コード例 #1
0
ファイル: gsl_linalg_ptlq.c プロジェクト: aadaa88/mldemos
int
gsl_linalg_PTLQ_decomp (gsl_matrix * A, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm)
{
  const size_t N = A->size1;
  const size_t M = A->size2;

  if (tau->size != GSL_MIN (M, N))
    {
      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
    }
  else if (p->size != N)
    {
      GSL_ERROR ("permutation size must be N", GSL_EBADLEN);
    }
  else if (norm->size != N)
    {
      GSL_ERROR ("norm size must be N", GSL_EBADLEN);
    }
  else
    {
      size_t i;

      *signum = 1;

      gsl_permutation_init (p); /* set to identity */

      /* Compute column norms and store in workspace */

      for (i = 0; i < N; i++)
        {
          gsl_vector_view c = gsl_matrix_row (A, i);
          double x = gsl_blas_dnrm2 (&c.vector);
          gsl_vector_set (norm, i, x);
        }

      for (i = 0; i < GSL_MIN (M, N); i++)
        {
          /* Bring the column of largest norm into the pivot position */

          double max_norm = gsl_vector_get(norm, i);
          size_t j, kmax = i;

          for (j = i + 1; j < N; j++)
            {
              double x = gsl_vector_get (norm, j);

              if (x > max_norm)
                {
                  max_norm = x;
                  kmax = j;
                }
            }

          if (kmax != i)
            {
              gsl_matrix_swap_rows (A, i, kmax);
              gsl_permutation_swap (p, i, kmax);
              gsl_vector_swap_elements(norm,i,kmax);

              (*signum) = -(*signum);
            }

          /* Compute the Householder transformation to reduce the j-th
             column of the matrix to a multiple of the j-th unit vector */

          {
            gsl_vector_view c_full = gsl_matrix_row (A, i);
            gsl_vector_view c = gsl_vector_subvector (&c_full.vector, 
                                                      i, M - i);
            double tau_i = gsl_linalg_householder_transform (&c.vector);

            gsl_vector_set (tau, i, tau_i);

            /* Apply the transformation to the remaining columns */

            if (i + 1 < N)
              {
                gsl_matrix_view m = gsl_matrix_submatrix (A, i +1, i, N - (i+1), M - i);

                gsl_linalg_householder_mh (tau_i, &c.vector, &m.matrix);
              }
          }

          /* Update the norms of the remaining columns too */

          if (i + 1 < M) 
            {
              for (j = i + 1; j < N; j++)
                {
                  double x = gsl_vector_get (norm, j);

                  if (x > 0.0)
                    {
                      double y = 0;
                      double temp= gsl_matrix_get (A, j, i) / x;
                  
                      if (fabs (temp) >= 1)
                        y = 0.0;
                      else
                        y = x * sqrt (1 - temp * temp);
                      
                      /* recompute norm to prevent loss of accuracy */

                      if (fabs (y / x) < sqrt (20.0) * GSL_SQRT_DBL_EPSILON)
                        {
                          gsl_vector_view c_full = gsl_matrix_row (A, j);
                          gsl_vector_view c = 
                            gsl_vector_subvector(&c_full.vector,
                                                 i+1, M - (i+1));
                          y = gsl_blas_dnrm2 (&c.vector);
                        }
                  
                      gsl_vector_set (norm, j, y);
                    }
                }
            }
        }

      return GSL_SUCCESS;
    }
}
コード例 #2
0
ファイル: svd_ts.cpp プロジェクト: awsteiner/o2scl
int
gsl_linalg_SV_decomp (gsl_matrix * A, gsl_matrix * V, gsl_vector * S, 
                      gsl_vector * work)
{
  size_t a, b, i, j, iter;

  const size_t M=A->size1;
  const size_t N=A->size2;
  size_t K;
  if (M<N) K=M;
  else K=N;

  if (M < N)
    {
      GSL_ERROR ("svd of MxN matrix, M<N, is not implemented", GSL_EUNIMPL);
    }
  else if (V->size1 != N)
    {
      GSL_ERROR ("square matrix V must match second dimension of matrix A",
                 GSL_EBADLEN);
    }
  else if (V->size1 != V->size2)
    {
      GSL_ERROR ("matrix V must be square", GSL_ENOTSQR);
    }
  else if (S->size != N)
    {
      GSL_ERROR ("length of vector S must match second dimension of matrix A",
                 GSL_EBADLEN);
    }
  else if (work->size != N)
    {
      GSL_ERROR ("length of workspace must match second dimension of matrix A",
                 GSL_EBADLEN);
    }

  /* Handle the case of N=1 (SVD of a column vector) */

  if (N == 1)
    {
      gsl_vector_view column=gsl_matrix_column (A, 0);
      double norm=gsl_blas_dnrm2 (&column.vector);

      gsl_vector_set (S, 0, norm); 
      gsl_matrix_set (V, 0, 0, 1.0);
      
      if (norm != 0.0)
        {
          gsl_blas_dscal (1.0/norm, &column.vector);
        }

      return GSL_SUCCESS;
    }
  
  {
    gsl_vector_view f=gsl_vector_subvector (work, 0, K - 1);
    
    /* bidiagonalize matrix A, unpack A into U S V */
    
    gsl_linalg_bidiag_decomp (A, S, &f.vector);

    //std::cout << "A: " << gsl_matrix_get(A,0,0) << " "
    //<< gsl_matrix_get(A,M-1,N-1) << std::endl;
    //std::cout << "S: " << S->data[0] << " " 
    //<< S->data[S->size-1] 
    //<< std::endl;
    
    gsl_linalg_bidiag_unpack2 (A, S, &f.vector, V);

    //std::cout << "S2: " << S->data[0] << " " 
    //<< S->data[S->size-1] 
    //<< std::endl;
    
    /* apply reduction steps to B=(S,Sd) */
    
    chop_small_elements (S, &f.vector);
    
    //std::cout << "S3: " << S->data[0] << " " 
    //<< S->data[S->size-1] 
    //<< std::endl;
    
    /* Progressively reduce the matrix until it is diagonal */
    
    b=N - 1;
    iter=0;

    while (b > 0)
      {
        double fbm1=gsl_vector_get (&f.vector, b - 1);

        if (fbm1 == 0.0 || gsl_isnan (fbm1))
          {
            b--;
            continue;
          }

	//std::cout << "b,fbm1: " << b << " " << fbm1 << std::endl;
        
        /* Find the largest unreduced block (a,b) starting from b
           and working backwards */

        a=b - 1;

        while (a > 0)
          {
            double fam1=gsl_vector_get (&f.vector, a - 1);

            if (fam1 == 0.0 || gsl_isnan (fam1))
              {
                break;
              }
            
            a--;

	    //std::cout << "a,fam1: " << a << " " << fam1 << std::endl;
          }

        iter++;
        
        if (iter > 100 * N) 
          {
            GSL_ERROR("SVD decomposition failed to converge", GSL_EMAXITER);
          }

        
        {
          const size_t n_block=b - a + 1;
          gsl_vector_view S_block=gsl_vector_subvector (S, a, n_block);
          gsl_vector_view f_block=gsl_vector_subvector 
	    (&f.vector, a, n_block - 1);
          
          gsl_matrix_view U_block =
            gsl_matrix_submatrix (A, 0, a, A->size1, n_block);
          gsl_matrix_view V_block =
            gsl_matrix_submatrix (V, 0, a, V->size1, n_block);
          
          int rescale=0;
          double scale=1; 
          double norm=0;

          /* Find the maximum absolute values of the diagonal and subdiagonal */

          for (i=0; i < n_block; i++) 
            {
              double s_i=gsl_vector_get (&S_block.vector, i);
              double a=fabs(s_i);
              if (a > norm) norm=a;
	      //std::cout << "aa: " << a << std::endl;
            }

          for (i=0; i < n_block - 1; i++) 
            {
              double f_i=gsl_vector_get (&f_block.vector, i);
              double a=fabs(f_i);
              if (a > norm) norm=a;
	      //std::cout << "aa2: " << a << std::endl;
            }

          /* Temporarily scale the submatrix if necessary */

          if (norm > GSL_SQRT_DBL_MAX)
            {
              scale=(norm / GSL_SQRT_DBL_MAX);
              rescale=1;
            }
          else if (norm < GSL_SQRT_DBL_MIN && norm > 0)
            {
              scale=(norm / GSL_SQRT_DBL_MIN);
              rescale=1;
            }

	  //std::cout << "rescale: " << rescale << std::endl;

          if (rescale) 
            {
              gsl_blas_dscal(1.0 / scale, &S_block.vector);
              gsl_blas_dscal(1.0 / scale, &f_block.vector);
            }

          /* Perform the implicit QR step */

	  /*
	  for(size_t ii=0;ii<M;ii++) {
	    for(size_t jj=0;jj<N;jj++) {
	    std::cout << ii << "." << jj << "." 
	    << gsl_matrix_get(A,ii,jj) << std::endl;
	    }
	  }
	  for(size_t ii=0;ii<N;ii++) {
	    for(size_t jj=0;jj<N;jj++) {
	    std::cout << "V: " << ii << "." << jj << "." 
	    << gsl_matrix_get(V,ii,jj) << std::endl;
	    }
	  }
	  */

          qrstep (&S_block.vector, &f_block.vector, &U_block.matrix, 
		  &V_block.matrix);

	  /*
	  for(size_t ii=0;ii<M;ii++) {
	    for(size_t jj=0;jj<N;jj++) {
	    std::cout << ii << " " << jj << " " 
	    << gsl_matrix_get(A,ii,jj) << std::endl;
	    }
	  }
	  for(size_t ii=0;ii<N;ii++) {
	    for(size_t jj=0;jj<N;jj++) {
	    std::cout << "V: " << ii << " " << jj << " " 
	    << gsl_matrix_get(V,ii,jj) << std::endl;
	    }
	  }
	  */

          /* remove any small off-diagonal elements */
          
          chop_small_elements (&S_block.vector, &f_block.vector);
          
          /* Undo the scaling if needed */

          if (rescale)
            {
              gsl_blas_dscal(scale, &S_block.vector);
              gsl_blas_dscal(scale, &f_block.vector);
            }
        }
        
      }
  }

  /* Make singular values positive by reflections if necessary */
  
  for (j=0; j < K; j++)
    {
      double Sj=gsl_vector_get (S, j);
      
      if (Sj < 0.0)
        {
          for (i=0; i < N; i++)
            {
              double Vij=gsl_matrix_get (V, i, j);
              gsl_matrix_set (V, i, j, -Vij);
            }
          
          gsl_vector_set (S, j, -Sj);
        }
    }
  
  /* Sort singular values into decreasing order */
  
  for (i=0; i < K; i++)
    {
      double S_max=gsl_vector_get (S, i);
      size_t i_max=i;
      
      for (j=i + 1; j < K; j++)
        {
          double Sj=gsl_vector_get (S, j);
          
          if (Sj > S_max)
            {
              S_max=Sj;
              i_max=j;
            }
        }
      
      if (i_max != i)
        {
          /* swap eigenvalues */
          gsl_vector_swap_elements (S, i, i_max);
          
          /* swap eigenvectors */
          gsl_matrix_swap_columns (A, i, i_max);
          gsl_matrix_swap_columns (V, i, i_max);
        }
    }
  
  return GSL_SUCCESS;
}
コード例 #3
0
ファイル: sort.c プロジェクト: Julio-Anjos/gsl
int
gsl_eigen_genv_sort (gsl_vector_complex * alpha, gsl_vector * beta,
                     gsl_matrix_complex * evec, gsl_eigen_sort_t sort_type)
{
  if (evec->size1 != evec->size2)
    {
      GSL_ERROR ("eigenvector matrix must be square", GSL_ENOTSQR);
    }
  else if (alpha->size != evec->size1 || beta->size != evec->size1)
    {
      GSL_ERROR ("eigenvalues must match eigenvector matrix", GSL_EBADLEN);
    }
  else
    {
      const size_t N = alpha->size;
      size_t i;

      for (i = 0; i < N - 1; i++)
        {
          size_t j;
          size_t k = i;

          gsl_complex ak = gsl_vector_complex_get (alpha, i);
          double bk = gsl_vector_get(beta, i);
          gsl_complex ek;

          if (bk < GSL_DBL_EPSILON)
            {
              GSL_SET_COMPLEX(&ek,
                              GSL_SIGN(GSL_REAL(ak)) ? GSL_POSINF : GSL_NEGINF,
                              GSL_SIGN(GSL_IMAG(ak)) ? GSL_POSINF : GSL_NEGINF);
            }
          else
            ek = gsl_complex_div_real(ak, bk);

          /* search for something to swap */
          for (j = i + 1; j < N; j++)
            {
              int test;
              const gsl_complex aj = gsl_vector_complex_get (alpha, j);
              double bj = gsl_vector_get(beta, j);
              gsl_complex ej;

              if (bj < GSL_DBL_EPSILON)
                {
                  GSL_SET_COMPLEX(&ej,
                                  GSL_SIGN(GSL_REAL(aj)) ? GSL_POSINF : GSL_NEGINF,
                                  GSL_SIGN(GSL_IMAG(aj)) ? GSL_POSINF : GSL_NEGINF);
                }
              else
                ej = gsl_complex_div_real(aj, bj);

              switch (sort_type)
                {       
                case GSL_EIGEN_SORT_ABS_ASC:
                  test = (gsl_complex_abs (ej) < gsl_complex_abs (ek));
                  break;
                case GSL_EIGEN_SORT_ABS_DESC:
                  test = (gsl_complex_abs (ej) > gsl_complex_abs (ek));
                  break;
                case GSL_EIGEN_SORT_VAL_ASC:
                case GSL_EIGEN_SORT_VAL_DESC:
                default:
                  GSL_ERROR ("invalid sort type", GSL_EINVAL);
                }

              if (test)
                {
                  k = j;
                  ek = ej;
                }
            }

          if (k != i)
            {
              /* swap eigenvalues */
              gsl_vector_complex_swap_elements (alpha, i, k);
              gsl_vector_swap_elements (beta, i, k);

              /* swap eigenvectors */
              gsl_matrix_complex_swap_columns (evec, i, k);
            }
        }

      return GSL_SUCCESS;
    }
}
コード例 #4
0
ファイル: sort.c プロジェクト: Julio-Anjos/gsl
int
gsl_eigen_symmv_sort (gsl_vector * eval, gsl_matrix * evec, 
                      gsl_eigen_sort_t sort_type)
{
  if (evec->size1 != evec->size2)
    {
      GSL_ERROR ("eigenvector matrix must be square", GSL_ENOTSQR);
    }
  else if (eval->size != evec->size1)
    {
      GSL_ERROR ("eigenvalues must match eigenvector matrix", GSL_EBADLEN);
    }
  else
    {
      const size_t N = eval->size;
      size_t i;

      for (i = 0; i < N - 1; i++)
        {
          size_t j;
          size_t k = i;

          double ek = gsl_vector_get (eval, i);

          /* search for something to swap */
          for (j = i + 1; j < N; j++)
            {
              int test;
              const double ej = gsl_vector_get (eval, j);

              switch (sort_type)
                {       
                case GSL_EIGEN_SORT_VAL_ASC:
                  test = (ej < ek);
                  break;
                case GSL_EIGEN_SORT_VAL_DESC:
                  test = (ej > ek);
                  break;
                case GSL_EIGEN_SORT_ABS_ASC:
                  test = (fabs (ej) < fabs (ek));
                  break;
                case GSL_EIGEN_SORT_ABS_DESC:
                  test = (fabs (ej) > fabs (ek));
                  break;
                default:
                  GSL_ERROR ("unrecognized sort type", GSL_EINVAL);
                }

              if (test)
                {
                  k = j;
                  ek = ej;
                }
            }

          if (k != i)
            {
              /* swap eigenvalues */
              gsl_vector_swap_elements (eval, i, k);

              /* swap eigenvectors */
              gsl_matrix_swap_columns (evec, i, k);
            }
        }

      return GSL_SUCCESS;
    }
}
コード例 #5
0
ファイル: svd.c プロジェクト: Ayato-Harashima/CMVS-PMVS
int
gsl_linalg_SV_decomp (gsl_matrix * A, gsl_matrix * V, gsl_vector * S, 
                      gsl_vector * work)
{
  size_t a, b, i, j, iter;

  const size_t M = A->size1;
  const size_t N = A->size2;
  const size_t K = GSL_MIN (M, N);

  if (M < N)
    {
      GSL_ERROR ("svd of MxN matrix, M<N, is not implemented", GSL_EUNIMPL);
    }
  else if (V->size1 != N)
    {
      GSL_ERROR ("square matrix V must match second dimension of matrix A",
                 GSL_EBADLEN);
    }
  else if (V->size1 != V->size2)
    {
      GSL_ERROR ("matrix V must be square", GSL_ENOTSQR);
    }
  else if (S->size != N)
    {
      GSL_ERROR ("length of vector S must match second dimension of matrix A",
                 GSL_EBADLEN);
    }
  else if (work->size != N)
    {
      GSL_ERROR ("length of workspace must match second dimension of matrix A",
                 GSL_EBADLEN);
    }

  /* Handle the case of N = 1 (SVD of a column vector) */

  if (N == 1)
    {
      gsl_vector_view column = gsl_matrix_column (A, 0);
      double norm = gsl_blas_dnrm2 (&column.vector);

      gsl_vector_set (S, 0, norm); 
      gsl_matrix_set (V, 0, 0, 1.0);
      
      if (norm != 0.0)
        {
          gsl_blas_dscal (1.0/norm, &column.vector);
        }

      return GSL_SUCCESS;
    }
  
  {
    gsl_vector_view f = gsl_vector_subvector (work, 0, K - 1);
    
    /* bidiagonalize matrix A, unpack A into U S V */
    
    gsl_linalg_bidiag_decomp (A, S, &f.vector);
    gsl_linalg_bidiag_unpack2 (A, S, &f.vector, V);
    
    /* apply reduction steps to B=(S,Sd) */
    
    chop_small_elements (S, &f.vector);
    
    /* Progressively reduce the matrix until it is diagonal */
    
    b = N - 1;
    iter = 0;

    while (b > 0)
      {
        double fbm1 = gsl_vector_get (&f.vector, b - 1);

        if (fbm1 == 0.0 || gsl_isnan (fbm1))
          {
            b--;
            continue;
          }
        
        /* Find the largest unreduced block (a,b) starting from b
           and working backwards */
        
        a = b - 1;
        
        while (a > 0)
          {
            double fam1 = gsl_vector_get (&f.vector, a - 1);

            if (fam1 == 0.0 || gsl_isnan (fam1))
              {
                break;
              }
            
            a--;
          }

        iter++;
        
        if (iter > 100 * N) 
          {
            GSL_ERROR("SVD decomposition failed to converge", GSL_EMAXITER);
          }

        
        {
          const size_t n_block = b - a + 1;
          gsl_vector_view S_block = gsl_vector_subvector (S, a, n_block);
          gsl_vector_view f_block = gsl_vector_subvector (&f.vector, a, n_block - 1);
          
          gsl_matrix_view U_block =
            gsl_matrix_submatrix (A, 0, a, A->size1, n_block);
          gsl_matrix_view V_block =
            gsl_matrix_submatrix (V, 0, a, V->size1, n_block);
          
          qrstep (&S_block.vector, &f_block.vector, &U_block.matrix, &V_block.matrix);
          
          /* remove any small off-diagonal elements */
          
          chop_small_elements (&S_block.vector, &f_block.vector);
        }
      }
  }
  /* Make singular values positive by reflections if necessary */
  
  for (j = 0; j < K; j++)
    {
      double Sj = gsl_vector_get (S, j);
      
      if (Sj < 0.0)
        {
          for (i = 0; i < N; i++)
            {
              double Vij = gsl_matrix_get (V, i, j);
              gsl_matrix_set (V, i, j, -Vij);
            }
          
          gsl_vector_set (S, j, -Sj);
        }
    }
  
  /* Sort singular values into decreasing order */
  
  for (i = 0; i < K; i++)
    {
      double S_max = gsl_vector_get (S, i);
      size_t i_max = i;
      
      for (j = i + 1; j < K; j++)
        {
          double Sj = gsl_vector_get (S, j);
          
          if (Sj > S_max)
            {
              S_max = Sj;
              i_max = j;
            }
        }
      
      if (i_max != i)
        {
          /* swap eigenvalues */
          gsl_vector_swap_elements (S, i, i_max);
          
          /* swap eigenvectors */
          gsl_matrix_swap_columns (A, i, i_max);
          gsl_matrix_swap_columns (V, i, i_max);
        }
    }
  
  return GSL_SUCCESS;
}