コード例 #1
0
ファイル: gamma-spline.c プロジェクト: jwahlstrand/kdotp-fke
GammaSpline * gamma_spline_new (int size) {
    GammaSpline *gs = g_slice_new(GammaSpline);
    gs->k = double_array_calloc(size);
    gs->phi = double_array_calloc(size);
    gs->Wxr = double_array_calloc(size);
    gs->Wxi = double_array_calloc(size);
    gs->Wyr = double_array_calloc(size);
    gs->Wyi = double_array_calloc(size);
    gs->Wzr = double_array_calloc(size);
    gs->Wzi = double_array_calloc(size);
    
    gs->phi_spline = gsl_interp_alloc(gsl_interp_akima,size);
    gs->phi_accel = gsl_interp_accel_alloc();
    
    gs->wx_spline_re = gsl_interp_alloc(gsl_interp_akima,size);
    gs->w_accel = gsl_interp_accel_alloc();
    gs->wx_spline_im = gsl_interp_alloc(gsl_interp_akima,size);
    
    gs->wy_spline_re = gsl_interp_alloc(gsl_interp_akima,size);
    gs->wy_spline_im = gsl_interp_alloc(gsl_interp_akima,size);
    
    gs->wz_spline_re = gsl_interp_alloc(gsl_interp_akima,size);
    gs->wz_spline_im = gsl_interp_alloc(gsl_interp_akima,size);
    return gs;
}
コード例 #2
0
ファイル: smBGAs.c プロジェクト: theunissenlab/tlab
ODEparams * init(int nap,double * alpha,double * talpha, int nbp, double* beta, double *tbeta,double gamma, double x0,double y0)
{
	ODEparams * pa= (ODEparams*)malloc(sizeof(ODEparams));

	pa->gamma=gamma;
	pa->x0=x0;
	pa->y0=y0;
	
	pa->nap=nap;
	pa->nbp=nbp;

	pa->alpha=calloc(nap,sizeof(double));
	pa->talpha=calloc(nap,sizeof(double));
	pa->beta=calloc(nbp,sizeof(double));
	pa->tbeta=calloc(nbp,sizeof(double));
	int i;
	memcpy(pa->alpha,alpha,nap*sizeof(double));
	memcpy(pa->talpha,talpha,nap*sizeof(double));
	memcpy(pa->beta,beta,nbp*sizeof(double));
	memcpy(pa->tbeta,tbeta,nbp*sizeof(double));

	pa->a_acc=gsl_interp_accel_alloc ();
	pa->b_acc=gsl_interp_accel_alloc ();
	pa->a_spline = gsl_spline_alloc (gsl_interp_cspline,nap);
	gsl_spline_init (pa->a_spline, pa->talpha, pa->alpha, pa->nap);
	pa->b_spline = gsl_spline_alloc (gsl_interp_cspline,nbp);
	gsl_spline_init (pa->b_spline, pa->tbeta, pa->beta, pa->nbp);

	pa->gamma=gamma;
	pa->x0=x0;
	pa->y0=y0;
	return pa;
}
コード例 #3
0
ファイル: test.c プロジェクト: JoveU/MC_DiJet_old
/**
 * Tests that a given interpolation type reproduces the data points it is given,
 * and then tests that it correctly reproduces additional values.
 * 
 * @param xarr the x values of the points that define the function
 * @param yarr the y values of the points that define the function
 * @param zarr the values of the function at the points specified by xarr and yarr
 * @param xsize the length of xarr
 * @param ysize the length of yarr
 * @param xval the x values of additional points at which to calculate interpolated values
 * @param yval the y values of additional points at which to calculate interpolated values
 * @param zval the expected results of the additional interpolations
 * @param zxval the expected results of the x derivative calculations
 * @param zyval the expected results of the y derivative calculations
 * @param zxxval the expected results of the xx derivative calculations
 * @param zyyval the expected results of the yy derivative calculations
 * @param zxyval the expected results of the xy derivative calculations
 * @param test_size the length of xval, yval, zval, etc.
 * @param T the interpolation type
 */
int test_interp2d(const double xarr[], const double yarr[], const double zarr[],    // interpolation data
                  size_t xsize, size_t ysize,                                       // sizes of xarr and yarr
                  const double xval[], const double yval[],                         // test points
                  const double zval[],                                              // expected results
                  const double zxval[], const double zyval[],
                  const double zxxval[], const double zyyval[], const double zxyval[],
                  size_t test_size,                                                 // number of test points
                  const interp2d_type* T) {
    gsl_interp_accel *xa, *ya;
    int status = 0;
    size_t xi, yi, zi, i;

    xa = gsl_interp_accel_alloc();
    ya = gsl_interp_accel_alloc();
    interp2d* interp = interp2d_alloc(T, xsize, ysize);
    interp2d_spline* interp_s = interp2d_spline_alloc(T, xsize, ysize);

    unsigned int min_size = interp2d_type_min_size(T);
    gsl_test_int(min_size, T->min_size, "interp2d_type_min_size on %s", interp2d_name(interp));

    interp2d_init(interp, xarr, yarr, zarr, xsize, ysize);
    interp2d_spline_init(interp_s, xarr, yarr, zarr, xsize, ysize);
    // First check that the interpolation reproduces the given points
    for (xi = 0; xi < xsize; xi++) {
        double x = xarr[xi];
        for (yi = 0; yi < ysize; yi++) {
            double y = yarr[yi];
            
            zi = INDEX_2D(xi, yi, xsize, ysize);
            test_single_low_level(&interp2d_eval, &interp2d_eval_e, interp, xarr, yarr, zarr, x, y, xa, ya, zarr, zi);
            test_single_low_level(&interp2d_eval_no_boundary_check, &interp2d_eval_e_no_boundary_check, interp, xarr, yarr, zarr, x, y, xa, ya, zarr, zi);
            test_single_high_level(&interp2d_spline_eval, &interp2d_spline_eval_e, interp_s, x, y, xa, ya, zarr, zi);
        }
    }
    // Then check additional points provided
    for (i = 0; i < test_size; i++) {
        double x = xval[i];
        double y = yval[i];
        
        test_single_low_level(&interp2d_eval,         &interp2d_eval_e,          interp, xarr, yarr, zarr, x, y, xa, ya, zval, i);
        test_single_low_level(&interp2d_eval_deriv_x, &interp2d_eval_deriv_x_e,  interp, xarr, yarr, zarr, x, y, xa, ya, zxval, i);
        test_single_low_level(&interp2d_eval_deriv_y, &interp2d_eval_deriv_y_e,  interp, xarr, yarr, zarr, x, y, xa, ya, zyval, i);
        test_single_low_level(&interp2d_eval_deriv_xx,&interp2d_eval_deriv_xx_e, interp, xarr, yarr, zarr, x, y, xa, ya, zxxval, i);
        test_single_low_level(&interp2d_eval_deriv_yy,&interp2d_eval_deriv_yy_e, interp, xarr, yarr, zarr, x, y, xa, ya, zyyval, i);
        test_single_low_level(&interp2d_eval_deriv_xy,&interp2d_eval_deriv_xy_e, interp, xarr, yarr, zarr, x, y, xa, ya, zxyval, i);
        
        test_single_high_level(&interp2d_spline_eval,         &interp2d_spline_eval_e,          interp_s, x, y, xa, ya, zval, i);
        test_single_high_level(&interp2d_spline_eval_deriv_x, &interp2d_spline_eval_deriv_x_e,  interp_s, x, y, xa, ya, zxval, i);
        test_single_high_level(&interp2d_spline_eval_deriv_y, &interp2d_spline_eval_deriv_y_e,  interp_s, x, y, xa, ya, zyval, i);
        test_single_high_level(&interp2d_spline_eval_deriv_xx,&interp2d_spline_eval_deriv_xx_e, interp_s, x, y, xa, ya, zxxval, i);
        test_single_high_level(&interp2d_spline_eval_deriv_yy,&interp2d_spline_eval_deriv_yy_e, interp_s, x, y, xa, ya, zyyval, i);
        test_single_high_level(&interp2d_spline_eval_deriv_xy,&interp2d_spline_eval_deriv_xy_e, interp_s, x, y, xa, ya, zxyval, i);

        test_single_low_level(&interp2d_eval_no_boundary_check, &interp2d_eval_e_no_boundary_check, interp, xarr, yarr, zarr, x, y, xa, ya, zval, i);
    }
    gsl_interp_accel_free(xa);
    gsl_interp_accel_free(ya);
    interp2d_free(interp);
    return status;
}
コード例 #4
0
static float
interp_demData(float *demData, int nl, int ns, double l, double s)
{
  if (l<0 || l>=nl-1 || s<0 || s>=ns-1) {
    return 0;
  }

  int ix = (int)s;
  int iy = (int)l;

  int bilinear = l<3 || l>=nl-3 || s<3 || s>=ns-3;
  //int bilinear = 1;
  if (bilinear) {

    float p00 = demData[ix   + ns*(iy  )];
    float p10 = demData[ix+1 + ns*(iy  )];
    float p01 = demData[ix   + ns*(iy+1)];
    float p11 = demData[ix+1 + ns*(iy+1)];

    return (float)bilinear_interp_fn(s-ix, l-iy, p00, p10, p01, p11);
  }
  else {

    double ret, x[4], y[4], xi[4], yi[4];
    int ii;

    for (ii=0; ii<4; ++ii) {
      y[0] = demData[ix-1 + ns*(iy+ii-1)];
      y[1] = demData[ix   + ns*(iy+ii-1)];
      y[2] = demData[ix+1 + ns*(iy+ii-1)];
      y[3] = demData[ix+2 + ns*(iy+ii-1)];

      x[0] = ix - 1;
      x[1] = ix;
      x[2] = ix + 1;
      x[3] = ix + 2;

      gsl_interp_accel *acc = gsl_interp_accel_alloc ();
      gsl_spline *spline = gsl_spline_alloc (gsl_interp_cspline, 4);    
      gsl_spline_init (spline, x, y, 4);
      yi[ii] = gsl_spline_eval_check(spline, s, acc);
      gsl_spline_free (spline);
      gsl_interp_accel_free (acc);

      xi[ii] = iy + ii - 1;
    }

    gsl_interp_accel *acc = gsl_interp_accel_alloc ();
    gsl_spline *spline = gsl_spline_alloc (gsl_interp_cspline, 4);    
    gsl_spline_init (spline, xi, yi, 4);
    ret = gsl_spline_eval_check(spline, l, acc);
    gsl_spline_free (spline);
    gsl_interp_accel_free (acc);
 
    return (float)ret;
  }
  
  asfPrintError("Impossible.");
}
コード例 #5
0
ファイル: Particles.C プロジェクト: cdeil/GAMERA
Particles::Particles() {
  /* Default values */
  eElectronMax = 100000.;
  SpectralIndex = 2.000;
  Tmin = 1.;
  CutOffFactor = 1000.;
  TminInternal = 1.e-10;
  TmaxInternal = 1.e100;
  EminInternal = 1.e-3;
  energyMarginFactor = 1.e-3;
  energyMargin = 1.;
  ebins = 100;
  SACELI_Told = 0.;
  R = -1.;
  V = -1.;
  gslmemory=5000;
  QUIETMODE = false;
  EminConstantForNormalisationOnly = false;
  DEBUG = false;
  ICLossLookup = NULL;
  LumLookup = NULL;
  NLookup = NULL;
  eMaxLookup = NULL;
  BFieldLookup = NULL;
  RLookup = NULL;
  VLookup = NULL;
  escapeTimeLookup = NULL;
  integratorTolerance = 5.e-2;
  ParticleSpectrum.clear();
  ParticleSpectrum.resize(0);
  ICLossVector.resize(0);
  LumVector.resize(0);
  NVector.resize(0);
  BVector.resize(0);
  eMaxVector.resize(0);
  escapeTimeVector.resize(0);
  RVector.resize(0);
  VVector.resize(0);

  SpectralIndex2 = eBreak = TminConstant = adLossCoeff = EminConstant =
      eMaxConstant = 0.;
  escapeTime = escapeTimeConstant = EnergyAxisLowerBoundary =
      EnergyAxisUpperBoundary = 0.;
  eBreakS2 = eBreak2mS2 = eBreakS = eBreak2mS = emin2mS2 = emin2mS =
      emineBreak2mS2 = 0.;
  eBreak2mSInd2 = emin2mSInd2 = emineBreak2mSInd2 = fS = fS2 = bremsl_epf =
      bremsl_eef = 0.;
  LumConstant = BConstant = NConstant = VConstant = RConstant = 0.;
  accIC = gsl_interp_accel_alloc();
  accLum = gsl_interp_accel_alloc();
  accN = gsl_interp_accel_alloc();
  accBField = gsl_interp_accel_alloc();
  acceMax = gsl_interp_accel_alloc();
  accescapeTime = gsl_interp_accel_alloc();
  accR = gsl_interp_accel_alloc();
  accV = gsl_interp_accel_alloc();
  accTr = gsl_interp_accel_alloc();
  accTrInv = gsl_interp_accel_alloc();
}
コード例 #6
0
int load_lens(int l_size ,int* l_values){
	
	double* lens_data = malloc( sizeof(double)*MAXLINES*3);
	int* lens_len = malloc( sizeof(int));
	
	load_txt_dbl(lens_data_file, 3, lens_data, lens_len);
	
	int lens_size = *lens_len;
	int lmax = (int)get_lmax();
// 	printf("lmax %d\t%d\n",lmax,lens_size);
	double l_raw[lens_size];
	double cltt_raw[lens_size];
	double cltp_raw[lens_size];
	
	int i,j;
	double pt;
	
	j=0;
	for (i=0; i<lmax+1; i++){
		l_raw[i] = lens_data[j++];
		cltt_raw[i] = lens_data[j++];
		cltp_raw[i] = lens_data[j++];
	}
	
	if (l_values[l_size-1]>l_raw[lmax]){
		printf("lens do not contain enough l's, max data %d max lens: %d\n", l_values[l_size-1], (int)l_raw[lmax]);
		return 1;
		exit;
	}
	
	
	gsl_spline* sptt =  gsl_spline_alloc (gsl_interp_cspline, lmax+1);
	gsl_spline* sptp =  gsl_spline_alloc (gsl_interp_cspline, lmax+1);
	gsl_interp_accel* acctt = gsl_interp_accel_alloc();
	gsl_interp_accel* acctp = gsl_interp_accel_alloc();
	
	gsl_spline_init(sptt,l_raw,cltt_raw,lmax+1);
	gsl_spline_init(sptp,l_raw,cltp_raw,lmax+1);
	
	for (i=0; i<l_size; i++){
		pt = (double)l_values[i];
		lens_tt[i] = 0.0;
		lens_tp[i] = 0.0;
		if(pt!=0){
			lens_tt[i] = gsl_spline_eval(sptt,pt,acctt);
			lens_tp[i] = gsl_spline_eval(sptp,pt,acctp);
		}
	}
	
	gsl_spline_free(sptt);
	gsl_spline_free(sptp);
	gsl_interp_accel_free(acctt);
	gsl_interp_accel_free(acctp);
	
	return 0;
}
コード例 #7
0
vector<carmen_ackerman_path_point_t>
simulate_car_from_parameters(TrajectoryLookupTable::TrajectoryDimensions &td,
		TrajectoryLookupTable::TrajectoryControlParameters &tcp, double v0, double i_phi,
		TrajectoryLookupTable::CarLatencyBuffer car_latency_buffer,	bool display_phi_profile)
{
	vector<carmen_ackerman_path_point_t> path;
	if (!tcp.valid)
	{
		printf("Warning: invalid TrajectoryControlParameters tcp in simulate_car_from_parameters()\n");
		return (path);
	}

	// Create phi profile

	gsl_interp_accel *acc;
	gsl_spline *phi_spline;
	if (tcp.has_k1)
	{
		double knots_x[4] = {0.0, tcp.tt / 4.0, tcp.tt / 2.0, tcp.tt};
		double knots_y[4] = {i_phi, tcp.k1, tcp.k2, tcp.k3};
		acc = gsl_interp_accel_alloc();
		const gsl_interp_type *type = gsl_interp_cspline;
		phi_spline = gsl_spline_alloc(type, 4);
		gsl_spline_init(phi_spline, knots_x, knots_y, 4);
	}
	else
	{
		double knots_x[3] = {0.0, tcp.tt / 2.0, tcp.tt};
		double knots_y[3] = {i_phi, tcp.k2, tcp.k3};
		acc = gsl_interp_accel_alloc();
		const gsl_interp_type *type = gsl_interp_cspline;
		phi_spline = gsl_spline_alloc(type, 3);
		gsl_spline_init(phi_spline, knots_x, knots_y, 3);
	}
	print_phi_profile_temp(phi_spline, acc, tcp.tt, display_phi_profile);

	Command command;
	Robot_State robot_state;

	double distance_traveled = compute_path_via_simulation(robot_state, command, path, tcp, phi_spline, acc, v0, i_phi, car_latency_buffer);

	gsl_spline_free(phi_spline);
	gsl_interp_accel_free(acc);
	td.dist = sqrt(robot_state.pose.x * robot_state.pose.x + robot_state.pose.y * robot_state.pose.y);
	td.theta = atan2(robot_state.pose.y, robot_state.pose.x);
	td.d_yaw = robot_state.pose.theta;
	td.phi_i = i_phi;
	td.v_i = v0;
	tcp.vf = command.v;
	tcp.sf = distance_traveled;
	td.control_parameters = tcp;

	return (path);
}
コード例 #8
0
UNUSED static REAL8 XLALSimInspiralNRWaveformGetInterpValueFromGroupAtPoint(
  UNUSED LALH5File* file,                 /**< Pointer to HDF5 file */
  UNUSED const char *groupName,           /**< Name of group in HDF file */
  UNUSED REAL8 ref_point                  /**< Point at which to evaluate */
  )
{
  #ifndef LAL_HDF5_ENABLED
  XLAL_ERROR(XLAL_EFAILED, "HDF5 support not enabled");
  #else
  LALH5File *curr_group = NULL;
  gsl_vector *curr_t_vec = NULL;
  gsl_vector *curr_y_vec = NULL;
  gsl_interp_accel *acc;
  gsl_spline *spline;
  REAL8 ret_val;
  curr_group = XLALH5GroupOpen(file, groupName);
  ReadHDF5RealVectorDataset(curr_group, "X", &curr_t_vec);
  ReadHDF5RealVectorDataset(curr_group, "Y", &curr_y_vec);
  acc = gsl_interp_accel_alloc();
  spline = gsl_spline_alloc(gsl_interp_cspline, curr_t_vec->size);
  gsl_spline_init(spline, curr_t_vec->data, curr_y_vec->data,
                  curr_t_vec->size);
  ret_val = gsl_spline_eval(spline, ref_point, acc);
  gsl_vector_free(curr_t_vec);
  gsl_vector_free(curr_y_vec);
  gsl_spline_free (spline);
  gsl_interp_accel_free (acc);
  return ret_val;
  #endif
}
コード例 #9
0
ファイル: spline_gsl.cpp プロジェクト: leeneil/spline_mex
void spline(double *YY, 
		double *X, double *Y, double *XX, int m1, int m2) {

	// m1: length of discrete extremas
	// m2: length of original data points

	gsl_interp_accel *acc = gsl_interp_accel_alloc ();
  	const gsl_interp_type *t = gsl_interp_cspline; 
  	gsl_spline *spline = gsl_spline_alloc (t, m1);

	/* Core function */

  	gsl_spline_init (spline, X, Y, m1);

	double m;
	
	if (m1 > 2 ) {
		for (int j = 0; j < m2; j++) {
			YY[j] = gsl_spline_eval (spline, XX[j], acc);
		} // end of for-j
	} // end of if

	else {
		m = (Y[1] - Y[0]) / (X[1] - X[0]);
		for (int j = 0; j < m2; j++) {
			YY[j] = Y[0] + m * (XX[j] - X[0]);		
		} // end of for-j
	} //end of else

	// delete[] xd;
	gsl_spline_free (spline);
  	gsl_interp_accel_free (acc);

}
コード例 #10
0
// angular average for Mhat in integration region I for given s (<z^n*M> with
// n={0,1})
void M_avg_1(complex_spline M, complex *M_avg, double *s, double a, double b,
             double c, double d, char plusminus, char kappa_pm, int N, int n) {
  int i, N_int;
  double eps, error, s_minus, s_plus, sigma;

  N_int = 1500;
  eps = 1.0e-10;

  gsl_interp_accel *acc = gsl_interp_accel_alloc();

  gsl_integration_workspace *w = gsl_integration_workspace_alloc(N_int);

  gsl_function F;
  gsl_function G;

  double f_re(double z, void *params) {
    double sigma = *(double *)params;
    double f;
    if (n == 0) {
      f = gsl_spline_eval(M.re, z, acc);
    } else if (n == 1) {
      f = (z - sigma) * gsl_spline_eval(M.re, z, acc);
    } else if (n == 2) {
      f = pow(z - sigma, 2.0) * gsl_spline_eval(M.re, z, acc);
    }
    //        if (isnan(f)==1) {
    //            printf("%d %.3e %.3e\n",n,z,sigma);
    //        }
    return f;
  }
コード例 #11
0
ファイル: rest_coeff.c プロジェクト: gperaza/ed-disks
void prep_et() {
    /* Set ups the spline to sample et. */
    double et;
    double gn0 = -1, gt0;

    slLimit = 6*mu - mu*kn/kt;

    double *x = (double*)calloc(100, sizeof(double));
    double *y = (double*)calloc(100, sizeof(double));

    /* Write first point. */
    x[0] = 0; y[0] = cos(sqrt(3*kt/meff)*t_col());
    /* Calculate intermediate points. */
    long i;
    for (i = 1; i < 100; i++) {
        gt0 = slLimit/100.0*i;
        double ratio = fabs(gt0/(double)gn0);
        et = calculate_et(gn0, gt0);
        x[i] = ratio;
        y[i] = et;
    }
    /* Write last point. */
    x[100] = 6*mu - mu*kn/kt;
    y[100] = 1 - 3*mu*(1 + calc_en())/x[100];

    /* Interpolation with cubic spline. */
    acc = gsl_interp_accel_alloc();
    spline = gsl_spline_alloc(gsl_interp_cspline, 101);
    gsl_spline_init(spline, x, y, 101);
}
コード例 #12
0
ファイル: weaklens.c プロジェクト: beckermr/cosmocalc
static void comp_lens_power_spectrum(lensPowerSpectra lps)
{
#define WORKSPACE_NUM 100000
#define ABSERR 1e-12
#define RELERR 1e-12
#define TABLE_LENGTH 1000
  
  gsl_integration_workspace *workspace;
  gsl_function F;
  double result,abserr;
  double logltab[TABLE_LENGTH];
  double logpkltab[TABLE_LENGTH];
  double chimax;
  int i;
  
  //fill in bin information
  chiLim = lps->chiLim;
  if(lps->chis1 > lps->chis2)
    chimax = lps->chis1;
  else
    chimax = lps->chis2;
  
  fprintf(stderr,"doing lens pk - chiLim = %lf, chiMax = %lf\n",chiLim,chimax);
  
  //init
  workspace = gsl_integration_workspace_alloc((size_t) WORKSPACE_NUM);
  F.function = &lenspk_integrand;
  F.params = lps;
  
  //make table
  double lnlmin = log(wlData.lmin);
  double lnlmax = log(wlData.lmax);
  for(i=0;i<TABLE_LENGTH;++i)
    {
      logltab[i] = i*(lnlmax-lnlmin)/(TABLE_LENGTH-1) + lnlmin;
      
      lps->ell = exp(logltab[i]);
      gsl_integration_qag(&F,0.0,chimax,ABSERR,RELERR,(size_t) WORKSPACE_NUM,GSL_INTEG_GAUSS51,workspace,&result,&abserr);
      
      logpkltab[i] = log(result);
    }
  
  //free
  gsl_integration_workspace_free(workspace);
  
  //init splines and accels
  if(lps->spline != NULL)
    gsl_spline_free(lps->spline);
  lps->spline = gsl_spline_alloc(gsl_interp_akima,(size_t) (TABLE_LENGTH));
  gsl_spline_init(lps->spline,logltab,logpkltab,(size_t) (TABLE_LENGTH));
  if(lps->accel != NULL)
    gsl_interp_accel_reset(lps->accel);
  else
    lps->accel = gsl_interp_accel_alloc();
    
#undef TABLE_LENGTH
#undef ABSERR
#undef RELERR
#undef WORKSPACE_NUM
}
コード例 #13
0
ファイル: demo.c プロジェクト: BrianGladman/gsl
int
main (void)
{
  int i;
  double xi, yi;
  double x[10], y[10];

  printf ("#m=0,S=2\n");

  for (i = 0; i < 10; i++)
    {
      x[i] = i + 0.5 * sin (i);
      y[i] = i + cos (i * i);
      printf ("%g %g\n", x[i], y[i]);
    }

  printf ("#m=1,S=0\n");

  {
    gsl_interp_accel *acc = gsl_interp_accel_alloc ();
    gsl_spline *spline = gsl_spline_alloc (gsl_interp_cspline, 10);
    gsl_spline_init (spline, x, y, 10);

    for (xi = x[0]; xi < x[9]; xi += 0.01)
      {
        double yi = gsl_spline_eval (spline, xi, acc);
        printf ("%g %g\n", xi, yi);
      }
    gsl_spline_free (spline);
    gsl_interp_accel_free(acc);
  }
}
コード例 #14
0
ファイル: interp.c プロジェクト: davidrichards/rb-gsl
static VALUE rb_gsl_interp_new(int argc, VALUE *argv, VALUE klass)
{
  rb_gsl_interp *sp = NULL;
  const gsl_interp_type *T = NULL;
  double *ptrx = NULL, *ptry = NULL;
  size_t sizex = 0, sizey = 0, size = 0, stride = 1;
  int i;
  for (i = 0; i < argc; i++) {
    switch (TYPE(argv[i])) {
    case T_STRING:
      T = get_interp_type(argv[i]);
      break;
    case T_FIXNUM:
      if (T) size = FIX2INT(argv[i]);
      else T = get_interp_type(argv[i]);
      break;
    default:
      if (ptrx == NULL) {
	ptrx = get_vector_ptr(argv[i], &stride, &sizex);
      } else {
	ptry = get_vector_ptr(argv[i], &stride, &sizey);
	size = GSL_MIN_INT(sizex, sizey);
      }
      break;
    }
  }
  if (size == 0) rb_raise(rb_eRuntimeError, "interp size is not given.");
  sp = ALLOC(rb_gsl_interp);
  if (T == NULL) T = gsl_interp_cspline;
  sp->p = gsl_interp_alloc(T, size);
  sp->a = gsl_interp_accel_alloc();
  if (ptrx && ptry) gsl_interp_init(sp->p, ptrx, ptry, size);
  return Data_Wrap_Struct(klass, 0, rb_gsl_interp_free, sp);
}
コード例 #15
0
ファイル: routines.cpp プロジェクト: brantr/routines
/*! \fn void create_linear_spline(double (*func)(double, void *), double *x, double *&y, int n, double *params, gsl_spline *&spline, gsl_interp_accel *&acc)
 *  \brief Routine to create a spline, interpolated linear.
 */
void create_linear_spline(double (*func)(double, void *), double *x, double *&y, int n, double *params, gsl_spline *&spline, gsl_interp_accel *&acc)
{
	//x contains the locations at which
	//wish to evaluate the function func()

	//y is input unallocated
	//we will allocate it and it will
	//contain func(x)

	//n is the size of the array of x and y
	
	//params is the array of parameters to pass to
	//func(x,params)

	//spline is the unallocated gsl_spline

	//acc is the unallocated gsl_interp_accel

	//allocate y
	y = calloc_double_array(n);

	//evaluate func at x locations
	for(int i=0;i<n;i++)
		y[i] = func(x[i],params);


	//allocate interpolants
	spline = gsl_spline_alloc(gsl_interp_cspline,n);

	acc    = gsl_interp_accel_alloc();

	//create interpoolation
	gsl_spline_init(spline, x, y, n);
}
コード例 #16
0
int calc_ave_delta_sigma_in_bin(double*R,int NR,double*delta_sigma,
				double lRlow,double lRhigh,
				double*ave_delta_sigma){
  int status = 0;

  gsl_spline*spline = gsl_spline_alloc(gsl_interp_cspline,NR);
  gsl_spline_init(spline,R,delta_sigma,NR);
  gsl_interp_accel*acc= gsl_interp_accel_alloc();
  gsl_integration_workspace * workspace
    = gsl_integration_workspace_alloc(workspace_size);

  integrand_params*params=malloc(sizeof(integrand_params));
  params->acc=acc;
  params->spline=spline;
  params->workspace=workspace;

  double Rlow=exp(lRlow),Rhigh=exp(lRhigh);

  do_integral(ave_delta_sigma,lRlow,lRhigh,params);
  *ave_delta_sigma *= 2./(Rhigh*Rhigh-Rlow*Rlow);

  gsl_spline_free(spline),gsl_interp_accel_free(acc);
  gsl_integration_workspace_free(workspace);
  free(params);
  return 0;
}
コード例 #17
0
ファイル: polysnap.c プロジェクト: jasminegrosso/zeno
void polymodel(void)
{
  gsl_interp_accel *pmsplacc = gsl_interp_accel_alloc();
  bodyptr p;
  real rad, phi, vel, psi, vr, vp, a, E, J;
  vector rhat, vtmp, vper;

  for (p = btab; p < NthBody(btab, nbody); p = NextBody(p)) {
    rad = rad_m(xrandom(0.0, mtot));
    phi = gsl_spline_eval(pmspline, (double) rad, pmsplacc);
    vel = pick_v(phi);
    psi = pick_psi();
    vr = vel * rcos(psi);
    vp = vel * rsin(psi);
    Mass(p) = mtot / nbody;
    pickshell(rhat, NDIM, 1.0);
    MULVS(Pos(p), rhat, rad);
    pickshell(vtmp, NDIM, 1.0);
    a = dotvp(vtmp, rhat);
    MULVS(vper, rhat, - a);
    ADDV(vper, vper, vtmp);
    a = absv(vper);
    MULVS(vper, vper, vp / a);
    MULVS(Vel(p), rhat, vr);
    ADDV(Vel(p), Vel(p), vper);
    Phi(p) = phi;
    E = phi + 0.5 * rsqr(vel);
    J = rad * ABS(vp);
    Aux(p) = Kprime * rpow(phi1 - E, npol - 1.5) * rpow(J, 2 * mpol);
  }
  gsl_interp_accel_free(pmsplacc);
}
コード例 #18
0
  TransformationModelInterpolated::TransformationModelInterpolated(
    const TransformationModel::DataPoints & data, const Param & params)
  {
    params_ = params;
    Param defaults;
    getDefaultParameters(defaults);
    params_.setDefaults(defaults);

    // need monotonically increasing x values (can't have the same value twice):
    map<DoubleReal, vector<DoubleReal> > mapping;
    for (TransformationModel::DataPoints::const_iterator it = data.begin();
         it != data.end(); ++it)
    {
      mapping[it->first].push_back(it->second);
    }
    size_ = mapping.size();
    x_.resize(size_);
    y_.resize(size_);
    size_t i = 0;
    for (map<DoubleReal, vector<DoubleReal> >::const_iterator it =
           mapping.begin(); it != mapping.end(); ++it, ++i)
    {
      x_[i] = it->first;
      // use average y value:
      y_[i] = accumulate(it->second.begin(), it->second.end(), 0.0) /
              it->second.size();
    }

    String interpolation_type = params_.getValue("interpolation_type");
    const gsl_interp_type * type;
    if (interpolation_type == "linear")
      type = gsl_interp_linear;
    else if (interpolation_type == "polynomial")
      type = gsl_interp_polynomial;
    else if (interpolation_type == "cspline")
      type = gsl_interp_cspline;
    else if (interpolation_type == "akima")
      type = gsl_interp_akima;
    else
    {
      throw Exception::IllegalArgument(__FILE__, __LINE__, __PRETTY_FUNCTION__, "unknown/unsupported interpolation type '" + interpolation_type + "'");
    }

    size_t min_size = type->min_size;
    if (size_ < min_size)
    {
      throw Exception::IllegalArgument(__FILE__, __LINE__, __PRETTY_FUNCTION__, "'" + interpolation_type + "' interpolation model needs at least " + String(min_size) + " data points (with unique x values)");
    }

    interp_ = gsl_interp_alloc(type, size_);
    acc_ = gsl_interp_accel_alloc();
    double * x_start = &(x_[0]), * y_start = &(y_[0]);
    gsl_interp_init(interp_, x_start, y_start, size_);

    // linear model for extrapolation:
    TransformationModel::DataPoints lm_data(2);
    lm_data[0] = make_pair(x_[0], y_[0]);
    lm_data[1] = make_pair(x_[size_ - 1], y_[size_ - 1]);
    lm_ = new TransformationModelLinear(lm_data, Param());
  }
コード例 #19
0
UNUSED static REAL8 XLALSimInspiralNRWaveformGetRefTimeFromRefFreq(
  UNUSED LALH5File* file,
  UNUSED REAL8 fRef
)
{
  #ifndef LAL_HDF5_ENABLED
  XLAL_ERROR(XLAL_EFAILED, "HDF5 support not enabled");
  #else
  /* NOTE: This is an internal function, it is expected that fRef is scaled
   * to correspond to the fRef with a total mass of 1 solar mass */
  LALH5File *curr_group = NULL;
  gsl_vector *omega_t_vec = NULL;
  gsl_vector *omega_w_vec = NULL;
  gsl_interp_accel *acc;
  gsl_spline *spline;
  REAL8 ref_time;
  curr_group = XLALH5GroupOpen(file, "Omega-vs-time");
  ReadHDF5RealVectorDataset(curr_group, "X", &omega_t_vec);
  ReadHDF5RealVectorDataset(curr_group, "Y", &omega_w_vec);
  acc = gsl_interp_accel_alloc();
  spline = gsl_spline_alloc(gsl_interp_cspline, omega_w_vec->size);
  gsl_spline_init(spline, omega_w_vec->data, omega_t_vec->data,
                  omega_t_vec->size);
  ref_time = gsl_spline_eval(spline, fRef * (LAL_MTSUN_SI * LAL_PI), acc);
  gsl_vector_free(omega_t_vec);
  gsl_vector_free(omega_w_vec);
  gsl_spline_free(spline);
  gsl_interp_accel_free(acc);
  return ref_time;
  #endif
}
コード例 #20
0
ファイル: powerspectrum.cpp プロジェクト: anupreeta27/SIMCT
/// Power spectra numerical implementation. Initializing spline. 
void cosmology::init_powerspectra_L()
{
    if(verbose){
    std::cout<<"# "<<"============================================================="<<std::endl;
    std::cout<<"# "<<"The spline for linear power spectra was not initialized. Initializing..."<<std::endl;
    }
    //Define the limits for which to calculate the variance

    double xx[Npower],yy[Npower];
    for (int i=0;i<Npower;i++)
    {
        double k=kmin+i/(Npower-1.)*(kmax-kmin);
        xx[i]=k;
	k=pow(10.0,k);
	/// Improvement possible here
        yy[i]=log10(Delta2_L(k,0.0));
    }
    PSL0_acc = gsl_interp_accel_alloc ();
    PSL0_spline = gsl_spline_alloc (gsl_interp_cspline, Npower);
    gsl_spline_init (PSL0_spline,xx,yy,Npower);
    PSL0_dlow=(yy[2]-yy[0])/(xx[2]-xx[0]);
    PSL0_xlow=xx[1]; PSL0_ylow=yy[1];
    PSL0_dhigh=(yy[Npower-3]-yy[Npower-1])/(xx[Npower-3]-xx[Npower-1]);
    PSL0_xhigh=xx[Npower-2]; PSL0_yhigh=yy[Npower-2];

    bool_init_PSL0=true;
    if(verbose){
    std::cout<<"# "<<"The spline for numerical calculation of linear power spectra is now initialized"<<std::endl;
    std::cout<<"# "<<"============================================================="<<std::endl;
    }
       
}
コード例 #21
0
ファイル: xi_mm.c プロジェクト: tmcclintock/Delta-Sigma
double calc_corr_at_R(double R,double*k,double*P,int Nk,int N,double h){
  double zero,psi,x,t,dpsi,f,PIsinht;
  double PI_h = PI/h;
  double PI_2 = PI*0.5;
  gsl_spline*Pspl = gsl_spline_alloc(gsl_interp_cspline,Nk);
  gsl_spline_init(Pspl,k,P,Nk);
  gsl_interp_accel*acc= gsl_interp_accel_alloc();

  double sum = 0;
  int i;
  for(i=0;i<N;i++){
    zero = i+1;
    psi = h*zero*tanh(sinh(h*zero)*PI_2);
    x = psi*PI_h;
    t = h*zero;
    PIsinht = PI*sinh(t);
    dpsi = (PI*t*cosh(t)+sinh(PIsinht))/(1+cosh(PIsinht));
    if (dpsi!=dpsi) dpsi=1.0;
    f = x*get_P(x,R,k,P,Nk,Pspl,acc);
    sum += f*sin(x)*dpsi;
  }

  gsl_spline_free(Pspl),gsl_interp_accel_free(acc);
  return sum/(R*R*R*PI*2);
}
コード例 #22
0
ファイル: interpp.c プロジェクト: CNMAT/CNMAT-Externs
int
main (void)
{
  int N = 4;
  double x[4] = {0.00, 0.10,  0.27,  0.30};
  double y[4] = {0.15, 0.70, -0.10,  0.15}; /* Note: first = last 
                                               for periodic data */

  gsl_interp_accel *acc = gsl_interp_accel_alloc ();
  const gsl_interp_type *t = gsl_interp_cspline_periodic; 
  gsl_spline *spline = gsl_spline_alloc (t, N);

  int i; double xi, yi;

  printf ("#m=0,S=5\n");
  for (i = 0; i < N; i++)
    {
      printf ("%g %g\n", x[i], y[i]);
    }

  printf ("#m=1,S=0\n");
  gsl_spline_init (spline, x, y, N);

  for (i = 0; i <= 100; i++)
    {
      xi = (1 - i / 100.0) * x[0] + (i / 100.0) * x[N-1];
      yi = gsl_spline_eval (spline, xi, acc);
      printf ("%g %g\n", xi, yi);
    }
  
  gsl_spline_free (spline);
  gsl_interp_accel_free (acc);
  return 0;
}
コード例 #23
0
ファイル: powerspectrum.cpp プロジェクト: anupreeta27/SIMCT
/// Initialize the spline for numerically calculating the variance
/// This is valid for redshift z=0.0. Should be appropriately multiplied by the
/// growth factor to extend to redshift z.
void cosmology::init_varM_TH_spline()
{
    if(verbose){
    std::cout<<"# "<<"============================================================="<<std::endl;
    std::cout<<"# "<<"The spline for numerical calculation of variance was not initialized. Initializing..."<<std::endl;
    }
    //Define the limits for which to calculate the variance
    double mmin=5.0;
    double mmax=18.0;

    double xx[Nsigma],yy[Nsigma];
    for (int i=0;i<Nsigma;i++)
    {
        double m=mmin+i/(Nsigma-1.)*(mmax-mmin);
        xx[i]=m;
        m=pow(10.,m);
        yy[i]=log(varM_TH(m,0.0))/log(10.);
        //std::cout<<xx[i]<<" "<<yy[i]<<std::endl;
    }
    varM_TH_num_acc = gsl_interp_accel_alloc ();
    varM_TH_num_spline = gsl_spline_alloc (gsl_interp_cspline, Nsigma);
    gsl_spline_init (varM_TH_num_spline,xx,yy,Nsigma);

    bool_init_varM_TH_spline=true;
    if(verbose){
    std::cout<<"# "<<"The spline for numerical calculation of variance is now initialized"<<std::endl;
    std::cout<<"# "<<"============================================================="<<std::endl;
    }
}
コード例 #24
0
static void
init_interp(struct disp_sample_table *dt)
{
    dt->interp_n = gsl_interp_alloc(gsl_interp_cspline, dt->len);
    dt->interp_k = gsl_interp_alloc(gsl_interp_cspline, dt->len);
    dt->accel = gsl_interp_accel_alloc();
}
コード例 #25
0
void regrid_sed(double z,double *plam,double *pval,long finelength, \
				long sedlength,double *fineplam,double *finepval) {
	
    long ii;
    double x[sedlength],y[sedlength];
	
    for (ii=0;ii<sedlength;ii++) {
        x[ii] = *(plam+ii) * (1.0 + z);
        y[ii] = *(pval+ii);
    }
	
    gsl_interp_accel *acc = gsl_interp_accel_alloc();
    gsl_spline *spline    = gsl_spline_alloc(gsl_interp_cspline, sedlength);
    
    gsl_spline_init(spline, x, y, sedlength);
	
    for (ii=0; ii < finelength; ii++) {
        if (*(fineplam+ii)/(1.0 + z) < *(plam+0)) {
            *(finepval+ii) = 0.0;
        } else {
            *(finepval+ii) = gsl_spline_eval (spline, *(fineplam+ii), acc);
        }
        if (*(finepval+ii) < 0.0)
            *(finepval+ii) = 0.0;
    }
	
    gsl_spline_free(spline);
    gsl_interp_accel_free(acc);
}
コード例 #26
0
void Interpolation::calculateOutputData(double *x, double *y)
{
	gsl_interp_accel *acc = gsl_interp_accel_alloc ();
	const gsl_interp_type *method;
	switch(d_method)
	{
		case 0:
			method = gsl_interp_linear;
			break;
		case 1:
			method = gsl_interp_cspline;
			break;
		case 2:
			method = gsl_interp_akima;
			break;
	}

	gsl_spline *interp = gsl_spline_alloc (method, d_n);
	gsl_spline_init (interp, d_x, d_y, d_n);

    double step = (d_to - d_from)/(double)(d_points - 1);
    for (int j = 0; j < d_points; j++)
	{
	   x[j] = d_from + j*step;
	   y[j] = gsl_spline_eval (interp, x[j], acc);
	}

	gsl_spline_free (interp);
	gsl_interp_accel_free (acc);
}
コード例 #27
0
ファイル: mixing.cpp プロジェクト: Ingwar/amuse
void smoothing_integrate(smoothing_params &params, int n) {
  int n_int = 2*n;

  params.acc_y = gsl_interp_accel_alloc();
  params.int_y = gsl_interp_alloc(gsl_interp_linear, n);
  params.n     = n;
  gsl_interp_init(params.int_y, params.arr_x, params.arr_y, n);

  /* setup integration workspace */

  gsl_integration_workspace *w = gsl_integration_workspace_alloc(n_int);
  gsl_function F; 
  F.function = &smoothing_integrand;
  F.params   = &params;
  
  double eps_abs = 0.0, eps_rel = 0.01;
  double result, error;
  gsl_set_error_handler_off();
 
  for (int i = 0; i < n; i++) {
    params.x = params.arr_x[i];
    params.h = 0.1; //0.1*params.x + 1.0e-4;

    gsl_integration_qag(&F, 
			params.x - 2*params.h, params.x + 2*params.h,
			eps_abs, eps_rel,
			n_int, 1,
			w, &result, &error);
    params.smoothed_y[i] = result;
  }
  
  gsl_integration_workspace_free(w);
  gsl_interp_accel_free(params.acc_y);
  gsl_interp_free(params.int_y);
}
コード例 #28
0
/**
 * The function fills the flux information from a point in
 * a fluxcube structure into the flux part of a direct object.
 *
 * @param fcube  - the fluxcube structure
 * @param point  - the position to take the flux from
 * @param actdir - the direct object to update
 *
 */
void fill_fluxvalues(const flux_cube *fcube, const px_point point,
                     dirobject *actdir, const int inter_type)
{


  energy_distrib *sed;
  double *sed_wavs;
  double *sed_flux;

  int i;
  int iact;


  sed = (energy_distrib*) malloc(sizeof(energy_distrib));
  sed_wavs = (double*) malloc(fcube->n_fimage*sizeof(double));
  sed_flux = (double*) malloc(fcube->n_fimage*sizeof(double));

  if (actdir->SED)
    free_enerdist (actdir->SED);

  // go over each fluximage in the fluxcube structure
  for (i=0; i < fcube->n_fimage; i++)
    {

      // determine the index of the next fluximage
      iact = gsl_vector_int_get(fcube->fimage_order, i);

      // transfer the wavelength and flux from the fluxcube
      sed_wavs[i] = fcube->fluxims[iact]->wavelength;
      sed_flux[i] = gsl_matrix_get(fcube->fluxims[iact]->flux, point.x, point.y);
    }

  sed->npoints    = fcube->n_fimage;
  sed->wavelength = sed_wavs ;
  sed->flux       = sed_flux;

  if (fcube->n_fimage > 1)
    {
      if (inter_type == 2)
        sed->interp     = gsl_interp_alloc (gsl_interp_polynomial, (size_t)fcube->n_fimage);
      else if (inter_type == 3)
        sed->interp     = gsl_interp_alloc (gsl_interp_cspline, (size_t)fcube->n_fimage);
      else
        sed->interp     = gsl_interp_alloc (gsl_interp_linear, (size_t)fcube->n_fimage);

      sed->accel      = gsl_interp_accel_alloc ();
      gsl_interp_init (sed->interp, sed->wavelength, sed->flux, (size_t)sed->npoints);
    }
  else
    {
      sed->interp = NULL;
      sed->accel= NULL;
    }

  // transfer the SED;
  // announce the SED
  actdir->SED    = sed;
  actdir->bb_sed = 1;
}
コード例 #29
0
UNUSED static UINT4 XLALSimInspiralNRWaveformGetDataFromHDF5File(
  UNUSED REAL8Vector** output,            /**< Returned vector uncompressed */
  UNUSED LALH5File* pointer,              /**< Pointer to HDF5 file */
  UNUSED REAL8 totalMass,                 /**< Total mass of system for scaling */
  UNUSED REAL8 startTime,                 /**< Start time of veturn vector */
  UNUSED size_t length,                   /**< Length of returned vector */
  UNUSED REAL8 deltaT,                    /**< Sample rate of returned vector */
  UNUSED const char *keyName              /**< Name of vector to uncompress */
  )
{
  #ifndef LAL_HDF5_ENABLED
  XLAL_ERROR(XLAL_EFAILED, "HDF5 support not enabled");
  #else
  UINT4 idx;
  size_t comp_data_length;
  REAL8 massTime;
  gsl_interp_accel *acc;
  gsl_spline *spline;
  gsl_vector *knotsVector, *dataVector;
  LALH5File *group = XLALH5GroupOpen(pointer, keyName);
  knotsVector=dataVector=NULL;

  ReadHDF5RealVectorDataset(group, "X", &knotsVector);
  ReadHDF5RealVectorDataset(group, "Y", &dataVector);

  *output = XLALCreateREAL8Vector(length);

  comp_data_length = dataVector->size;
  /* SPLINE STUFF */
  acc = gsl_interp_accel_alloc();
  spline = gsl_spline_alloc(gsl_interp_cspline, comp_data_length);
  gsl_spline_init(spline, knotsVector->data, dataVector->data,
                  comp_data_length);

  for (idx = 0; idx < length; idx++)
  {
    massTime = (startTime + idx*deltaT) / (totalMass * LAL_MTSUN_SI);
    /* This if statement is used to catch the case where massTime at idx=0
     * ends up at double precision smaller than the first point in the
     * interpolation. In this case set it back to exactly the first point.
     * Sanity checking that we are not trying to use data below the
     * interpolation range is done elsewhere.
     */
    if ((idx == 0) && (massTime < knotsVector->data[0]))
    {
      massTime = knotsVector->data[0];
    }
    (*output)->data[idx] = gsl_spline_eval(spline, massTime, acc);
  }

  gsl_vector_free(knotsVector);
  gsl_vector_free(dataVector);
  gsl_spline_free (spline);
  gsl_interp_accel_free (acc);

  return XLAL_SUCCESS;
  #endif
}
コード例 #30
0
void compute_correlation_func(int ObsNr, double *binsamdata, int snap, float mingalmass, float maxgalmass)
{
	double *r,*proj,*r_tmp,*proj_tmp;
	int ibin, ii, jj;
	char buf[1000];
	FILE *fa;
	gsl_spline *Proj_Spline;
	gsl_interp_accel *Proj_SplineAcc;

	NR=60;

	//printf("\ncalculating correlation function %0.2f < M < %0.2f\n",mingalmass,maxgalmass);

	r=malloc(NR*sizeof(double));
	proj=malloc(NR*sizeof(double));

	halomodel(r,proj,mingalmass,maxgalmass,snap);

	Proj_Spline=gsl_spline_alloc(gsl_interp_cspline,NR);
	Proj_SplineAcc=gsl_interp_accel_alloc();
	gsl_spline_init(Proj_Spline,r,proj,NR);

	//for(ii=0;ii<Nbins[snap][ObsNr]-1;ii++)
	//	printf("Nbins=%d r=%g\n",Nbins[snap][ObsNr], MCMC_Obs[ObsNr].Bin_low[snap][ii]+(MCMC_Obs[ObsNr].Bin_high[snap][ii]-MCMC_Obs[ObsNr].Bin_low[snap][ii])/2.)

	 for(ii=0;ii<Nbins[snap][ObsNr]-1;ii++)
		 binsamdata[ii]=gsl_spline_eval(Proj_Spline,MCMC_Obs[ObsNr].Bin_low[snap][ii]+(MCMC_Obs[ObsNr].Bin_high[snap][ii]-MCMC_Obs[ObsNr].Bin_low[snap][ii])/2.,Proj_SplineAcc);

#ifndef PARALLEL
	 //full3 - full PLANCK
	sprintf(buf, "%s/correlation_guo10_bug_fix_full_z0.02_%0.2f_%0.2f.txt",OutputDir, mingalmass,maxgalmass);
	if(!(fa = fopen(buf, "w")))
	{
		char sbuf[1000];
		sprintf(sbuf, "can't open file `%s'\n", buf);
		terminate(sbuf);
	}
	for(ii=0;ii<Nbins[snap][ObsNr]-1;ii++)
		fprintf(fa, "%g %g %g\n", MCMC_Obs[ObsNr].Bin_low[snap][ii]+(MCMC_Obs[ObsNr].Bin_high[snap][ii]-MCMC_Obs[ObsNr].Bin_low[snap][ii])/2.,binsamdata[ii],binsamdata[ii]*0.1);
	//for(ii=0;ii<NR;ii++)
	//fprintf(fa, "%g %g %g\n", r[ii],proj[ii],proj[ii]*0.1);
	fclose(fa);
#endif

	//original wrp calculation out of halo_model
	//printf("\n\n %g<M<%g",mingalmass,maxgalmass);
	//for(ii=0;ii<NR;ii++)
	//	printf("r=%g proj=%g\n",r[ii],proj[ii]);
  //interpolated into obs bins
	//for(ii=0;ii<Nbins[snap][ObsNr]-1;ii++)
	//	printf("%g %g %g\n", MCMC_Obs[ObsNr].Bin_low[snap][ii]+(MCMC_Obs[ObsNr].Bin_high[snap][ii]-MCMC_Obs[ObsNr].Bin_low[snap][ii])/2.,binsamdata[ii],binsamdata[ii]*0.1);

	 free(r);
	 free(proj);
	 gsl_spline_free(Proj_Spline);
	 gsl_interp_accel_free(Proj_SplineAcc);
}