfg.motor_pwm_rate;
    pwm_params.servoPwmRate = mcfg.servo_pwm_rate;
    pwm_params.failsafeThreshold = cfg.failsafe_detect_threshold;
    switch (mcfg.power_adc_channel) {
        case 1:
            pwm_params.adcChannel = PWM2;
            break;
        case 9:
            pwm_params.adcChannel = PWM8;
            break;
        default:
            pwm_params.adcChannel = 0;
        break;
    }

    pwmInit(&pwm_params);

    // configure PWM/CPPM read function. spektrum below will override that
    rcReadRawFunc = pwmReadRawRC;

    if (feature(FEATURE_SPEKTRUM)) {
        spektrumInit();
        rcReadRawFunc = spektrumReadRawRC;
    } else {
        // spektrum and GPS are mutually exclusive
        // Optional GPS - available in both PPM and PWM input mode, in PWM input, reduces number of available channels by 2.
        if (feature(FEATURE_GPS))
            gpsInit(mcfg.gps_baudrate);
    }
#ifdef SONAR
    // sonar stuff only works with PPM
    if (feature(FEATURE_PPM)) {
        if (feature(FEATURE_SONAR))
            Sonar_init();
    }
#endif

    LED1_ON;
    LED0_OFF;
    for (i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

    // drop out any sensors that don't seem to work, init all the others. halt if gyro is dead.
    sensorsAutodetect();
    imuInit(); // Mag is initialized inside imuInit

    // Check battery type/voltage
    if (feature(FEATURE_VBAT))
        batteryInit();

    serialInit(mcfg.serial_baudrate);

    previousTime = micros();
    if (mcfg.mixerConfiguration == MULTITYPE_GIMBAL)
        calibratingA = 400;
    calibratingG = 1000;
    calibratingB = 200;             // 10 seconds init_delay + 200 * 25 ms = 15 seconds before ground pressure settles
    f.SMALL_ANGLES_25 = 1;

    // loopy
    while (1) {
        loop();
    }
}
コード例 #13
0
void BlockLocalPositionEstimator::update()
{

	// wait for a sensor update, check for exit condition every 100 ms
	int ret = px4_poll(_polls, 3, 100);

	if (ret < 0) {
		/* poll error, count it in perf */
		perf_count(_err_perf);
		return;
	}

	uint64_t newTimeStamp = hrt_absolute_time();
	float dt = (newTimeStamp - _timeStamp) / 1.0e6f;
	_timeStamp = newTimeStamp;

	// set dt for all child blocks
	setDt(dt);

	// auto-detect connected rangefinders while not armed
	bool armedState = _sub_armed.get().armed;

	if (!armedState && (_sub_lidar == NULL || _sub_sonar == NULL)) {
		detectDistanceSensors();
	}

	// reset pos, vel, and terrain on arming
	if (!_lastArmedState && armedState) {

		// we just armed, we are at home position on the ground
		_x(X_x) = 0;
		_x(X_y) = 0;

		// the pressure altitude of home may have drifted, so we don't
		// reset z to zero

		// reset flow integral
		_flowX = 0;
		_flowY = 0;

		// we aren't moving, all velocities are zero
		_x(X_vx) = 0;
		_x(X_vy) = 0;
		_x(X_vz) = 0;

		// assume we are on the ground, so terrain alt is local alt
		_x(X_tz) = _x(X_z);

		// reset lowpass filter as well
		_xLowPass.setState(_x);
	}

	_lastArmedState = armedState;

	// see which updates are available
	bool flowUpdated = _sub_flow.updated();
	bool paramsUpdated = _sub_param_update.updated();
	bool baroUpdated = _sub_sensor.updated();
	bool gpsUpdated = _gps_on.get() && _sub_gps.updated();
	bool homeUpdated = _sub_home.updated();
	bool visionUpdated = _vision_on.get() && _sub_vision_pos.updated();
	bool mocapUpdated = _sub_mocap.updated();
	bool lidarUpdated = (_sub_lidar != NULL) && _sub_lidar->updated();
	bool sonarUpdated = (_sub_sonar != NULL) && _sub_sonar->updated();

	// get new data
	updateSubscriptions();

	// update parameters
	if (paramsUpdated) {
		updateParams();
		updateSSParams();
	}

	// update home position projection
	if (homeUpdated) {
		updateHome();
	}

	// is xy valid?
	bool xy_stddev_ok = sqrtf(math::max(_P(X_x, X_x), _P(X_y, X_y))) < _xy_pub_thresh.get();

	if (_validXY) {
		// if valid and gps has timed out, set to not valid
		if (!xy_stddev_ok && !_gpsInitialized) {
			_validXY = false;
		}

	} else {
		if (xy_stddev_ok) {
			_validXY = true;
		}
	}

	// is z valid?
	bool z_stddev_ok = sqrtf(_P(X_z, X_z)) < _z_pub_thresh.get();

	if (_validZ) {
		// if valid and baro has timed out, set to not valid
		if (!z_stddev_ok && !_baroInitialized) {
			_validZ = false;
		}

	} else {
		if (z_stddev_ok) {
			_validZ = true;
		}
	}

	// is terrain valid?
	bool tz_stddev_ok = sqrtf(_P(X_tz, X_tz)) < _z_pub_thresh.get();

	if (_validTZ) {
		if (!tz_stddev_ok) {
			_validTZ = false;
		}

	} else {
		if (tz_stddev_ok) {
			_validTZ = true;
		}
	}

	// timeouts
	if (_validXY) {
		_time_last_xy = _timeStamp;
	}

	if (_validZ) {
		_time_last_z = _timeStamp;
	}

	if (_validTZ) {
		_time_last_tz = _timeStamp;
	}

	// check timeouts
	checkTimeouts();

	// if we have no lat, lon initialize projection at 0,0
	if (_validXY && !_map_ref.init_done) {
		map_projection_init(&_map_ref,
				    _init_home_lat.get(),
				    _init_home_lon.get());
	}

	// reinitialize x if necessary
	bool reinit_x = false;

	for (int i = 0; i < n_x; i++) {
		// should we do a reinit
		// of sensors here?
		// don't want it to take too long
		if (!PX4_ISFINITE(_x(i))) {
			reinit_x = true;
			break;
		}
	}

	if (reinit_x) {
		for (int i = 0; i < n_x; i++) {
			_x(i) = 0;
		}

		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] reinit x");
	}

	// reinitialize P if necessary
	bool reinit_P = false;

	for (int i = 0; i < n_x; i++) {
		for (int j = 0; j < n_x; j++) {
			if (!PX4_ISFINITE(_P(i, j))) {
				reinit_P = true;
				break;
			}
		}

		if (reinit_P) { break; }
	}

	if (reinit_P) {
		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] reinit P");
		initP();
	}

	// do prediction
	predict();

	// sensor corrections/ initializations
	if (gpsUpdated) {
		if (!_gpsInitialized) {
			gpsInit();

		} else {
			gpsCorrect();
		}
	}

	if (baroUpdated) {
		if (!_baroInitialized) {
			baroInit();

		} else {
			baroCorrect();
		}
	}

	if (lidarUpdated) {
		if (!_lidarInitialized) {
			lidarInit();

		} else {
			lidarCorrect();
		}
	}

	if (sonarUpdated) {
		if (!_sonarInitialized) {
			sonarInit();

		} else {
			sonarCorrect();
		}
	}

	if (flowUpdated) {
		if (!_flowInitialized) {
			flowInit();

		} else {
			perf_begin(_loop_perf);// TODO
			flowCorrect();
			//perf_count(_interval_perf);
			perf_end(_loop_perf);
		}
	}

	if (visionUpdated) {
		if (!_visionInitialized) {
			visionInit();

		} else {
			visionCorrect();
		}
	}

	if (mocapUpdated) {
		if (!_mocapInitialized) {
			mocapInit();

		} else {
			mocapCorrect();
		}
	}

	if (_altHomeInitialized) {
		// update all publications if possible
		publishLocalPos();
		publishEstimatorStatus();

		if (_validXY) {
			publishGlobalPos();
		}
	}

	// propagate delayed state, no matter what
	// if state is frozen, delayed state still
	// needs to be propagated with frozen state
	float dt_hist = 1.0e-6f * (_timeStamp - _time_last_hist);

	if (_time_last_hist == 0 ||
	    (dt_hist > HIST_STEP)) {
		_tDelay.update(Scalar<uint64_t>(_timeStamp));
		_xDelay.update(_x);
		_time_last_hist = _timeStamp;
	}
}
コード例 #14
0
void BlockLocalPositionEstimator::update()
{

	// wait for a sensor update, check for exit condition every 100 ms
	int ret = px4_poll(_polls, 3, 100);

	if (ret < 0) {
		/* poll error, count it in perf */
		perf_count(_err_perf);
		return;
	}

	uint64_t newTimeStamp = hrt_absolute_time();
	float dt = (newTimeStamp - _timeStamp) / 1.0e6f;
	_timeStamp = newTimeStamp;

	// set dt for all child blocks
	setDt(dt);

	// auto-detect connected rangefinders while not armed
	bool armedState = _sub_armed.get().armed;

	if (!armedState && (_sub_lidar == NULL || _sub_sonar == NULL)) {
		detectDistanceSensors();
	}

	// reset pos, vel, and terrain on arming

	// XXX this will be re-enabled for indoor use cases using a
	// selection param, but is really not helping outdoors
	// right now.

	// if (!_lastArmedState && armedState) {

	// 	// we just armed, we are at origin on the ground
	// 	_x(X_x) = 0;
	// 	_x(X_y) = 0;
	// 	// reset Z or not? _x(X_z) = 0;

	// 	// we aren't moving, all velocities are zero
	// 	_x(X_vx) = 0;
	// 	_x(X_vy) = 0;
	// 	_x(X_vz) = 0;

	// 	// assume we are on the ground, so terrain alt is local alt
	// 	_x(X_tz) = _x(X_z);

	// 	// reset lowpass filter as well
	// 	_xLowPass.setState(_x);
	// 	_aglLowPass.setState(0);
	// }

	_lastArmedState = armedState;

	// see which updates are available
	bool flowUpdated = _sub_flow.updated();
	bool paramsUpdated = _sub_param_update.updated();
	bool baroUpdated = _sub_sensor.updated();
	bool gpsUpdated = _gps_on.get() && _sub_gps.updated();
	bool visionUpdated = _vision_on.get() && _sub_vision_pos.updated();
	bool mocapUpdated = _sub_mocap.updated();
	bool lidarUpdated = (_sub_lidar != NULL) && _sub_lidar->updated();
	bool sonarUpdated = (_sub_sonar != NULL) && _sub_sonar->updated();
	bool landUpdated = (
				   (_sub_land.get().landed ||
				    ((!_sub_armed.get().armed) && (!_sub_land.get().freefall)))
				   && (!(_lidarInitialized || _mocapInitialized || _visionInitialized || _sonarInitialized))
				   && ((_timeStamp - _time_last_land) > 1.0e6f / LAND_RATE));

	// get new data
	updateSubscriptions();

	// update parameters
	if (paramsUpdated) {
		updateParams();
		updateSSParams();
	}

	// is xy valid?
	bool vxy_stddev_ok = false;

	if (math::max(_P(X_vx, X_vx), _P(X_vy, X_vy)) < _vxy_pub_thresh.get()*_vxy_pub_thresh.get()) {
		vxy_stddev_ok = true;
	}

	if (_validXY) {
		// if valid and gps has timed out, set to not valid
		if (!vxy_stddev_ok && !_gpsInitialized) {
			_validXY = false;
		}

	} else {
		if (vxy_stddev_ok) {
			if (_flowInitialized || _gpsInitialized || _visionInitialized || _mocapInitialized) {
				_validXY = true;
			}
		}
	}

	// is z valid?
	bool z_stddev_ok = sqrtf(_P(X_z, X_z)) < _z_pub_thresh.get();

	if (_validZ) {
		// if valid and baro has timed out, set to not valid
		if (!z_stddev_ok && !_baroInitialized) {
			_validZ = false;
		}

	} else {
		if (z_stddev_ok) {
			_validZ = true;
		}
	}

	// is terrain valid?
	bool tz_stddev_ok = sqrtf(_P(X_tz, X_tz)) < _z_pub_thresh.get();

	if (_validTZ) {
		if (!tz_stddev_ok) {
			_validTZ = false;
		}

	} else {
		if (tz_stddev_ok) {
			_validTZ = true;
		}
	}

	// timeouts
	if (_validXY) {
		_time_last_xy = _timeStamp;
	}

	if (_validZ) {
		_time_last_z = _timeStamp;
	}

	if (_validTZ) {
		_time_last_tz = _timeStamp;
	}

	// check timeouts
	checkTimeouts();

	// if we have no lat, lon initialize projection at 0,0
	if (_validXY && !_map_ref.init_done) {
		map_projection_init(&_map_ref,
				    _init_origin_lat.get(),
				    _init_origin_lon.get());
	}

	// reinitialize x if necessary
	bool reinit_x = false;

	for (int i = 0; i < n_x; i++) {
		// should we do a reinit
		// of sensors here?
		// don't want it to take too long
		if (!PX4_ISFINITE(_x(i))) {
			reinit_x = true;
			mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] reinit x, x(%d) not finite", i);
			break;
		}
	}

	if (reinit_x) {
		for (int i = 0; i < n_x; i++) {
			_x(i) = 0;
		}

		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] reinit x");
	}

	// force P symmetry and reinitialize P if necessary
	bool reinit_P = false;

	for (int i = 0; i < n_x; i++) {
		for (int j = 0; j <= i; j++) {
			if (!PX4_ISFINITE(_P(i, j))) {
				reinit_P = true;
			}

			if (i == j) {
				// make sure diagonal elements are positive
				if (_P(i, i) <= 0) {
					reinit_P = true;
				}

			} else {
				// copy elememnt from upper triangle to force
				// symmetry
				_P(j, i) = _P(i, j);
			}

			if (reinit_P) { break; }
		}

		if (reinit_P) { break; }
	}

	if (reinit_P) {
		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] reinit P");
		initP();
	}

	// do prediction
	predict();

	// sensor corrections/ initializations
	if (gpsUpdated) {
		if (!_gpsInitialized) {
			gpsInit();

		} else {
			gpsCorrect();
		}
	}

	if (baroUpdated) {
		if (!_baroInitialized) {
			baroInit();

		} else {
			baroCorrect();
		}
	}

	if (lidarUpdated) {
		if (!_lidarInitialized) {
			lidarInit();

		} else {
			lidarCorrect();
		}
	}

	if (sonarUpdated) {
		if (!_sonarInitialized) {
			sonarInit();

		} else {
			sonarCorrect();
		}
	}

	if (flowUpdated) {
		if (!_flowInitialized) {
			flowInit();

		} else {
			perf_begin(_loop_perf);// TODO
			flowCorrect();
			//perf_count(_interval_perf);
			perf_end(_loop_perf);
		}
	}

	if (visionUpdated) {
		if (!_visionInitialized) {
			visionInit();

		} else {
			visionCorrect();
		}
	}

	if (mocapUpdated) {
		if (!_mocapInitialized) {
			mocapInit();

		} else {
			mocapCorrect();
		}
	}

	if (landUpdated) {
		if (!_landInitialized) {
			landInit();

		} else {
			landCorrect();
		}
	}

	if (_altOriginInitialized) {
		// update all publications if possible
		publishLocalPos();
		publishEstimatorStatus();
		_pub_innov.update();

		if (_validXY) {
			publishGlobalPos();
		}
	}

	// propagate delayed state, no matter what
	// if state is frozen, delayed state still
	// needs to be propagated with frozen state
	float dt_hist = 1.0e-6f * (_timeStamp - _time_last_hist);

	if (_time_last_hist == 0 ||
	    (dt_hist > HIST_STEP)) {
		_tDelay.update(Scalar<uint64_t>(_timeStamp));
		_xDelay.update(_x);
		_time_last_hist = _timeStamp;
	}
}
コード例 #15
0
ファイル: main.c プロジェクト: philip-knight/SkyoverCF
void init(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(masterConfig.emf_avoidance);

    detectHardwareRevision();

    systemInit();

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

    ledInit();

    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL));

    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer);

    memset(&pwm_params, 0, sizeof(pwm_params));

    const sonarHardware_t *sonarHardware = NULL;

    if (feature(FEATURE_SONAR)) {
        sonarHardware = sonarGetHardwareConfiguration(&masterConfig.batteryConfig);
        sonarGPIOConfig_t sonarGPIOConfig = {
            .gpio = SONAR_GPIO,
            .triggerPin = sonarHardware->echo_pin,
            .echoPin = sonarHardware->trigger_pin,
        };
        pwm_params.sonarGPIOConfig = &sonarGPIOConfig;
    }

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;

    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);

    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER)
        && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC;
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);

    pwm_params.useSonar = feature(FEATURE_SONAR);


    pwm_params.useServos = isMixerUsingServos();
    pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
    pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse;
    pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;

    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.motorPwmRate = masterConfig.motor_pwm_rate;
    pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand;
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors

    pwmRxInit(masterConfig.inputFilteringMode);

    pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params);

    mixerUsePWMOutputConfiguration(pwmOutputConfiguration);

    if (!feature(FEATURE_ONESHOT125))
        motorControlEnable = true;

    systemState |= SYSTEM_STATE_MOTORS_READY;

    beeperConfig_t beeperConfig = {
        .gpioPeripheral = BEEP_PERIPHERAL,
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,

        .gpioMode = Mode_Out_PP,
        .isInverted = true
    };

    beeperInit(&beeperConfig);

    initInverter();

    spiInit(SPI1);
    spiInit(SPI2);

    updateHardwareRevision();


    serialRemovePort(SERIAL_PORT_USART3);

    i2cInit(I2C_DEVICE);

    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = true;
    // optional ADC5 input on rev.5 hardware

    adcInit(&adc_params);


    initBoardAlignment(&masterConfig.boardAlignment);

    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }

    if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, currentProfile->mag_declination)) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    LED1_ON;
    LED0_OFF;
    for (i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

    if (sensors(SENSOR_MAG))
        compassInit();

    imuInit();

    mspInit(&masterConfig.serialConfig);

    cliInit(&masterConfig.serialConfig);

    failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);

    rxInit(&masterConfig.rxConfig);

    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &currentProfile->gpsProfile,
            &currentProfile->pidProfile
        );
    }

    if (feature(FEATURE_SONAR)) {
        sonarInit(sonarHardware);
    }

    ledStripInit(masterConfig.ledConfigs, masterConfig.colors);

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }

    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }


    m25p16_init();

    flashfsInit();

    initBlackbox();

    previousTime = micros();

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);

    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit(&masterConfig.batteryConfig);

    if (feature(FEATURE_DISPLAY)) {
        displayResetPageCycling();
        displayEnablePageCycling();
    }

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    systemState |= SYSTEM_STATE_READY;
}

int main(void) {
    init();
    //Mine
    printf("\r\n");
    printf("Init Finished!\r\n");   
    printf("System Init need %d ms\r\n", millis());  

    printf("#############     Begin Test     ###############\r\n");

    printf("#############      End Test      ###############\r\n");
    while (1) {
        loop();
    }
}

void HardFault_Handler(void)
{
    // fall out of the sky
    uint8_t requiredState = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_MOTORS_READY;
    if ((systemState & requiredState) == requiredState) {
        stopMotors();
    }
    while (1);
}
コード例 #16
0
ファイル: main.c プロジェクト: HuyCuongBuiCong/baseflight
int main(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;
    drv_adc_config_t adc_params;
    bool sensorsOK = false;
    initEEPROM();
    readEEPROM();
    SetSysClock(mcfg.emf_avoidance);
    //hw_revision = 1;
    systemInit();
    delay(100);
    activateConfig();
    i2cInit(I2C_DEVICE);
    // Do muc pin
    adc_params.powerAdcChannel = 0;
    mcfg.power_adc_channel = 0;


    // configure rssi ADC
    adc_params.rssiAdcChannel = 0;
    mcfg.rssi_adc_channel = 0;

    adcInit(&adc_params);
    // Kiem tra Volt cua Pin
    batteryInit();
    initBoardAlignment();
    sensorsSet(SENSORS_SET);
    sensorsOK = sensorsAutodetect();

    imuInit();
    mixerInit(); // xem lai
    serialInit(115200);//(mcfg.serial_baudrate);

    pwm_params.motorPwmRate = 400;
    pwm_params.pwmFilter = mcfg.pwm_filter;
    pwm_params.idlePulse = PULSE_1MS; // standard PWM for brushless ESC
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors
    pwm_params.syncPWM = feature(FEATURE_SYNCPWM);
    pwm_params.fastPWM = feature(FEATURE_FASTPWM);
    pwm_params.servoCenterPulse = mcfg.midrc;
    pwm_params.failsafeThreshold = cfg.failsafe_detect_threshold;
    pwm_params.adcChannel = 0;
    pwmInit(&pwm_params);
    for (i = 0; i < RC_CHANS; i++)
        rcData[i] = 1502;
    rcReadRawFunc = pwmReadRawRC;
    core.numRCChannels = MAX_INPUTS;
    gpsInit(mcfg.gps_baudrate);


    previousTime = micros();
    if (mcfg.mixerConfiguration == MULTITYPE_GIMBAL)
        calibratingA = CALIBRATING_ACC_CYCLES;
    calibratingG = CALIBRATING_GYRO_CYCLES;
    calibratingB = CALIBRATING_BARO_CYCLES;             // 10 seconds init_delay + 200 * 25 ms = 15 seconds before ground pressure settles
    f.SMALL_ANGLE = 1;

    while (1) {
        loop();
    }
}
コード例 #17
0
ファイル: main.c プロジェクト: Ebeo/baseflight-fi4
int main(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;

#if 0
    // PC12, PA15
    // using this to write asm for bootloader :)
    RCC->APB2ENR |= RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO; // GPIOA/C+AFIO only
    AFIO->MAPR &= 0xF0FFFFFF;
    AFIO->MAPR = 0x02000000;
    GPIOA->CRH = 0x34444444; // PIN 15 Output 50MHz
    GPIOA->BRR = 0x8000; // set low 15
    GPIOC->CRH = 0x44434444; // PIN 12 Output 50MHz
    GPIOC->BRR = 0x1000; // set low 12
#endif

#if 0
    // using this to write asm for bootloader :)
    RCC->APB2ENR |= RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO; // GPIOB + AFIO
    AFIO->MAPR &= 0xF0FFFFFF;
    AFIO->MAPR = 0x02000000;
    GPIOB->BRR = 0x18; // set low 4 & 3
    GPIOB->CRL = 0x44433444; // PIN 4 & 3 Output 50MHz
#endif

    systemInit();

    readEEPROM();
    checkFirstTime(false);

    serialInit(cfg.serial_baudrate);

    // We have these sensors
#ifndef FY90Q
    // AfroFlight32
    sensorsSet(SENSOR_ACC | SENSOR_BARO | SENSOR_MAG);
#else
    // FY90Q
    sensorsSet(SENSOR_ACC);
#endif

    mixerInit(); // this will set useServo var depending on mixer type
    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (cfg.mixerConfiguration == MULTITYPE_AIRPLANE || cfg.mixerConfiguration == MULTITYPE_FLYING_WING)
        pwm_params.airplane = true;
    pwm_params.usePPM = feature(FEATURE_PPM);
    pwm_params.enableInput = !feature(FEATURE_SPEKTRUM); // disable inputs if using spektrum
    pwm_params.useServos = useServo;
    pwm_params.extraServos = cfg.gimbal_flags & GIMBAL_FORWARDAUX;
    pwm_params.motorPwmRate = cfg.motor_pwm_rate;
    pwm_params.servoPwmRate = cfg.servo_pwm_rate;

    pwmInit(&pwm_params);

    // configure PWM/CPPM read function. spektrum will override that
    rcReadRawFunc = pwmReadRawRC;

    LED1_ON;
    LED0_OFF;
    for (i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

    // drop out any sensors that don't seem to work, init all the others. halt if gyro is dead.
    sensorsAutodetect();
    imuInit(); // Mag is initialized inside imuInit

    // Check battery type/voltage
    if (feature(FEATURE_VBAT))
        batteryInit();

    if (feature(FEATURE_SPEKTRUM)) {
        spektrumInit();
        rcReadRawFunc = spektrumReadRawRC;
    } else {
        // spektrum and GPS are mutually exclusive
        // Optional GPS - available only when using PPM, otherwise required pins won't be usable
        if (feature(FEATURE_PPM)) {
            if (feature(FEATURE_GPS))
                gpsInit(cfg.gps_baudrate);
#ifdef SONAR
            if (feature(FEATURE_SONAR))
                Sonar_init();
#endif
        }
    }

    previousTime = micros();
    if (cfg.mixerConfiguration == MULTITYPE_GIMBAL)
        calibratingA = 400;
    calibratingG = 1000;
    f.SMALL_ANGLES_25 = 1;

    // loopy
    while (1) {
        loop();
    }
}
コード例 #18
0
ファイル: main.c プロジェクト: bluejayrc/betaflight
void init(void)
{
    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

    systemInit();

    //i2cSetOverclock(masterConfig.i2c_overclock);

    // initialize IO (needed for all IO operations)
    IOInitGlobal();

    debugMode = masterConfig.debug_mode;

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

#ifdef ALIENFLIGHTF3
    ledInit(hardwareRevision == AFF3_REV_1 ? false : true);
#else
    ledInit(false);
#endif
    LED2_ON;

#ifdef USE_EXTI
    EXTIInit();
#endif

#if defined(BUTTONS)
    gpio_config_t buttonAGpioConfig = {
        BUTTON_A_PIN,
        Mode_IPU,
        Speed_2MHz
    };
    gpioInit(BUTTON_A_PORT, &buttonAGpioConfig);

    gpio_config_t buttonBGpioConfig = {
        BUTTON_B_PIN,
        Mode_IPU,
        Speed_2MHz
    };
    gpioInit(BUTTON_B_PORT, &buttonBGpioConfig);

    // Check status of bind plug and exit if not active
    delayMicroseconds(10);  // allow GPIO configuration to settle

    if (!isMPUSoftReset()) {
        uint8_t secondsRemaining = 5;
        bool bothButtonsHeld;
        do {
            bothButtonsHeld = !digitalIn(BUTTON_A_PORT, BUTTON_A_PIN) && !digitalIn(BUTTON_B_PORT, BUTTON_B_PIN);
            if (bothButtonsHeld) {
                if (--secondsRemaining == 0) {
                    resetEEPROM();
                    systemReset();
                }
                delay(1000);
                LED0_TOGGLE;
            }
        } while (bothButtonsHeld);
    }
#endif

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    dmaInit();

#if defined(AVOID_UART1_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART1 : SERIAL_PORT_NONE);
#elif defined(AVOID_UART2_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART2 : SERIAL_PORT_NONE);
#elif defined(AVOID_UART3_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART3 : SERIAL_PORT_NONE);
#else
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), SERIAL_PORT_NONE);
#endif

#ifdef USE_SERVOS
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer);
#else
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer);
#endif

    drv_pwm_config_t pwm_params;
    memset(&pwm_params, 0, sizeof(pwm_params));

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        const sonarHardware_t *sonarHardware = sonarGetHardwareConfiguration(masterConfig.batteryConfig.currentMeterType);
        if (sonarHardware) {
            pwm_params.useSonar = true;
            pwm_params.sonarIOConfig.triggerTag = sonarHardware->triggerTag;
            pwm_params.sonarIOConfig.echoTag = sonarHardware->echoTag;
        }
    }
#endif

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_UART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#ifdef STM32F303xC
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3);
#endif
#if defined(USE_UART2) && defined(STM32F40_41xxx)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#if defined(USE_UART6) && defined(STM32F40_41xxx)
    pwm_params.useUART6 = doesConfigurationUsePort(SERIAL_PORT_USART6);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER)
        && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC;
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);

#ifdef USE_SERVOS
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
    pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse;
    pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;
#endif

    bool use_unsyncedPwm = masterConfig.use_unsyncedPwm || masterConfig.motor_pwm_protocol == PWM_TYPE_CONVENTIONAL || masterConfig.motor_pwm_protocol == PWM_TYPE_BRUSHED;

    // Configurator feature abused for enabling Fast PWM
    pwm_params.useFastPwm = (masterConfig.motor_pwm_protocol != PWM_TYPE_CONVENTIONAL && masterConfig.motor_pwm_protocol != PWM_TYPE_BRUSHED);
    pwm_params.pwmProtocolType = masterConfig.motor_pwm_protocol;
    pwm_params.motorPwmRate = use_unsyncedPwm ? masterConfig.motor_pwm_rate : 0;
    pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand;
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;

    if (masterConfig.motor_pwm_protocol == PWM_TYPE_BRUSHED) {
        featureClear(FEATURE_3D);
        pwm_params.idlePulse = 0; // brushed motors
    }
#ifdef CC3D
    pwm_params.useBuzzerP6 = masterConfig.use_buzzer_p6 ? true : false;
#endif
#ifndef SKIP_RX_PWM_PPM
    pwmRxInit(masterConfig.inputFilteringMode);
#endif

    // pwmInit() needs to be called as soon as possible for ESC compatibility reasons
    pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params);

    mixerUsePWMOutputConfiguration(pwmOutputConfiguration, use_unsyncedPwm);

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .ioTag = IO_TAG(BEEPER),
#ifdef BEEPER_INVERTED
        .isOD = false,
        .isInverted = true
#else
        .isOD = true,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.isOD = false;
        beeperConfig.isInverted = true;
    }
#endif
/* temp until PGs are implemented. */
#ifdef BLUEJAYF4
    if (hardwareRevision <= BJF4_REV2) {
        beeperConfig.ioTag = IO_TAG(BEEPER_OPT);
    }
#endif
#ifdef CC3D
    if (masterConfig.use_buzzer_p6 == 1)
        beeperConfig.ioTag = IO_TAG(BEEPER_OPT);
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef INVERTER
    initInverter();
#endif

#ifdef USE_BST
    bstInit(BST_DEVICE);
#endif

#ifdef USE_SPI
#ifdef USE_SPI_DEVICE_1
    spiInit(SPIDEV_1);
#endif
#ifdef USE_SPI_DEVICE_2
    spiInit(SPIDEV_2);
#endif
#ifdef USE_SPI_DEVICE_3
#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_2) {
        spiInit(SPIDEV_3);
    }
#else
    spiInit(SPIDEV_3);
#endif
#endif
#endif

#ifdef VTX
    vtxInit();
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_USART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif

#if defined(SPRACINGF3MINI) || defined(OMNIBUS) || defined(X_RACERSPI)
#if defined(SONAR) && defined(USE_SOFTSERIAL1)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL1);
    }
#endif
#endif

#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE);
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif


    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

#ifdef USE_RTC6705
    if (feature(FEATURE_VTX)) {
        rtc6705_soft_spi_init();
        current_vtx_channel = masterConfig.vtx_channel;
        rtc6705_soft_spi_set_channel(vtx_freq[current_vtx_channel]);
        rtc6705_soft_spi_set_rf_power(masterConfig.vtx_power);
    }
#endif

#ifdef OSD
    if (feature(FEATURE_OSD)) {
        osdInit();
    }
#endif

    if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig,
            masterConfig.acc_hardware,
            masterConfig.mag_hardware,
            masterConfig.baro_hardware,
            masterConfig.mag_declination,
            masterConfig.gyro_lpf,
            masterConfig.gyro_sync_denom)) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    LED1_ON;
    LED0_OFF;
    LED2_OFF;

    for (int i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        if (!(getBeeperOffMask() & (1 << (BEEPER_SYSTEM_INIT - 1)))) BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    imuInit();

    mspInit(&masterConfig.serialConfig);

#ifdef USE_CLI
    cliInit(&masterConfig.serialConfig);
#endif

    failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);

    rxInit(&masterConfig.rxConfig, masterConfig.modeActivationConditions);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &masterConfig.gpsProfile,
            &currentProfile->pidProfile
        );
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit();
    }
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors, masterConfig.modeColors, &masterConfig.specialColors);

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USB_CABLE_DETECTION
    usbCableDetectInit();
#endif

#ifdef TRANSPONDER
    if (feature(FEATURE_TRANSPONDER)) {
        transponderInit(masterConfig.transponderData);
        transponderEnable();
        transponderStartRepeating();
        systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED;
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init(IOTAG_NONE);
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init(IOTAG_NONE);
#endif

    flashfsInit();
#endif

#ifdef USE_SDCARD
    bool sdcardUseDMA = false;

    sdcardInsertionDetectInit();

#ifdef SDCARD_DMA_CHANNEL_TX

#if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL)
    // Ensure the SPI Tx DMA doesn't overlap with the led strip
#ifdef STM32F4
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_STREAM;
#else
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL;
#endif
#else
    sdcardUseDMA = true;
#endif

#endif

    sdcard_init(sdcardUseDMA);

    afatfs_init();
#endif

    if (masterConfig.gyro_lpf > 0 && masterConfig.gyro_lpf < 7) {
        masterConfig.pid_process_denom = 1; // When gyro set to 1khz always set pid speed 1:1 to sampling speed
        masterConfig.gyro_sync_denom = 1;
    }

    setTargetPidLooptime(gyro.targetLooptime * masterConfig.pid_process_denom); // Initialize pid looptime

#ifdef BLACKBOX
    initBlackbox();
#endif

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles();
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit(&masterConfig.batteryConfig);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

void main_init(void)
{
    init();

    /* Setup scheduler */
    schedulerInit();
    rescheduleTask(TASK_GYROPID, gyro.targetLooptime);
    setTaskEnabled(TASK_GYROPID, true);

    if (sensors(SENSOR_ACC)) {
        setTaskEnabled(TASK_ACCEL, true);
        switch (gyro.targetLooptime) {  // Switch statement kept in place to change acc rates in the future
        case 500:
        case 375:
        case 250:
        case 125:
            accTargetLooptime = 1000;
            break;
        default:
        case 1000:
#ifdef STM32F10X
            accTargetLooptime = 1000;
#else
            accTargetLooptime = 1000;
#endif
        }
        rescheduleTask(TASK_ACCEL, accTargetLooptime);
    }

    setTaskEnabled(TASK_ATTITUDE, sensors(SENSOR_ACC));
    setTaskEnabled(TASK_SERIAL, true);
#ifdef BEEPER
    setTaskEnabled(TASK_BEEPER, true);
#endif
    setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_CURRENT_METER));
    setTaskEnabled(TASK_RX, true);
#ifdef GPS
    setTaskEnabled(TASK_GPS, feature(FEATURE_GPS));
#endif
#ifdef MAG
    setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG));
#if defined(USE_SPI) && defined(USE_MAG_AK8963)
    // fixme temporary solution for AK6983 via slave I2C on MPU9250
    rescheduleTask(TASK_COMPASS, 1000000 / 40);
#endif
#endif
#ifdef BARO
    setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO));
#endif
#ifdef SONAR
    setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR));
#endif
#if defined(BARO) || defined(SONAR)
    setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || sensors(SENSOR_SONAR));
#endif
#ifdef DISPLAY
    setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY));
#endif
#ifdef TELEMETRY
    setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY));
    // Reschedule telemetry to 500hz for Jeti Exbus
    if (feature(FEATURE_TELEMETRY) || masterConfig.rxConfig.serialrx_provider == SERIALRX_JETIEXBUS) rescheduleTask(TASK_TELEMETRY, 2000);
#endif
#ifdef LED_STRIP
    setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP));
#endif
#ifdef TRANSPONDER
    setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER));
#endif
#ifdef OSD
    setTaskEnabled(TASK_OSD, feature(FEATURE_OSD));
#endif
#ifdef USE_BST
    setTaskEnabled(TASK_BST_MASTER_PROCESS, true);
#endif
}
コード例 #19
0
void BlockLocalPositionEstimator::update()
{
	// wait for a sensor update, check for exit condition every 100 ms
	int ret = px4_poll(_polls, 3, 100);

	if (ret < 0) {
		return;
	}

	uint64_t newTimeStamp = hrt_absolute_time();
	float dt = (newTimeStamp - _timeStamp) / 1.0e6f;
	_timeStamp = newTimeStamp;

	// set dt for all child blocks
	setDt(dt);

	// auto-detect connected rangefinders while not armed
	bool armedState = _sub_armed.get().armed;

	if (!armedState && (_sub_lidar == nullptr || _sub_sonar == nullptr)) {
		// detect distance sensors
		for (int i = 0; i < N_DIST_SUBS; i++) {
			uORB::Subscription<distance_sensor_s> *s = _dist_subs[i];

			if (s == _sub_lidar || s == _sub_sonar) { continue; }

			if (s->updated()) {
				s->update();

				if (s->get().timestamp == 0) { continue; }

				if (s->get().type == distance_sensor_s::MAV_DISTANCE_SENSOR_LASER &&
				    s->get().orientation == distance_sensor_s::ROTATION_DOWNWARD_FACING &&
				    _sub_lidar == nullptr) {
					_sub_lidar = s;
					mavlink_and_console_log_info(&mavlink_log_pub, "%sDownward-facing Lidar detected with ID %i", msg_label, i);

				} else if (s->get().type == distance_sensor_s::MAV_DISTANCE_SENSOR_ULTRASOUND &&
					   s->get().orientation == distance_sensor_s::ROTATION_DOWNWARD_FACING &&
					   _sub_sonar == nullptr) {
					_sub_sonar = s;
					mavlink_and_console_log_info(&mavlink_log_pub, "%sDownward-facing Sonar detected with ID %i", msg_label, i);
				}
			}
		}
	}

	// reset pos, vel, and terrain on arming

	// XXX this will be re-enabled for indoor use cases using a
	// selection param, but is really not helping outdoors
	// right now.

	// if (!_lastArmedState && armedState) {

	//      // we just armed, we are at origin on the ground
	//      _x(X_x) = 0;
	//      _x(X_y) = 0;
	//      // reset Z or not? _x(X_z) = 0;

	//      // we aren't moving, all velocities are zero
	//      _x(X_vx) = 0;
	//      _x(X_vy) = 0;
	//      _x(X_vz) = 0;

	//      // assume we are on the ground, so terrain alt is local alt
	//      _x(X_tz) = _x(X_z);

	//      // reset lowpass filter as well
	//      _xLowPass.setState(_x);
	//      _aglLowPass.setState(0);
	// }

	_lastArmedState = armedState;

	// see which updates are available
	bool paramsUpdated = _sub_param_update.updated();
	_baroUpdated = false;

	if ((_fusion.get() & FUSE_BARO) && _sub_sensor.updated()) {
		int32_t baro_timestamp_relative = _sub_sensor.get().baro_timestamp_relative;

		if (baro_timestamp_relative != _sub_sensor.get().RELATIVE_TIMESTAMP_INVALID) {
			uint64_t baro_timestamp = _sub_sensor.get().timestamp +	\
						  _sub_sensor.get().baro_timestamp_relative;

			if (baro_timestamp != _timeStampLastBaro) {
				_baroUpdated = true;
				_timeStampLastBaro = baro_timestamp;
			}
		}
	}

	_flowUpdated = (_fusion.get() & FUSE_FLOW) && _sub_flow.updated();
	_gpsUpdated = (_fusion.get() & FUSE_GPS) && _sub_gps.updated();
	_visionUpdated = (_fusion.get() & FUSE_VIS_POS) && _sub_vision_pos.updated();
	_mocapUpdated = _sub_mocap.updated();
	_lidarUpdated = (_sub_lidar != nullptr) && _sub_lidar->updated();
	_sonarUpdated = (_sub_sonar != nullptr) && _sub_sonar->updated();
	_landUpdated = landed() && ((_timeStamp - _time_last_land) > 1.0e6f / LAND_RATE);// throttle rate
	bool targetPositionUpdated = _sub_landing_target_pose.updated();

	// get new data
	updateSubscriptions();

	// update parameters
	if (paramsUpdated) {
		updateParams();
		updateSSParams();
	}

	// is xy valid?
	bool vxy_stddev_ok = false;

	if (math::max(_P(X_vx, X_vx), _P(X_vy, X_vy)) < _vxy_pub_thresh.get() * _vxy_pub_thresh.get()) {
		vxy_stddev_ok = true;
	}

	if (_estimatorInitialized & EST_XY) {
		// if valid and gps has timed out, set to not valid
		if (!vxy_stddev_ok && (_sensorTimeout & SENSOR_GPS)) {
			_estimatorInitialized &= ~EST_XY;
		}

	} else {
		if (vxy_stddev_ok) {
			if (!(_sensorTimeout & SENSOR_GPS)
			    || !(_sensorTimeout & SENSOR_FLOW)
			    || !(_sensorTimeout & SENSOR_VISION)
			    || !(_sensorTimeout & SENSOR_MOCAP)
			    || !(_sensorTimeout & SENSOR_LAND)
			    || !(_sensorTimeout & SENSOR_LAND_TARGET)
			   ) {
				_estimatorInitialized |= EST_XY;
			}
		}
	}

	// is z valid?
	bool z_stddev_ok = sqrtf(_P(X_z, X_z)) < _z_pub_thresh.get();

	if (_estimatorInitialized & EST_Z) {
		// if valid and baro has timed out, set to not valid
		if (!z_stddev_ok && (_sensorTimeout & SENSOR_BARO)) {
			_estimatorInitialized &= ~EST_Z;
		}

	} else {
		if (z_stddev_ok) {
			_estimatorInitialized |= EST_Z;
		}
	}

	// is terrain valid?
	bool tz_stddev_ok = sqrtf(_P(X_tz, X_tz)) < _z_pub_thresh.get();

	if (_estimatorInitialized & EST_TZ) {
		if (!tz_stddev_ok) {
			_estimatorInitialized &= ~EST_TZ;
		}

	} else {
		if (tz_stddev_ok) {
			_estimatorInitialized |= EST_TZ;
		}
	}

	// check timeouts
	checkTimeouts();

	// if we have no lat, lon initialize projection to LPE_LAT, LPE_LON parameters
	if (!_map_ref.init_done && (_estimatorInitialized & EST_XY) && _fake_origin.get()) {
		map_projection_init(&_map_ref,
				    _init_origin_lat.get(),
				    _init_origin_lon.get());

		// set timestamp when origin was set to current time
		_time_origin = _timeStamp;

		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] global origin init (parameter) : lat %6.2f lon %6.2f alt %5.1f m",
					     double(_init_origin_lat.get()), double(_init_origin_lon.get()), double(_altOrigin));
	}

	// reinitialize x if necessary
	bool reinit_x = false;

	for (int i = 0; i < n_x; i++) {
		// should we do a reinit
		// of sensors here?
		// don't want it to take too long
		if (!PX4_ISFINITE(_x(i))) {
			reinit_x = true;
			mavlink_and_console_log_info(&mavlink_log_pub, "%sreinit x, x(%d) not finite", msg_label, i);
			break;
		}
	}

	if (reinit_x) {
		for (int i = 0; i < n_x; i++) {
			_x(i) = 0;
		}

		mavlink_and_console_log_info(&mavlink_log_pub, "%sreinit x", msg_label);
	}

	// force P symmetry and reinitialize P if necessary
	bool reinit_P = false;

	for (int i = 0; i < n_x; i++) {
		for (int j = 0; j <= i; j++) {
			if (!PX4_ISFINITE(_P(i, j))) {
				mavlink_and_console_log_info(&mavlink_log_pub,
							     "%sreinit P (%d, %d) not finite", msg_label, i, j);
				reinit_P = true;
			}

			if (i == j) {
				// make sure diagonal elements are positive
				if (_P(i, i) <= 0) {
					mavlink_and_console_log_info(&mavlink_log_pub,
								     "%sreinit P (%d, %d) negative", msg_label, i, j);
					reinit_P = true;
				}

			} else {
				// copy elememnt from upper triangle to force
				// symmetry
				_P(j, i) = _P(i, j);
			}

			if (reinit_P) { break; }
		}

		if (reinit_P) { break; }
	}

	if (reinit_P) {
		initP();
	}

	// do prediction
	predict();

	// sensor corrections/ initializations
	if (_gpsUpdated) {
		if (_sensorTimeout & SENSOR_GPS) {
			gpsInit();

		} else {
			gpsCorrect();
		}
	}

	if (_baroUpdated) {
		if (_sensorTimeout & SENSOR_BARO) {
			baroInit();

		} else {
			baroCorrect();
		}
	}

	if (_lidarUpdated) {
		if (_sensorTimeout & SENSOR_LIDAR) {
			lidarInit();

		} else {
			lidarCorrect();
		}
	}

	if (_sonarUpdated) {
		if (_sensorTimeout & SENSOR_SONAR) {
			sonarInit();

		} else {
			sonarCorrect();
		}
	}

	if (_flowUpdated) {
		if (_sensorTimeout & SENSOR_FLOW) {
			flowInit();

		} else {
			flowCorrect();
		}
	}

	if (_visionUpdated) {
		if (_sensorTimeout & SENSOR_VISION) {
			visionInit();

		} else {
			visionCorrect();
		}
	}

	if (_mocapUpdated) {
		if (_sensorTimeout & SENSOR_MOCAP) {
			mocapInit();

		} else {
			mocapCorrect();
		}
	}

	if (_landUpdated) {
		if (_sensorTimeout & SENSOR_LAND) {
			landInit();

		} else {
			landCorrect();
		}
	}

	if (targetPositionUpdated) {
		if (_sensorTimeout & SENSOR_LAND_TARGET) {
			landingTargetInit();

		} else {
			landingTargetCorrect();
		}
	}

	if (_altOriginInitialized) {
		// update all publications if possible
		publishLocalPos();
		publishEstimatorStatus();
		_pub_innov.get().timestamp = _timeStamp;
		_pub_innov.update();

		if ((_estimatorInitialized & EST_XY) && (_map_ref.init_done || _fake_origin.get())) {
			publishGlobalPos();
		}
	}

	// propagate delayed state, no matter what
	// if state is frozen, delayed state still
	// needs to be propagated with frozen state
	float dt_hist = 1.0e-6f * (_timeStamp - _time_last_hist);

	if (_time_last_hist == 0 ||
	    (dt_hist > HIST_STEP)) {
		_tDelay.update(Scalar<uint64_t>(_timeStamp));
		_xDelay.update(_x);
		_time_last_hist = _timeStamp;
	}
}
コード例 #20
0
void init(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;
	
#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(masterConfig.emf_avoidance);
#endif
#ifdef STM32F40_41xxx
    SetSysClock();
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif
	
    systemInit();

    ledInit();

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL));

    mixerInit(masterConfig.mixerMode, masterConfig.customMixer);

    memset(&pwm_params, 0, sizeof(pwm_params));
    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_USART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#ifdef STM32F303xC
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3);
#endif
#if defined(USE_USART2) && defined(STM32F40_41xxx)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#if defined(USE_USART6) && defined(STM32F40_41xxx)
    pwm_params.useUART6 = doesConfigurationUsePort(SERIAL_PORT_USART6);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER)
        && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC;
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);
#ifdef SONAR
    pwm_params.useSonar = feature(FEATURE_SONAR);
#endif

#ifdef USE_SERVOS
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.extraServos = currentProfile->gimbalConfig.gimbal_flags & GIMBAL_FORWARDAUX;
    pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse;
    pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;
#endif

    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.motorPwmRate = masterConfig.motor_pwm_rate;
    pwm_params.idlePulse = PULSE_1MS; // standard PWM for brushless ESC (default, overridden below)
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors

    pwmRxInit(masterConfig.inputFilteringMode);

    pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params);

    mixerUsePWMOutputConfiguration(pwmOutputConfiguration);

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,
        .gpioPeripheral = BEEP_PERIPHERAL,
#ifdef BEEPER_INVERTED
        .gpioMode = Mode_Out_PP,
        .isInverted = true
#else
        .gpioMode = Mode_Out_OD,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.gpioMode = Mode_Out_PP;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
    spiInit(SPI3);
	spiInit(SPI4);
	spiInit(SPI5);
#endif
	
#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
#if defined(ANYFC) || defined(COLIBRI) || defined(REVO) || defined(STM32F4DISCOVERY)
    i2cInit(I2C_DEVICE_INT);
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
#ifdef I2C_DEVICE_EXT
        i2cInit(I2C_DEVICE_EXT);
#endif
    }
#endif
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif


    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

    if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, currentProfile->mag_declination)) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(3);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    LED1_ON;
    LED0_OFF;
    for (i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    imuInit();

    mspInit(&masterConfig.serialConfig);
    cliInit(&masterConfig.serialConfig);

    failsafeInit(&masterConfig.rxConfig);

    rxInit(&masterConfig.rxConfig);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &currentProfile->gpsProfile,
            &currentProfile->pidProfile
        );
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit(&masterConfig.batteryConfig);
    }
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors);

    if (feature(FEATURE_LED_STRIP)) {
#ifdef COLIBRI
        if (!doesConfigurationUsePort(SERIAL_PORT_USART1)) {
            ledStripEnable();
        }
#else
        ledStripEnable();
#endif
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init();
    }
#endif
#if defined(SPRACINGF3) || defined(CC3D) || defined(COLIBRI) || defined(REVO)
    m25p16_init();
#endif
    flashfsInit();
#endif

#ifdef BLACKBOX
	//initBlackbox();
#endif

    previousTime = micros();

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    //gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif
	
    // start all timers
    // TODO - not implemented yet
    //timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit(&masterConfig.batteryConfig);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif
	
    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialTotalBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

#include <stdio.h>
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_gpio.h"
GPIO_InitTypeDef GPIO_InitStruct;

int main(void) {
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

    GPIO_InitStruct.GPIO_Pin = GPIO_Pin_15 | GPIO_Pin_14 | GPIO_Pin_13
        | GPIO_Pin_12;
    GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
    GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;
    GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
    GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
    GPIO_Init(GPIOD, &GPIO_InitStruct);

    printf("Hello World!\r\n");
    hello();
    while (1) {
        static int count = 0;
        static int i;

        for (i = 0; i < 10000000; ++i)
            ;
        GPIO_ToggleBits(GPIOD, GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15);
        printf("%d\r\n", ++count);
    }
    
    //init();
    /*
    while (1) {
        //loop();
		int x = 1;//processLoopback();
    }*/
}
コード例 #21
0
ファイル: main.c プロジェクト: mhv-shared/inav
void init(void)
{
    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

    // initialize IO (needed for all IO operations)
    IOInitGlobal();

#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(masterConfig.emf_avoidance);
#endif
    i2cSetOverclock(masterConfig.i2c_overclock);

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    systemInit();

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

#ifdef ALIENFLIGHTF3
    ledInit(hardwareRevision == AFF3_REV_1 ? false : true);
#else
    ledInit(false);
#endif

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(500);

    timerInit();  // timer must be initialized before any channel is allocated

    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL));

#ifdef USE_SERVOS
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer);
#else
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer);
#endif

    drv_pwm_config_t pwm_params;
    memset(&pwm_params, 0, sizeof(pwm_params));

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        const sonarHcsr04Hardware_t *sonarHardware = sonarGetHardwareConfiguration(masterConfig.batteryConfig.currentMeterType);
        if (sonarHardware) {
            pwm_params.useSonar = true;
            pwm_params.sonarIOConfig.triggerTag = sonarHardware->triggerTag;
            pwm_params.sonarIOConfig.echoTag = sonarHardware->echoTag;
        }
    }
#endif

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_USART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#ifdef STM32F303xC
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER)
        && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC;
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);

#ifdef USE_SERVOS
    pwm_params.useServos = isServoOutputEnabled();
    pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
    pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse;
    pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;
#endif

    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.motorPwmRate = masterConfig.motor_pwm_rate;
    pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand;
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors

#ifndef SKIP_RX_PWM_PPM
    pwmRxInit(masterConfig.inputFilteringMode);
#endif

    // pwmInit() needs to be called as soon as possible for ESC compatibility reasons
    pwmInit(&pwm_params);

    mixerUsePWMIOConfiguration();

    if (!feature(FEATURE_ONESHOT125))
        motorControlEnable = true;

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .ioTag = IO_TAG(BEEPER),
#ifdef BEEPER_INVERTED
        .isOD = false,
        .isInverted = true
#else
        .isOD = true,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.isOD = false;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_USART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif

#if defined(FURYF3) && defined(SONAR) && defined(USE_SOFTSERIAL1)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL1);
    }
#endif

#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE);
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif

    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsPreInit(&masterConfig.gpsConfig);
    }
#endif

    // Set gyro sampling rate divider before initialization
    gyroSetSampleRate(masterConfig.looptime, masterConfig.gyro_lpf, masterConfig.gyroSync, masterConfig.gyroSyncDenominator);

    if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig,
            masterConfig.gyro_lpf,
            masterConfig.acc_hardware,
            masterConfig.mag_hardware,
            masterConfig.baro_hardware,
            currentProfile->mag_declination)) {

        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    LED1_ON;
    LED0_OFF;
    for (int i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    imuInit();

    mspInit(&masterConfig.serialConfig);

#ifdef USE_CLI
    cliInit(&masterConfig.serialConfig);
#endif

    failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);

    rxInit(&masterConfig.rxConfig, currentProfile->modeActivationConditions);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
    }
#endif

#ifdef NAV
        navigationInit(
            &masterConfig.navConfig,
            &currentProfile->pidProfile,
            &currentProfile->rcControlsConfig,
            &masterConfig.rxConfig,
            &masterConfig.flight3DConfig,
            &masterConfig.escAndServoConfig
        );
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors, masterConfig.modeColors, &masterConfig.specialColors);

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init();
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init();
#endif

    flashfsInit();
#endif

#ifdef USE_SDCARD
    bool sdcardUseDMA = false;

    sdcardInsertionDetectInit();

#ifdef SDCARD_DMA_CHANNEL_TX

#if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL)
    // Ensure the SPI Tx DMA doesn't overlap with the led strip
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL;
#else
    sdcardUseDMA = true;
#endif

#endif

    sdcard_init(sdcardUseDMA);

    afatfs_init();
#endif

#ifdef BLACKBOX
    initBlackbox();
#endif

    gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit(&masterConfig.batteryConfig);

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

int main(void)
{
    init();

    /* Setup scheduler */
    schedulerInit();

    rescheduleTask(TASK_GYROPID, targetLooptime);
    setTaskEnabled(TASK_GYROPID, true);

    setTaskEnabled(TASK_SERIAL, true);
#ifdef BEEPER
    setTaskEnabled(TASK_BEEPER, true);
#endif
    setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_CURRENT_METER));
    setTaskEnabled(TASK_RX, true);
#ifdef GPS
    setTaskEnabled(TASK_GPS, feature(FEATURE_GPS));
#endif
#ifdef MAG
    setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG));
#if defined(MPU6500_SPI_INSTANCE) && defined(USE_MAG_AK8963)
    // fixme temporary solution for AK6983 via slave I2C on MPU9250
    rescheduleTask(TASK_COMPASS, 1000000 / 40);
#endif
#endif
#ifdef BARO
    setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO));
#endif
#ifdef SONAR
    setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR));
#endif
#ifdef DISPLAY
    setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY));
#endif
#ifdef TELEMETRY
    setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY));
#endif
#ifdef LED_STRIP
    setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP));
#endif

    while (true) {
        scheduler();
        processLoopback();
    }
}
コード例 #22
0
ファイル: main.c プロジェクト: LaughingLogic/baseflight
int main(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;
    drv_adc_config_t adc_params;
    bool sensorsOK = false;
#ifdef SOFTSERIAL_LOOPBACK
    serialPort_t* loopbackPort1 = NULL;
    serialPort_t* loopbackPort2 = NULL;
#endif

    initEEPROM();
    checkFirstTime(false);
    readEEPROM();
    systemInit(mcfg.emf_avoidance);
#ifdef USE_LAME_PRINTF
    init_printf(NULL, _putc);
#endif

    activateConfig();

    // configure power ADC
    if (mcfg.power_adc_channel > 0 && (mcfg.power_adc_channel == 1 || mcfg.power_adc_channel == 9))
        adc_params.powerAdcChannel = mcfg.power_adc_channel;
    else {
        adc_params.powerAdcChannel = 0;
        mcfg.power_adc_channel = 0;
    }

    adcInit(&adc_params);
    // Check battery type/voltage
    if (feature(FEATURE_VBAT))
        batteryInit();
    initBoardAlignment();

    // We have these sensors; SENSORS_SET defined in board.h depending on hardware platform
    sensorsSet(SENSORS_SET);
    // drop out any sensors that don't seem to work, init all the others. halt if gyro is dead.
    sensorsOK = sensorsAutodetect();

    // production debug output
#ifdef PROD_DEBUG
    productionDebug();
#endif

    // if gyro was not detected due to whatever reason, we give up now.
    if (!sensorsOK)
        failureMode(3);

    LED1_ON;
    LED0_OFF;
    for (i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

    imuInit(); // Mag is initialized inside imuInit
    mixerInit(); // this will set core.useServo var depending on mixer type

    serialInit(mcfg.serial_baudrate);

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (mcfg.mixerConfiguration == MULTITYPE_AIRPLANE || mcfg.mixerConfiguration == MULTITYPE_FLYING_WING)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
    pwm_params.useUART = feature(FEATURE_GPS) || feature(FEATURE_SERIALRX); // spektrum/sbus support uses UART too
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.usePPM = feature(FEATURE_PPM);
    pwm_params.enableInput = !feature(FEATURE_SERIALRX); // disable inputs if using spektrum
    pwm_params.useServos = core.useServo;
    pwm_params.extraServos = cfg.gimbal_flags & GIMBAL_FORWARDAUX;
    pwm_params.motorPwmRate = mcfg.motor_pwm_rate;
    pwm_params.servoPwmRate = mcfg.servo_pwm_rate;
    pwm_params.idlePulse = PULSE_1MS; // standard PWM for brushless ESC (default, overridden below)
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = mcfg.neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors
    pwm_params.servoCenterPulse = mcfg.midrc;
    pwm_params.failsafeThreshold = cfg.failsafe_detect_threshold;
    switch (mcfg.power_adc_channel) {
        case 1:
            pwm_params.adcChannel = PWM2;
            break;
        case 9:
            pwm_params.adcChannel = PWM8;
            break;
        default:
            pwm_params.adcChannel = 0;
            break;
    }

    pwmInit(&pwm_params);
    core.numServos = pwm_params.numServos;

    // configure PWM/CPPM read function and max number of channels. spektrum or sbus below will override both of these, if enabled
    for (i = 0; i < RC_CHANS; i++)
        rcData[i] = 1502;
    rcReadRawFunc = pwmReadRawRC;
    core.numRCChannels = MAX_INPUTS;

    if (feature(FEATURE_SERIALRX)) {
        switch (mcfg.serialrx_type) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                spektrumInit(&rcReadRawFunc);
                break;
            case SERIALRX_SBUS:
                sbusInit(&rcReadRawFunc);
                break;
            case SERIALRX_SUMD:
                sumdInit(&rcReadRawFunc);
                break;
            case SERIALRX_MSP:
                mspInit(&rcReadRawFunc);
                break;
        }
    } else { // spektrum and GPS are mutually exclusive
        // Optional GPS - available in both PPM and PWM input mode, in PWM input, reduces number of available channels by 2.
        // gpsInit will return if FEATURE_GPS is not enabled.
        gpsInit(mcfg.gps_baudrate);
    }
#ifdef SONAR
    // sonar stuff only works with PPM
    if (feature(FEATURE_PPM)) {
        if (feature(FEATURE_SONAR))
            Sonar_init();
    }
#endif

    if (feature(FEATURE_SOFTSERIAL)) {
        //mcfg.softserial_baudrate = 19200; // Uncomment to override config value

        setupSoftSerialPrimary(mcfg.softserial_baudrate, mcfg.softserial_1_inverted);
        setupSoftSerialSecondary(mcfg.softserial_2_inverted);

#ifdef SOFTSERIAL_LOOPBACK
        loopbackPort1 = (serialPort_t*)&(softSerialPorts[0]);
        serialPrint(loopbackPort1, "SOFTSERIAL 1 - LOOPBACK ENABLED\r\n");

        loopbackPort2 = (serialPort_t*)&(softSerialPorts[1]);
        serialPrint(loopbackPort2, "SOFTSERIAL 2 - LOOPBACK ENABLED\r\n");
#endif
        //core.mainport = (serialPort_t*)&(softSerialPorts[0]); // Uncomment to switch the main port to use softserial.
    }

    if (feature(FEATURE_TELEMETRY))
        initTelemetry();

    previousTime = micros();
    if (mcfg.mixerConfiguration == MULTITYPE_GIMBAL)
        calibratingA = CALIBRATING_ACC_CYCLES;
    calibratingG = CALIBRATING_GYRO_CYCLES;
    calibratingB = CALIBRATING_BARO_CYCLES;             // 10 seconds init_delay + 200 * 25 ms = 15 seconds before ground pressure settles
    f.SMALL_ANGLE = 1;

    // loopy
    while (1) {
        loop();
#ifdef SOFTSERIAL_LOOPBACK
        if (loopbackPort1) {
            while (serialTotalBytesWaiting(loopbackPort1)) {
                uint8_t b = serialRead(loopbackPort1);
                serialWrite(loopbackPort1, b);
                //serialWrite(core.mainport, 0x01);
                //serialWrite(core.mainport, b);
            };
        }

        if (loopbackPort2) {
            while (serialTotalBytesWaiting(loopbackPort2)) {
#ifndef OLIMEXINO // PB0/D27 and PB1/D28 internally connected so this would result in a continuous stream of data
                serialRead(loopbackPort2);
#else
                uint8_t b = serialRead(loopbackPort2);
                serialWrite(loopbackPort2, b);
                //serialWrite(core.mainport, 0x02);
                //serialWrite(core.mainport, b);
#endif // OLIMEXINO
            };
    }
#endif
    }
}
コード例 #23
0
ファイル: main.c プロジェクト: bli19/SkyRover_Projects
int main(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;
    drv_adc_config_t adc_params;
    serialPort_t* loopbackPort = NULL;

    systemInit();
#ifdef USE_LAME_PRINTF
    init_printf(NULL, _putc);
#endif


    checkFirstTime(false);
    readEEPROM();

    // configure power ADC
    if (mcfg.power_adc_channel > 0 && (mcfg.power_adc_channel == 1 || mcfg.power_adc_channel == 9))
        adc_params.powerAdcChannel = mcfg.power_adc_channel;
    else {
        adc_params.powerAdcChannel = 0;
        mcfg.power_adc_channel = 0;
    }

    adcInit(&adc_params);
    initBoardAlignment();

    // We have these sensors; SENSORS_SET defined in board.h depending on hardware platform
    sensorsSet(SENSORS_SET);

    mixerInit(); // this will set core.useServo var depending on mixer type
    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (mcfg.mixerConfiguration == MULTITYPE_AIRPLANE || mcfg.mixerConfiguration == MULTITYPE_FLYING_WING)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
    //pwm_params.useUART = feature(FEATURE_GPS) || feature(FEATURE_SERIALRX); // spektrum/sbus support uses UART too
    pwm_params.useUART = feature(FEATURE_GPS);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.usePPM = feature(FEATURE_PPM);
    pwm_params.enableInput = !feature(FEATURE_SERIALRX); // disable inputs if using spektrum
    pwm_params.useServos = core.useServo;
    pwm_params.extraServos = cfg.gimbal_flags & GIMBAL_FORWARDAUX;
    pwm_params.motorPwmRate = mcfg.motor_pwm_rate;
    pwm_params.servoPwmRate = mcfg.servo_pwm_rate;
    pwm_params.idlePulse = PULSE_1MS; // standard PWM for brushless ESC (default, overridden below)
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = mcfg.neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors
    pwm_params.servoCenterPulse = mcfg.midrc;
    pwm_params.failsafeThreshold = cfg.failsafe_detect_threshold;
    switch (mcfg.power_adc_channel) {
        case 1:
            pwm_params.adcChannel = PWM2;
            break;
        case 9:
            pwm_params.adcChannel = PWM8;
            break;
        default:
            pwm_params.adcChannel = 0;
        break;
    }

    pwmInit(&pwm_params);

    // configure PWM/CPPM read function and max number of channels. spektrum or sbus below will override both of these, if enabled
    for (i = 0; i < RC_CHANS; i++)
        rcData[i] = 1502;
    rcReadRawFunc = pwmReadRawRC;
    core.numRCChannels = MAX_INPUTS;

    if (feature(FEATURE_SERIALRX)) {
        switch (mcfg.serialrx_type) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                spektrumInit(&rcReadRawFunc);
                break;
            case SERIALRX_SBUS:
                sbusInit(&rcReadRawFunc);
                break;
            case SERIALRX_SUMD:
                sumdInit(&rcReadRawFunc);
                break;
            #if defined(SKYROVER)
            case SERIALRX_HEXAIRBOT:
                hexairbotInit(&rcReadRawFunc);
                break;
            #endif
        }
    } else { // spektrum and GPS are mutually exclusive
        // Optional GPS - available in both PPM and PWM input mode, in PWM input, reduces number of available channels by 2.
        // gpsInit will return if FEATURE_GPS is not enabled.
        // Sanity check below - protocols other than NMEA do not support baud rate autodetection
        if (mcfg.gps_type > 0 && mcfg.gps_baudrate < 0)
            mcfg.gps_baudrate = 0;
        gpsInit(mcfg.gps_baudrate);
    }
#ifdef SONAR
    // sonar stuff only works with PPM
    if (feature(FEATURE_PPM)) {
        if (feature(FEATURE_SONAR))
            Sonar_init();
    }
#endif

    LED1_ON;
    LED0_OFF;
    for (i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

    serialInit(mcfg.serial_baudrate);

    DEBUG_PRINT("Booting..\r\n");

    // drop out any sensors that don't seem to work, init all the others. halt if gyro is dead.
    sensorsAutodetect();
    imuInit(); // Mag is initialized inside imuInit

    // Check battery type/voltage
    if (feature(FEATURE_VBAT))
        batteryInit();

    

    if (feature(FEATURE_SOFTSERIAL)) {
      setupSoftSerial1(mcfg.softserial_baudrate, mcfg.softserial_inverted);
#ifdef SOFTSERIAL_LOOPBACK
      loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
      serialPrint(loopbackPort, "LOOPBACK ENABLED\r\n");
#endif
    }

    if (feature(FEATURE_TELEMETRY))
        initTelemetry();

    previousTime = micros();
    if (mcfg.mixerConfiguration == MULTITYPE_GIMBAL)
        calibratingA = CALIBRATING_ACC_CYCLES;
    calibratingG = CALIBRATING_GYRO_CYCLES;
    calibratingB = CALIBRATING_BARO_CYCLES;             // 10 seconds init_delay + 200 * 25 ms = 15 seconds before ground pressure settles
    f.SMALL_ANGLES_25 = 1;

    DEBUG_PRINT("Start\r\n");

    // loopy
    while (1) {
        loop();
#ifdef SOFTSERIAL_LOOPBACK
        if (loopbackPort) {
            while (serialTotalBytesWaiting(loopbackPort)) {
    
                uint8_t b = serialRead(loopbackPort);
                serialWrite(loopbackPort, b);
                //serialWrite(core.mainport, b);
            };
        }
#endif
    }
}
コード例 #24
0
ファイル: main.c プロジェクト: phobos-/cleanflight
void init(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(masterConfig.emf_avoidance);
#endif
#ifdef STM32F40_41xxx
    SetSysClock();
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    systemInit();

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

    ledInit();

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL));

#ifdef USE_SERVOS
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer);
#else
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer);
#endif

    memset(&pwm_params, 0, sizeof(pwm_params));

#ifdef SONAR
    const sonarHardware_t *sonarHardware = NULL;

    if (feature(FEATURE_SONAR)) {
        sonarHardware = sonarGetHardwareConfiguration(&masterConfig.batteryConfig);
        sonarGPIOConfig_t sonarGPIOConfig = {
            .gpio = SONAR_GPIO,
            .triggerPin = sonarHardware->echo_pin,
            .echoPin = sonarHardware->trigger_pin,
        };
        pwm_params.sonarGPIOConfig = &sonarGPIOConfig;
    }
#endif

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_USART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#ifdef STM32F303xC
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3);
#endif
#if defined(USE_USART2) && defined(STM32F40_41xxx)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#if defined(USE_USART6) && defined(STM32F40_41xxx)
    pwm_params.useUART6 = doesConfigurationUsePort(SERIAL_PORT_USART6);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER)
        && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC;
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);
#ifdef SONAR
    pwm_params.useSonar = feature(FEATURE_SONAR);
#endif

#ifdef USE_SERVOS
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
    pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse;
    pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;
#endif

    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.motorPwmRate = masterConfig.motor_pwm_rate;
    pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand;
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors

    pwmRxInit(masterConfig.inputFilteringMode);

    pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params);

    mixerUsePWMOutputConfiguration(pwmOutputConfiguration);

    if (!feature(FEATURE_ONESHOT125))
        motorControlEnable = true;

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .gpioPeripheral = BEEP_PERIPHERAL,
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,
#ifdef BEEPER_INVERTED
        .gpioMode = Mode_Out_PP,
        .isInverted = true
#else
        .gpioMode = Mode_Out_OD,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.gpioMode = Mode_Out_PP;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
    spiInit(SPI3);
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_USART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif


#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE_INT);
#if defined(ANYFC) || defined(COLIBRI) || defined(REVO) || defined(SPARKY2)
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
#ifdef I2C_DEVICE_EXT
        i2cInit(I2C_DEVICE_EXT);
#endif
    }
#endif
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif


    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

    if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, currentProfile->mag_declination)) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    LED1_ON;
    LED0_OFF;
    for (i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    imuInit();

    mspInit(&masterConfig.serialConfig);

#ifdef USE_CLI
    cliInit(&masterConfig.serialConfig);
#endif

    failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);

    rxInit(&masterConfig.rxConfig);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &currentProfile->gpsProfile,
            &currentProfile->pidProfile
        );
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit(sonarHardware);
    }
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors);

    if (feature(FEATURE_LED_STRIP)) {
#ifdef COLIBRI
        if (!doesConfigurationUsePort(SERIAL_PORT_USART1)) {
            ledStripEnable();
        }
#else
        ledStripEnable();
#endif
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init();
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init();
#endif

    flashfsInit();
#endif

#ifdef BLACKBOX
    initBlackbox();
#endif

    previousTime = micros();

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit(&masterConfig.batteryConfig);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialTotalBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

int main(void) {
    init();

    while (1) {
        loop();
        processLoopback();
    }
}

void HardFault_Handler(void)
{
    // fall out of the sky
    uint8_t requiredState = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_MOTORS_READY;
    if ((systemState & requiredState) == requiredState) {
        stopMotors();
    }
    while (1);
}
コード例 #25
0
ファイル: main.c プロジェクト: Artikulpi/cleanflight
void init(void)
{
    drv_pwm_config_t pwm_params;

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(masterConfig.emf_avoidance);
#endif
    i2cSetOverclock(masterConfig.i2c_highspeed);

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    systemInit();

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

    ledInit();

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .gpioPeripheral = BEEP_PERIPHERAL,
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,
#ifdef BEEPER_INVERTED
        .gpioMode = Mode_Out_PP,
        .isInverted = true
#else
        .gpioMode = Mode_Out_OD,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.gpioMode = Mode_Out_PP;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef BUTTONS
    buttonsInit();

    if (!isMPUSoftReset()) {
        buttonsHandleColdBootButtonPresses();
    }
#endif

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    dmaInit();


    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL));

#ifdef USE_SERVOS
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer);
#else
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer);
#endif

    memset(&pwm_params, 0, sizeof(pwm_params));

#ifdef SONAR
    const sonarHardware_t *sonarHardware = NULL;

    if (feature(FEATURE_SONAR)) {
        sonarHardware = sonarGetHardwareConfiguration(&masterConfig.batteryConfig);
        sonarGPIOConfig_t sonarGPIOConfig = {
            .gpio = SONAR_GPIO,
            .triggerPin = sonarHardware->echo_pin,
            .echoPin = sonarHardware->trigger_pin,
        };
        pwm_params.sonarGPIOConfig = &sonarGPIOConfig;
    }
#endif

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_UART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_UART2);
#endif
#if defined(USE_UART3)
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_UART3);
#endif
#if defined(USE_UART4)
    pwm_params.useUART4 = doesConfigurationUsePort(SERIAL_PORT_UART4);
#endif
#if defined(USE_UART5)
    pwm_params.useUART5 = doesConfigurationUsePort(SERIAL_PORT_UART5);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER)
        && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC;
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);
#ifdef SONAR
    pwm_params.useSonar = feature(FEATURE_SONAR);
#endif

#ifdef USE_SERVOS
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
    pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse;
    pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;
#endif

    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.motorPwmRate = masterConfig.motor_pwm_rate;
    pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand;
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors

    pwmRxInit(masterConfig.inputFilteringMode);

    // pwmInit() needs to be called as soon as possible for ESC compatibility reasons
    pwmIOConfiguration_t *pwmIOConfiguration = pwmInit(&pwm_params);

    mixerUsePWMIOConfiguration(pwmIOConfiguration);

    debug[2] = pwmIOConfiguration->pwmInputCount;
    debug[3] = pwmIOConfiguration->ppmInputCount;

    if (!feature(FEATURE_ONESHOT125))
        motorControlEnable = true;

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_UART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif

#if defined(SPRACINGF3MINI) && defined(SONAR) && defined(USE_SOFTSERIAL1)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL1);
    }
#endif


#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE);
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif


    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

    if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf,
        masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, currentProfile->mag_declination,
        masterConfig.looptime, masterConfig.gyroSync, masterConfig.gyroSyncDenominator)) {

        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    flashLedsAndBeep();

#ifdef USE_SERVOS
    mixerInitialiseServoFiltering(targetLooptime);
#endif

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    imuInit();

    mspInit(&masterConfig.serialConfig);

#ifdef USE_CLI
    cliInit(&masterConfig.serialConfig);
#endif

    failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);

    rxInit(&masterConfig.rxConfig, currentProfile->modeActivationConditions);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &currentProfile->gpsProfile,
            &currentProfile->pidProfile
        );
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit(sonarHardware);
    }
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors);

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USB_CABLE_DETECTION
    usbCableDetectInit();
#endif

#ifdef TRANSPONDER
    if (feature(FEATURE_TRANSPONDER)) {
        transponderInit(masterConfig.transponderData);
        transponderEnable();
        transponderStartRepeating();
        systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED;
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init();
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init();
#endif

    flashfsInit();
#endif

#ifdef USE_SDCARD
    bool sdcardUseDMA = false;

    sdcardInsertionDetectInit();

#ifdef SDCARD_DMA_CHANNEL_TX

#if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL)
    // Ensure the SPI Tx DMA doesn't overlap with the led strip
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL;
#else
    sdcardUseDMA = true;
#endif

#endif

    sdcard_init(sdcardUseDMA);

    afatfs_init();
#endif

#ifdef BLACKBOX
    initBlackbox();
#endif

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit(&masterConfig.batteryConfig);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

int main(void) {
    init();

    /* Setup scheduler */
    if (masterConfig.gyroSync) {
        rescheduleTask(TASK_GYROPID, targetLooptime - INTERRUPT_WAIT_TIME);
    }
    else {
        rescheduleTask(TASK_GYROPID, targetLooptime);
    }

    setTaskEnabled(TASK_GYROPID, true);
    setTaskEnabled(TASK_ACCEL, sensors(SENSOR_ACC));
    setTaskEnabled(TASK_SERIAL, true);
#ifdef BEEPER
    setTaskEnabled(TASK_BEEPER, true);
#endif
    setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_CURRENT_METER));
    setTaskEnabled(TASK_RX, true);
#ifdef GPS
    setTaskEnabled(TASK_GPS, feature(FEATURE_GPS));
#endif
#ifdef MAG
    setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG));
#endif
#ifdef BARO
    setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO));
#endif
#ifdef SONAR
    setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR));
#endif
#if defined(BARO) || defined(SONAR)
    setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || sensors(SENSOR_SONAR));
#endif
#ifdef DISPLAY
    setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY));
#endif
#ifdef TELEMETRY
    setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY));
#endif
#ifdef LED_STRIP
    setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP));
#endif
#ifdef TRANSPONDER
    setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER));
#endif

    while (1) {
        scheduler();
        processLoopback();
    }
}

void HardFault_Handler(void)
{
    // fall out of the sky
    uint8_t requiredStateForMotors = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_MOTORS_READY;
    if ((systemState & requiredStateForMotors) == requiredStateForMotors) {
        stopMotors();
    }
#ifdef TRANSPONDER
    // prevent IR LEDs from burning out.
    uint8_t requiredStateForTransponder = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_TRANSPONDER_ENABLED;
    if ((systemState & requiredStateForTransponder) == requiredStateForTransponder) {
        transponderIrDisable();
    }
#endif

    while (1);
}
コード例 #26
0
int main(void)
{

//  u16 len = 0;			    
//  len = menuDisplay(bufExtBin);
//  if (len)
//	signUSBMass = 0;

  signUSBMass = 0;
//***********************************DEBUG********************************************/

      
//***********************************END OF DEBUG********************************************/

    /* Configure IO connected to USB PWR DET *********************/	
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD,ENABLE );
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
  	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
  	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  	GPIO_Init(GPIOD, &GPIO_InitStructure);

    if((GPIO_ReadInputData(GPIOD) & 0x08))   // USB is present after switch - work MASS Storage
      {
	     signUSBMass = 1;
      }

	signUSBMass = 0;   //debugga

#if 1  	  //that's for temporary off USB - for debugging
  
  NVIC_Configuration();
  Set_System();
  Set_USBClock();
  USB_Interrupts_Config();
  USB_Init();
  if(signUSBMass)
     while (bDeviceState != CONFIGURED);

#endif 
//
#if 1
  if(!signUSBMass)
   {
    if (SysTick_Config(SystemCoreClock / 1000))  //1ms
     { 
       /* Capture error */ 
       while (1);
     }

  	 /* Flash unlock */
     FLASH_Unlock();
     /* Clear All pending flags */
     FLASH_ClearFlag(FLASH_FLAG_BSY | FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPRTERR);	

//***********************************DEBUG********************************************/

     
//***********************************END OF DEBUG********************************************/

  /* Enable CRC clock */
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_CRC, ENABLE);
    
  ledDioGPIOInit();
  //LED_MIDDLE = 1;
  //GPIO_ResetBits(LED_MID_PORT, LED_MID_PORT_PIN);
  BKPInit();
  //debugga

  /*
  u32 mileage = 0;
  mileage         = BKPReadReg(BKP_DR_MSG_NUMBER1)  | ( (u32)(BKPReadReg(BKP_DR_MSG_NUMBER2) << 16)  );
  mileage++;
  BKPWriteReg(BKP_DR_MSG_NUMBER1,mileage);BKPWriteReg(BKP_DR_MSG_NUMBER2,mileage >> 16);
  mileage         = BKPReadReg(BKP_DR_MSG_NUMBER1)  | ( (u32)(BKPReadReg(BKP_DR_MSG_NUMBER2) << 16)  );
  mileage = 0;
  BKPWriteReg(BKP_DR_MSG_NUMBER1,mileage);BKPWriteReg(BKP_DR_MSG_NUMBER2,mileage >> 16);
  mileage         = BKPReadReg(BKP_DR_MSG_NUMBER1)  | ( (u32)(BKPReadReg(BKP_DR_MSG_NUMBER2) << 16)  );
  if(mileage)
	signUSBMass = 0;   //debugga
  */

  Delay(1000);

  //rs485Init();

  //Delay(1000);

  ais326dq_init();
  ais326dq_data(&ais326dq_out);

  adcInit();

  gpsInit();

  gprsModemInit();
  
  gprsModemOn();
#ifndef BRIDGE_USB_GSM
  setupGSM();
  ftpGSMPrepare();
  packetsIni();
#endif
  rtc_init();
  rtc_gettime(&rtc);
  initSD();

  /* reading settings */
  readConfig();
  /* Log  */
  saveSDInfo((u8 *)"TURN ON BLOCK ",strlen((u8 *)"TURN ON BLOCK "), SD_SENDED, SD_TYPE_MSG_LOG );
  saveSDInfo((u8 *)readRTCTime(&rtc),strlen((const char *)readRTCTime(&rtc)), SD_SENDED, SD_TYPE_MSG_LOG );

  }	 //if(!signUSBMass)
#endif

  //u8 tempCnt;
  while (1)
  {
    if(!signUSBMass)
	 {
	     gpsHandling();
		 #ifndef BRIDGE_USB_GSM
		    loopGSM();
			loopFTP();
            UpdatingFlash();
			naviPacketHandle();
			rcvPacketHandle();
            rcvPacketHandleUSB();
		 #endif 
		 buttonScan();
		 accelScan();
		 
//		 if(getButtonUserPressed())
//		  {
//		    led_mid(BOARD_LED_XOR);
//		    ais326dq_data(&ais326dq_out);
//		  }

		 //rs485Analyse();
		 handleFOS();
         adcScan();

  	 }  /* if(!signUSBMass)  */
  }
}
コード例 #27
0
ファイル: kalman.cpp プロジェクト: arvindpereira/asv_code
int main(int argc, char *argv[])
{
	int done=0; double gpsUpdateRate, imuUpdateRate, eulerUpdateRate;
	long int gpsUpdateCount, imuUpdateCount, eulerUpdateCount, kalmanUpdateCount;
	double lastTime;
	
	// Program begins with the usual logging of data and so on...
	captureQuitSignal();
	shared = (Q_SHARED * )attach_memory(QBOATShareKey, sizeof(Q_SHARED));
	sharedDIAG = (DIAG_SHARED *)attach_memory(DIAGShareKey, sizeof(DIAG_SHARED));

	createDirectory();
	sleep(1);
	openKalmanlogfile();
		
	fprintf(stderr,"\nExtended Kalman Filter v 1.0 for the Q-boat (based on the Heli INS by Srik)");
	
	initEverything();
	lastTime = get_time();	
	// Now begin main loop... 
	while (!done) {
		// Run a loop to check if we've  received new data from the sensors...				
	if((get_time()-lastTime)>=1.0) {
		fprintf(stderr,"\nGPS %dHz, IMU %d Hz, EUL %d Hz, KAL %dHz,  LastTime %f",gpsUpdateCount, imuUpdateCount, eulerUpdateCount,kalmanUpdateCount,lastTime);	

		gpsUpdateCount = 0; imuUpdateCount = 0; eulerUpdateCount = 0; kalmanUpdateCount = 0; lastTime = get_time();
	}

	if(shared->SensorData.lastEulerKalmanTime<shared->SensorData.eulerUpdateTime) {
			++eulerUpdateCount;
			if(!init_compass)
				compassInit();
			else updateCompass();
		}
		#ifdef __USE3DMG_DATA__
		if(shared->SensorData.lastImuKalmanTime<shared->SensorData.imuUpdateTime) {
			if(!init_imu)
				imuInit();
			else updateImu();
			++imuUpdateCount;
		}
		#endif
		#ifdef __USEXBOW_DATA__
		if(shared->SensorData.lastImuKalmanTime<sharedDIAG->xbowData.lastXbowTime) {
			if(!init_imu)
				imuInit();
			else updateImu();
			++imuUpdateCount;
		}
		#endif
		if(shared->SensorData.lastGpsKalmanTime<shared->SensorData.gpsUpdateTime) {
			if(!init_gps)
				gpsInit();
			else updateGPS();
			++gpsUpdateCount;
		}
		if(!init_kf) {
			if(init_gps && init_compass && init_imu)
				kalmanInit();
		}
		// Update the State...
		if(init_kf && (get_time() - shared->kalmanData.lastKalmanUpdateTime)>=0.01) {
			updateState();
			++kalmanUpdateCount;
		}
		usleep(50);
	}
}