static void gc_fij2xy(void* p, double fi, double fj, double* x, double* y) { gnxy_curv* nodes = (gnxy_curv*) ((grid*) p)->gridnodes_xy; gridmap_fij2xy(nodes->gm, fi, fj, x, y); }
int main(int argc, char* argv[]) { char* gfname = NULL; char* ofname = NULL; FILE* of = NULL; gridnodes* gn = NULL; gridmap* map = NULL; char buf[BUFSIZE]; parse_commandline(argc, argv, &gfname, &ofname); if (nt == NT_DD) { gridnodes* gndd = gridnodes_read(gfname, NT_DD); gridnodes_validate(gndd); gn = gridnodes_transform(gndd, NT_COR); gridnodes_destroy(gndd); } else { gn = gridnodes_read(gfname, NT_COR); gridnodes_validate(gn); } /* * build grid map */ map = gridmap_build(gridnodes_getnce1(gn), gridnodes_getnce2(gn), gridnodes_getx(gn), gridnodes_gety(gn)); if (strcmp(ofname, "stdin") == 0 || strcmp(ofname, "-") == 0) of = stdin; else of = gu_fopen(ofname, "r"); /* * read points to be mapped, do the mapping and write results to stdout */ while (fgets(buf, BUFSIZE, of) != NULL) { char rem[BUFSIZE] = ""; double xc, yc, ic, jc; if (sscanf(buf, "%lf %lf %[^\n]", &xc, &yc, rem) >= 2) { if ((!reverse && gridmap_xy2fij(map, xc, yc, &ic, &jc)) || (reverse && gridmap_fij2xy(map, xc, yc, &ic, &jc))) { if (!isnan(ic)) printf("%.15g %.15g %s\n", ic, jc, rem); else printf("NaN NaN %s\n", rem); } else { if (!force) quit("could not convert (%.15g, %.15g) from %s to %s space\n", xc, yc, (reverse) ? "index" : "physical", (reverse) ? "physical" : "index"); else printf("NaN NaN %s\n", rem); } } else printf("%s", buf); } if (of != stdin) fclose(of); gridmap_destroy(map); gridnodes_destroy(gn); return 0; }
int main(int argc, char* argv[]) { char* bathyfname = NULL; int nbathy = -1; point* pbathy = NULL; char* gridfname = NULL; NODETYPE nt = NT_DD; gridnodes* gn = NULL; gridmap* gm = NULL; char* maskfname = NULL; int** mask = NULL; int ppe = PPE_DEF; double zmin = ZMIN_DEF; double zmax = ZMAX_DEF; delaunay* d = NULL; void (*interpolate_point) (void*, point *) = NULL; void* interpolator = NULL; int i = -1, j = -1; parse_commandline(argc, argv, &bathyfname, &gridfname, &maskfname, &nt, &ppe, &zmin, &zmax, &i, &j); /* * sanity check */ if (bathyfname == NULL) quit("no input bathymetry data specified"); if (gridfname == NULL) quit("no input grid data specified"); if (ppe <= 0 || ppe > PPE_MAX) quit("number of points per edge specified = %d greater than %d", ppe, PPE_MAX); if (zmin >= zmax) quit("min depth = %.3g > max depth = %.3g", zmin, zmax); if (nt != NT_DD && nt != NT_COR) quit("unsupported node type"); /* * read bathymetry */ points_read(bathyfname, 3, &nbathy, &pbathy); if (gu_verbose) fprintf(stderr, "## %d input bathymetry values", nbathy); if (nbathy < 3) quit("less than 3 input bathymetry values"); /* * read and validate grid */ gn = gridnodes_read(gridfname, nt); gridnodes_validate(gn); /* * read mask */ if (maskfname != NULL) { int nx = gridnodes_getnce1(gn); int ny = gridnodes_getnce2(gn); mask = gu_readmask(maskfname, nx, ny); } /* * transform grid nodes to corner type */ if (nt != NT_COR) { gridnodes* newgn = gridnodes_transform(gn, NT_COR); gridnodes_destroy(gn); gn = newgn; } /* * build the grid map for physical <-> index space conversions */ gm = gridmap_build(gridnodes_getnce1(gn), gridnodes_getnce2(gn), gridnodes_getx(gn), gridnodes_gety(gn)); /* * convert bathymetry to index space if necessary */ if (indexspace) { point* newpbathy = malloc(nbathy * sizeof(point)); int newnbathy = 0; int ii; for (ii = 0; ii < nbathy; ++ii) { point* p = &pbathy[ii]; point* newp = &newpbathy[newnbathy]; double ic, jc; if (gridmap_xy2fij(gm, p->x, p->y, &ic, &jc)) { newp->x = ic; newp->y = jc; newp->z = p->z; newnbathy++; } } free(pbathy); pbathy = newpbathy; nbathy = newnbathy; } /* * create interpolator */ if (rule == CSA) { /* using libcsa */ interpolator = csa_create(); csa_addpoints(interpolator, nbathy, pbathy); csa_calculatespline(interpolator); interpolate_point = (void (*)(void*, point *)) csa_approximatepoint; } else if (rule == AVERAGE) { interpolator = ga_create(gm); ga_addpoints(interpolator, nbathy, pbathy); interpolate_point = (void (*)(void*, point *)) ga_getvalue; ppe = 1; } else { /* using libnn */ /* * triangulate */ if (gu_verbose) { fprintf(stderr, "## triangulating..."); fflush(stdout); } d = delaunay_build(nbathy, pbathy, 0, NULL, 0, NULL); if (gu_verbose) { fprintf(stderr, "done\n"); fflush(stderr); } if (rule == NN_SIBSON || rule == NN_NONSIBSONIAN) { interpolator = nnpi_create(d); if (rule == NN_SIBSON) nn_rule = SIBSON; else nn_rule = NON_SIBSONIAN; interpolate_point = (void (*)(void*, point *)) nnpi_interpolate_point; } else if (rule == LINEAR) { interpolator = lpi_build(d); interpolate_point = (void (*)(void*, point *)) lpi_interpolate_point; } } /* * main cycle -- over grid cells */ { double** gx = gridnodes_getx(gn); int jmin, jmax, imin, imax; if (i < 0) { imin = 0; imax = gridnodes_getnce1(gn) - 1; jmin = 0; jmax = gridnodes_getnce2(gn) - 1; } else { if (gu_verbose) fprintf(stderr, "## calculating depth for cell (%d,%d)\n", i, j); imin = i; imax = i; jmin = j; jmax = j; } for (j = jmin; j <= jmax; ++j) { for (i = imin; i <= imax; ++i) { double sum = 0.0; int count = 0; int ii, jj; if ((mask != NULL && mask[j][i] == 0) || isnan(gx[j][i]) || isnan(gx[j + 1][i + 1]) || isnan(gx[j][i + 1]) || isnan(gx[j + 1][i])) { printf("NaN\n"); continue; } for (ii = 0; ii < ppe; ++ii) { for (jj = 0; jj < ppe; ++jj) { double fi = (double) i + 0.5 / (double) ppe * (1.0 + 2.0 * (double) ii); double fj = (double) j + 0.5 / (double) ppe * (1.0 + 2.0 * (double) jj); point p; if (!indexspace) gridmap_fij2xy(gm, fi, fj, &p.x, &p.y); else { p.x = fi; p.y = fj; } interpolate_point(interpolator, &p); if (isnan(p.z)) continue; else if (p.z < zmin) p.z = zmin; else if (p.z > zmax) p.z = zmax; sum += p.z; count++; } } if (count == 0) printf("NaN\n"); else printf("%.2f\n", sum / (double) count); fflush(stdout); } } } /* * clean up, just because */ if (rule == CSA) csa_destroy(interpolator); else if (rule == AVERAGE) ga_destroy(interpolator); else { if (rule == NN_SIBSON || rule == NN_NONSIBSONIAN) nnpi_destroy(interpolator); else if (rule == LINEAR) lpi_destroy(interpolator); delaunay_destroy(d); } if (mask != NULL) gu_free2d(mask); gridmap_destroy(gm); gridnodes_destroy(gn); free(pbathy); return 0; }