int GSLRNG_weibull(stEval *args, stEval *result, void *i) { gsl_rng *r = STPOINTER(&args[0]); double a = STDOUBLE(&args[1]); double b = STDOUBLE(&args[2]); STDOUBLE(result) = gsl_ran_weibull(r,a,b); return EC_OK; }
extern double dist_weibull (struct _flow *flow, const double alpha, const double beta) { #ifdef HAVE_LIBGSL gsl_rng * r = flow->r; return gsl_ran_weibull (r, alpha, beta); #else const double x = rn_uniform_zero_to_one(flow); return alpha * beta * pow (x,beta-1.0) * exp(-alpha * pow(x,beta)); #endif /* HAVE_LIBGSL */ }
void librdist_weibull(gsl_rng *rng, int argc, void *argv, int bufc, float *buf){ t_atom *av = (t_atom *)argv; if(argc != librdist_getnargs(ps_weibull)){ return; } const double a = librdist_atom_getfloat(av); const double b = librdist_atom_getfloat(av + 1); int i; for(i = 0; i < bufc; i++) buf[i] = (float)gsl_ran_weibull(rng, a, b); }
int main (int argc, char *argv[]) { size_t i,j; size_t n = 0; double mu = 0, nu = 0, nu1 = 0, nu2 = 0, sigma = 0, a = 0, b = 0, c = 0; double zeta = 0, sigmax = 0, sigmay = 0, rho = 0; double p = 0; double x = 0, y =0, z=0 ; unsigned int N = 0, t = 0, n1 = 0, n2 = 0 ; unsigned long int seed = 0 ; const char * name ; gsl_rng * r ; if (argc < 4) { printf ( "Usage: gsl-randist seed n DIST param1 param2 ...\n" "Generates n samples from the distribution DIST with parameters param1,\n" "param2, etc. Valid distributions are,\n" "\n" " beta\n" " binomial\n" " bivariate-gaussian\n" " cauchy\n" " chisq\n" " dir-2d\n" " dir-3d\n" " dir-nd\n" " erlang\n" " exponential\n" " exppow\n" " fdist\n" " flat\n" " gamma\n" " gaussian-tail\n" " gaussian\n" " geometric\n" " gumbel1\n" " gumbel2\n" " hypergeometric\n" " laplace\n" " landau\n" " levy\n" " levy-skew\n" " logarithmic\n" " logistic\n" " lognormal\n" " negative-binomial\n" " pareto\n" " pascal\n" " poisson\n" " rayleigh-tail\n" " rayleigh\n" " tdist\n" " ugaussian-tail\n" " ugaussian\n" " weibull\n") ; exit (0); } argv++ ; seed = atol (argv[0]); argc-- ; argv++ ; n = atol (argv[0]); argc-- ; argv++ ; name = argv[0] ; argc-- ; argc-- ; gsl_rng_env_setup() ; if (gsl_rng_default_seed != 0) { fprintf(stderr, "overriding GSL_RNG_SEED with command line value, seed = %ld\n", seed) ; } gsl_rng_default_seed = seed ; r = gsl_rng_alloc(gsl_rng_default) ; #define NAME(x) !strcmp(name,(x)) #define OUTPUT(x) for (i = 0; i < n; i++) { printf("%g\n", (x)) ; } #define OUTPUT1(a,x) for(i = 0; i < n; i++) { a ; printf("%g\n", x) ; } #define OUTPUT2(a,x,y) for(i = 0; i < n; i++) { a ; printf("%g %g\n", x, y) ; } #define OUTPUT3(a,x,y,z) for(i = 0; i < n; i++) { a ; printf("%g %g %g\n", x, y, z) ; } #define INT_OUTPUT(x) for (i = 0; i < n; i++) { printf("%d\n", (x)) ; } #define ARGS(x,y) if (argc != x) error(y) ; #define DBL_ARG(x) if (argc) { x=atof((++argv)[0]);argc--;} else {error( #x);}; #define INT_ARG(x) if (argc) { x=atoi((++argv)[0]);argc--;} else {error( #x);}; if (NAME("bernoulli")) { ARGS(1, "p = probability of success"); DBL_ARG(p) INT_OUTPUT(gsl_ran_bernoulli (r, p)); } else if (NAME("beta")) { ARGS(2, "a,b = shape parameters"); DBL_ARG(a) DBL_ARG(b) OUTPUT(gsl_ran_beta (r, a, b)); } else if (NAME("binomial")) { ARGS(2, "p = probability, N = number of trials"); DBL_ARG(p) INT_ARG(N) INT_OUTPUT(gsl_ran_binomial (r, p, N)); } else if (NAME("cauchy")) { ARGS(1, "a = scale parameter"); DBL_ARG(a) OUTPUT(gsl_ran_cauchy (r, a)); } else if (NAME("chisq")) { ARGS(1, "nu = degrees of freedom"); DBL_ARG(nu) OUTPUT(gsl_ran_chisq (r, nu)); } else if (NAME("erlang")) { ARGS(2, "a = scale parameter, b = order"); DBL_ARG(a) DBL_ARG(b) OUTPUT(gsl_ran_erlang (r, a, b)); } else if (NAME("exponential")) { ARGS(1, "mu = mean value"); DBL_ARG(mu) ; OUTPUT(gsl_ran_exponential (r, mu)); } else if (NAME("exppow")) { ARGS(2, "a = scale parameter, b = power (1=exponential, 2=gaussian)"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_exppow (r, a, b)); } else if (NAME("fdist")) { ARGS(2, "nu1, nu2 = degrees of freedom parameters"); DBL_ARG(nu1) ; DBL_ARG(nu2) ; OUTPUT(gsl_ran_fdist (r, nu1, nu2)); } else if (NAME("flat")) { ARGS(2, "a = lower limit, b = upper limit"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_flat (r, a, b)); } else if (NAME("gamma")) { ARGS(2, "a = order, b = scale"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_gamma (r, a, b)); } else if (NAME("gaussian")) { ARGS(1, "sigma = standard deviation"); DBL_ARG(sigma) ; OUTPUT(gsl_ran_gaussian (r, sigma)); } else if (NAME("gaussian-tail")) { ARGS(2, "a = lower limit, sigma = standard deviation"); DBL_ARG(a) ; DBL_ARG(sigma) ; OUTPUT(gsl_ran_gaussian_tail (r, a, sigma)); } else if (NAME("ugaussian")) { ARGS(0, "unit gaussian, no parameters required"); OUTPUT(gsl_ran_ugaussian (r)); } else if (NAME("ugaussian-tail")) { ARGS(1, "a = lower limit"); DBL_ARG(a) ; OUTPUT(gsl_ran_ugaussian_tail (r, a)); } else if (NAME("bivariate-gaussian")) { ARGS(3, "sigmax = x std.dev., sigmay = y std.dev., rho = correlation"); DBL_ARG(sigmax) ; DBL_ARG(sigmay) ; DBL_ARG(rho) ; OUTPUT2(gsl_ran_bivariate_gaussian (r, sigmax, sigmay, rho, &x, &y), x, y); } else if (NAME("dir-2d")) { OUTPUT2(gsl_ran_dir_2d (r, &x, &y), x, y); } else if (NAME("dir-3d")) { OUTPUT3(gsl_ran_dir_3d (r, &x, &y, &z), x, y, z); } else if (NAME("dir-nd")) { double *xarr; ARGS(1, "n1 = number of dimensions of hypersphere"); INT_ARG(n1) ; xarr = (double *)malloc(n1*sizeof(double)); for(i = 0; i < n; i++) { gsl_ran_dir_nd (r, n1, xarr) ; for (j = 0; j < n1; j++) { if (j) putchar(' '); printf("%g", xarr[j]) ; } putchar('\n'); } ; free(xarr); } else if (NAME("geometric")) { ARGS(1, "p = bernoulli trial probability of success"); DBL_ARG(p) ; INT_OUTPUT(gsl_ran_geometric (r, p)); } else if (NAME("gumbel1")) { ARGS(2, "a = order, b = scale parameter"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_gumbel1 (r, a, b)); } else if (NAME("gumbel2")) { ARGS(2, "a = order, b = scale parameter"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_gumbel2 (r, a, b)); } else if (NAME("hypergeometric")) { ARGS(3, "n1 = tagged population, n2 = untagged population, t = number of trials"); INT_ARG(n1) ; INT_ARG(n2) ; INT_ARG(t) ; INT_OUTPUT(gsl_ran_hypergeometric (r, n1, n2, t)); } else if (NAME("laplace")) { ARGS(1, "a = scale parameter"); DBL_ARG(a) ; OUTPUT(gsl_ran_laplace (r, a)); } else if (NAME("landau")) { ARGS(0, "no arguments required"); OUTPUT(gsl_ran_landau (r)); } else if (NAME("levy")) { ARGS(2, "c = scale, a = power (1=cauchy, 2=gaussian)"); DBL_ARG(c) ; DBL_ARG(a) ; OUTPUT(gsl_ran_levy (r, c, a)); } else if (NAME("levy-skew")) { ARGS(3, "c = scale, a = power (1=cauchy, 2=gaussian), b = skew"); DBL_ARG(c) ; DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_levy_skew (r, c, a, b)); } else if (NAME("logarithmic")) { ARGS(1, "p = probability"); DBL_ARG(p) ; INT_OUTPUT(gsl_ran_logarithmic (r, p)); } else if (NAME("logistic")) { ARGS(1, "a = scale parameter"); DBL_ARG(a) ; OUTPUT(gsl_ran_logistic (r, a)); } else if (NAME("lognormal")) { ARGS(2, "zeta = location parameter, sigma = scale parameter"); DBL_ARG(zeta) ; DBL_ARG(sigma) ; OUTPUT(gsl_ran_lognormal (r, zeta, sigma)); } else if (NAME("negative-binomial")) { ARGS(2, "p = probability, a = order"); DBL_ARG(p) ; DBL_ARG(a) ; INT_OUTPUT(gsl_ran_negative_binomial (r, p, a)); } else if (NAME("pareto")) { ARGS(2, "a = power, b = scale parameter"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_pareto (r, a, b)); } else if (NAME("pascal")) { ARGS(2, "p = probability, n = order (integer)"); DBL_ARG(p) ; INT_ARG(N) ; INT_OUTPUT(gsl_ran_pascal (r, p, N)); } else if (NAME("poisson")) { ARGS(1, "mu = scale parameter"); DBL_ARG(mu) ; INT_OUTPUT(gsl_ran_poisson (r, mu)); } else if (NAME("rayleigh")) { ARGS(1, "sigma = scale parameter"); DBL_ARG(sigma) ; OUTPUT(gsl_ran_rayleigh (r, sigma)); } else if (NAME("rayleigh-tail")) { ARGS(2, "a = lower limit, sigma = scale parameter"); DBL_ARG(a) ; DBL_ARG(sigma) ; OUTPUT(gsl_ran_rayleigh_tail (r, a, sigma)); } else if (NAME("tdist")) { ARGS(1, "nu = degrees of freedom"); DBL_ARG(nu) ; OUTPUT(gsl_ran_tdist (r, nu)); } else if (NAME("weibull")) { ARGS(2, "a = scale parameter, b = exponent"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_weibull (r, a, b)); } else { fprintf(stderr,"Error: unrecognized distribution: %s\n", name) ; } return 0 ; }
double test_weibull1 (void) { return gsl_ran_weibull (r_global, 2.97, 1.0); }
double test_weibull (void) { return gsl_ran_weibull (r_global, 3.14, 2.75); }