bool ofxGtsSurface::prepareBoolean(ofxGtsSurface &source) { if(!loaded || !source.loaded) { ofLog(OF_LOG_NOTICE, "Gts surface not loaded, could not perform boolean operation"); return false; } if(!gts_surface_is_orientable(surface)) { ofLog(OF_LOG_ERROR, "Gts surface is not an orientable manifold, could not perform boolean operation"); return false; } if(gts_surface_is_self_intersecting(surface)) { ofLog(OF_LOG_ERROR, "Gts surface self-intersects, could not perform boolean operation"); return false; } if(!gts_surface_is_orientable(source.surface)) { ofLog(OF_LOG_ERROR, "Gts surface is not an orientable manifold, could not perform boolean operation"); return false; } if(gts_surface_is_self_intersecting(source.surface)) { ofLog(OF_LOG_ERROR, "Gts surface self-intersects, could not perform boolean operation"); return false; } GSList *bboxes = NULL; gts_surface_foreach_face(surface, (GtsFunc) prepend_triangle_bbox, &bboxes); /* build bounding box tree for first surface */ tree1 = gts_bb_tree_new(bboxes); /* free list of bboxes */ g_slist_free (bboxes); is_open1 = gts_surface_volume(surface) < 0. ? TRUE : FALSE; /* build bounding boxes for second surface */ bboxes = NULL; gts_surface_foreach_face(source.surface, (GtsFunc) prepend_triangle_bbox, &bboxes); /* build bounding box tree for second surface */ tree2 = gts_bb_tree_new(bboxes); /* free list of bboxes */ g_slist_free (bboxes); is_open2 = gts_surface_volume (source.surface) < 0. ? TRUE : FALSE; si = gts_surface_inter_new (gts_surface_inter_class (), surface, source.surface, tree1, tree2, is_open1, is_open2); gboolean closed = TRUE; gts_surface_inter_check(si, &closed); boolPerformed = true; if(!closed) { ofLog(OF_LOG_NOTICE, "Gts surface is not closed, could not perform boolean operation"); return false; } return true; }
int spheroidsToSTL(const string& out, const shared_ptr<DemField>& dem, Real tol, const string& solid, int mask, bool append, bool clipCell, bool merge){ if(tol==0 || isnan(tol)) throw std::runtime_error("tol must be non-zero."); #ifndef WOO_GTS if(merge) throw std::runtime_error("woo.triangulated.spheroidsToSTL: merge=True only possible in builds with the 'gts' feature."); #endif // first traversal to find reference radius auto particleOk=[&](const shared_ptr<Particle>&p){ return (mask==0 || (p->mask & mask)) && (p->shape->isA<Sphere>() || p->shape->isA<Ellipsoid>() || p->shape->isA<Capsule>()); }; int numTri=0; if(tol<0){ LOG_DEBUG("tolerance is negative, taken as relative to minimum radius."); Real minRad=Inf; for(const auto& p: *dem->particles){ if(particleOk(p)) minRad=min(minRad,p->shape->equivRadius()); } if(isinf(minRad) || isnan(minRad)) throw std::runtime_error("Minimum radius not found (relative tolerance specified); no matching particles?"); tol=-minRad*tol; LOG_DEBUG("Minimum radius "<<minRad<<"."); } LOG_DEBUG("Triangulation tolerance is "<<tol); std::ofstream stl(out,append?(std::ofstream::app|std::ofstream::binary):std::ofstream::binary); // binary better, anyway if(!stl.good()) throw std::runtime_error("Failed to open output file "+out+" for writing."); Scene* scene=dem->scene; if(!scene) throw std::logic_error("DEM field has not associated scene?"); // periodicity, cache that for later use AlignedBox3r cell; /* wasteful memory-wise, but we need to store the whole triangulation in case *merge* is in effect, when it is only an intermediary result and will not be output as-is */ vector<vector<Vector3r>> ppts; vector<vector<Vector3i>> ttri; vector<Particle::id_t> iid; for(const auto& p: *dem->particles){ if(!particleOk(p)) continue; const auto sphere=dynamic_cast<Sphere*>(p->shape.get()); const auto ellipsoid=dynamic_cast<Ellipsoid*>(p->shape.get()); const auto capsule=dynamic_cast<Capsule*>(p->shape.get()); vector<Vector3r> pts; vector<Vector3i> tri; if(sphere || ellipsoid){ Real r=sphere?sphere->radius:ellipsoid->semiAxes.minCoeff(); // 1 is for icosahedron int tess=ceil(M_PI/(5*acos(1-tol/r))); LOG_DEBUG("Tesselation level for #"<<p->id<<": "<<tess); tess=max(tess,0); auto uSphTri(CompUtils::unitSphereTri20(/*0 for icosahedron*/max(tess-1,0))); const auto& uPts=std::get<0>(uSphTri); // unit sphere point coords pts.resize(uPts.size()); const auto& node=(p->shape->nodes[0]); Vector3r scale=(sphere?sphere->radius*Vector3r::Ones():ellipsoid->semiAxes); for(size_t i=0; i<uPts.size(); i++){ pts[i]=node->loc2glob(uPts[i].cwiseProduct(scale)); } tri=std::get<1>(uSphTri); // this makes a copy, but we need out own for capsules } if(capsule){ #ifdef WOO_VTK int subdiv=max(4.,ceil(M_PI/(acos(1-tol/capsule->radius)))); std::tie(pts,tri)=VtkExport::triangulateCapsule(static_pointer_cast<Capsule>(p->shape),subdiv); #else throw std::runtime_error("Triangulation of capsules is (for internal and entirely fixable reasons) only available when compiled with the 'vtk' features."); #endif } // do not write out directly, store first for later ppts.push_back(pts); ttri.push_back(tri); LOG_TRACE("#"<<p->id<<" triangulated: "<<tri.size()<<","<<pts.size()<<" faces,vertices."); if(scene->isPeriodic){ // make sure we have aabb, in skewed coords and such if(!p->shape->bound){ // this is a bit ugly, but should do the trick; otherwise we would recompute all that ourselves here if(sphere) Bo1_Sphere_Aabb().go(p->shape); else if(ellipsoid) Bo1_Ellipsoid_Aabb().go(p->shape); else if(capsule) Bo1_Capsule_Aabb().go(p->shape); } assert(p->shape->bound); const AlignedBox3r& box(p->shape->bound->box); AlignedBox3r cell(Vector3r::Zero(),scene->cell->getSize()); // possibly in skewed coords // central offset Vector3i off0; scene->cell->canonicalizePt(p->shape->nodes[0]->pos,off0); // computes off0 Vector3i off; // offset from the original cell //cerr<<"#"<<p->id<<" at "<<p->shape->nodes[0]->pos.transpose()<<", off0="<<off0<<endl; for(off[0]=off0[0]-1; off[0]<=off0[0]+1; off[0]++) for(off[1]=off0[1]-1; off[1]<=off0[1]+1; off[1]++) for(off[2]=off0[2]-1; off[2]<=off0[2]+1; off[2]++){ Vector3r dx=scene->cell->intrShiftPos(off); //cerr<<" off="<<off.transpose()<<", dx="<<dx.transpose()<<endl; AlignedBox3r boxOff(box); boxOff.translate(dx); //cerr<<" boxOff="<<boxOff.min()<<";"<<boxOff.max()<<" | cell="<<cell.min()<<";"<<cell.max()<<endl; if(boxOff.intersection(cell).isEmpty()) continue; // copy the entire triangulation, offset by dx vector<Vector3r> pts2(pts); for(auto& p: pts2) p+=dx; vector<Vector3i> tri2(tri); // same topology ppts.push_back(pts2); ttri.push_back(tri2); LOG_TRACE(" offset "<<off.transpose()<<": #"<<p->id<<": "<<tri2.size()<<","<<pts2.size()<<" faces,vertices."); } } } if(!merge){ LOG_DEBUG("Will export (unmerged) "<<ppts.size()<<" particles to STL."); stl<<"solid "<<solid<<"\n"; for(size_t i=0; i<ppts.size(); i++){ const auto& pts(ppts[i]); const auto& tri(ttri[i]); LOG_TRACE("Exporting "<<i<<" with "<<tri.size()<<" faces."); for(const Vector3i& t: tri){ Vector3r pp[]={pts[t[0]],pts[t[1]],pts[t[2]]}; // skip triangles which are entirely out of the canonical periodic cell if(scene->isPeriodic && clipCell && (!scene->cell->isCanonical(pp[0]) && !scene->cell->isCanonical(pp[1]) && !scene->cell->isCanonical(pp[2]))) continue; numTri++; Vector3r n=(pp[1]-pp[0]).cross(pp[2]-pp[1]).normalized(); stl<<" facet normal "<<n.x()<<" "<<n.y()<<" "<<n.z()<<"\n"; stl<<" outer loop\n"; for(auto p: {pp[0],pp[1],pp[2]}){ stl<<" vertex "<<p[0]<<" "<<p[1]<<" "<<p[2]<<"\n"; } stl<<" endloop\n"; stl<<" endfacet\n"; } } stl<<"endsolid "<<solid<<"\n"; stl.close(); return numTri; } #if WOO_GTS /***** Convert all triangulation to GTS surfaces, find their distances, isolate connected components, merge these components incrementally and write to STL *****/ // total number of points const size_t N(ppts.size()); // bounds for collision detection struct Bound{ Bound(Real _coord, int _id, bool _isMin): coord(_coord), id(_id), isMin(_isMin){}; Bound(): coord(NaN), id(-1), isMin(false){}; // just for allocation Real coord; int id; bool isMin; bool operator<(const Bound& b) const { return coord<b.coord; } }; vector<Bound> bounds[3]={vector<Bound>(2*N),vector<Bound>(2*N),vector<Bound>(2*N)}; /* construct GTS surface objects; all objects must be deleted explicitly! */ vector<GtsSurface*> ssurf(N); vector<vector<GtsVertex*>> vvert(N); vector<vector<GtsEdge*>> eedge(N); vector<AlignedBox3r> boxes(N); for(size_t i=0; i<N; i++){ LOG_TRACE("** Creating GTS surface for #"<<i<<", with "<<ttri[i].size()<<" faces, "<<ppts[i].size()<<" vertices."); AlignedBox3r box; // new surface object ssurf[i]=gts_surface_new(gts_surface_class(),gts_face_class(),gts_edge_class(),gts_vertex_class()); // copy over all vertices vvert[i].reserve(ppts[i].size()); eedge[i].reserve(size_t(1.5*ttri[i].size())); // each triangle consumes 1.5 edges, for closed surfs for(size_t v=0; v<ppts[i].size(); v++){ vvert[i].push_back(gts_vertex_new(gts_vertex_class(),ppts[i][v][0],ppts[i][v][1],ppts[i][v][2])); box.extend(ppts[i][v]); } // create faces, and create edges on the fly as needed std::map<std::pair<int,int>,int> edgeIndices; for(size_t t=0; t<ttri[i].size(); t++){ //const Vector3i& t(ttri[i][t]); //LOG_TRACE("Face with vertices "<<ttri[i][t][0]<<","<<ttri[i][t][1]<<","<<ttri[i][t][2]); Vector3i eIxs; for(int a:{0,1,2}){ int A(ttri[i][t][a]), B(ttri[i][t][(a+1)%3]); auto AB=std::make_pair(min(A,B),max(A,B)); auto ABI=edgeIndices.find(AB); if(ABI==edgeIndices.end()){ // this edge not created yet edgeIndices[AB]=eedge[i].size(); // last index eIxs[a]=eedge[i].size(); //LOG_TRACE(" New edge #"<<eIxs[a]<<": "<<A<<"--"<<B<<" (length "<<(ppts[i][A]-ppts[i][B]).norm()<<")"); eedge[i].push_back(gts_edge_new(gts_edge_class(),vvert[i][A],vvert[i][B])); } else { eIxs[a]=ABI->second; //LOG_TRACE(" Found edge #"<<ABI->second<<" for "<<A<<"--"<<B); } } //LOG_TRACE(" New face: edges "<<eIxs[0]<<"--"<<eIxs[1]<<"--"<<eIxs[2]); GtsFace* face=gts_face_new(gts_face_class(),eedge[i][eIxs[0]],eedge[i][eIxs[1]],eedge[i][eIxs[2]]); gts_surface_add_face(ssurf[i],face); } // make sure the surface is OK if(!gts_surface_is_orientable(ssurf[i])) LOG_ERROR("Surface of #"+to_string(iid[i])+" is not orientable (expect troubles)."); if(!gts_surface_is_closed(ssurf[i])) LOG_ERROR("Surface of #"+to_string(iid[i])+" is not closed (expect troubles)."); assert(!gts_surface_is_self_intersecting(ssurf[i])); // copy bounds LOG_TRACE("Setting bounds of surf #"<<i); boxes[i]=box; for(int ax:{0,1,2}){ bounds[ax][2*i+0]=Bound(box.min()[ax],/*id*/i,/*isMin*/true); bounds[ax][2*i+1]=Bound(box.max()[ax],/*id*/i,/*isMin*/false); } } /* broad-phase collision detection between GTS surfaces only those will be probed with exact algorithms below and merged if needed */ for(int ax:{0,1,2}) std::sort(bounds[ax].begin(),bounds[ax].end()); vector<Bound>& bb(bounds[0]); // run the search along x-axis, does not matter really std::list<std::pair<int,int>> int0; // broad-phase intersections for(size_t i=0; i<2*N; i++){ if(!bb[i].isMin) continue; // only start with lower bound // go up to the upper bound, but handle overflow safely (no idea why it would happen here) as well for(size_t j=i+1; j<2*N && bb[j].id!=bb[i].id; j++){ if(bb[j].isMin) continue; // this is handled by symmetry #if EIGEN_VERSION_AT_LEAST(3,2,5) if(!boxes[bb[i].id].intersects(boxes[bb[j].id])) continue; // no intersection along all axes #else // old, less elegant if(boxes[bb[i].id].intersection(boxes[bb[j].id]).isEmpty()) continue; #endif int0.push_back(std::make_pair(min(bb[i].id,bb[j].id),max(bb[i].id,bb[j].id))); LOG_TRACE("Broad-phase collision "<<int0.back().first<<"+"<<int0.back().second); } } /* narrow-phase collision detection between GTS surface this must be done via gts_surface_inter_new, since gts_surface_distance always succeeds */ std::list<std::pair<int,int>> int1; for(const std::pair<int,int> ij: int0){ LOG_TRACE("Testing narrow-phase collision "<<ij.first<<"+"<<ij.second); #if 0 GtsRange gr1, gr2; gts_surface_distance(ssurf[ij.first],ssurf[ij.second],/*delta ??*/(gfloat).2,&gr1,&gr2); if(gr1.min>0 && gr2.min>0) continue; LOG_TRACE(" GTS reports collision "<<ij.first<<"+"<<ij.second<<" (min. distances "<<gr1.min<<", "<<gr2.min); #else GtsSurface *s1(ssurf[ij.first]), *s2(ssurf[ij.second]); GNode* t1=gts_bb_tree_surface(s1); GNode* t2=gts_bb_tree_surface(s2); GtsSurfaceInter* I=gts_surface_inter_new(gts_surface_inter_class(),s1,s2,t1,t2,/*is_open_1*/false,/*is_open_2*/false); GSList* l=gts_surface_intersection(s1,s2,t1,t2); // list of edges describing intersection int n1=g_slist_length(l); // extra check by looking at number of faces of the intersected surface #if 1 GtsSurface* s12=gts_surface_new(gts_surface_class(),gts_face_class(),gts_edge_class(),gts_vertex_class()); gts_surface_inter_boolean(I,s12,GTS_1_OUT_2); gts_surface_inter_boolean(I,s12,GTS_2_OUT_1); int n2=gts_surface_face_number(s12); gts_object_destroy(GTS_OBJECT(s12)); #endif gts_bb_tree_destroy(t1,TRUE); gts_bb_tree_destroy(t2,TRUE); gts_object_destroy(GTS_OBJECT(I)); g_slist_free(l); if(n1==0) continue; #if 1 if(n2==0){ LOG_ERROR("n1==0 but n2=="<<n2<<" (no narrow-phase collision)"); continue; } #endif LOG_TRACE(" GTS reports collision "<<ij.first<<"+"<<ij.second<<" ("<<n<<" edges describe the intersection)"); #endif int1.push_back(ij); } /* connected components on the graph: graph nodes are 0…(N-1), graph edges are in int1 see http://stackoverflow.com/a/37195784/761090 */ typedef boost::subgraph<boost::adjacency_list<boost::vecS,boost::vecS,boost::undirectedS,boost::property<boost::vertex_index_t,int>,boost::property<boost::edge_index_t,int>>> Graph; Graph graph(N); for(const auto& ij: int1) boost::add_edge(ij.first,ij.second,graph); vector<size_t> clusters(boost::num_vertices(graph)); size_t numClusters=boost::connected_components(graph,clusters.data()); for(size_t n=0; n<numClusters; n++){ // beginning cluster #n // first, count how many surfaces are in this cluster; if 1, things are easier int numThisCluster=0; int cluster1st=-1; for(size_t i=0; i<N; i++){ if(clusters[i]!=n) continue; numThisCluster++; if(cluster1st<0) cluster1st=(int)i; } GtsSurface* clusterSurf=NULL; LOG_DEBUG("Cluster "<<n<<" has "<<numThisCluster<<" surfaces."); if(numThisCluster==1){ clusterSurf=ssurf[cluster1st]; } else { clusterSurf=ssurf[cluster1st]; // surface of the cluster itself LOG_TRACE(" Initial cluster surface from "<<cluster1st<<"."); /* composed surface */ for(size_t i=0; i<N; i++){ if(clusters[i]!=n || ((int)i)==cluster1st) continue; LOG_TRACE(" Adding "<<i<<" to the cluster"); // ssurf[i] now belongs to cluster #n // trees need to be rebuild every time anyway, since the merged surface keeps changing in every cycle //if(gts_surface_face_number(clusterSurf)==0) LOG_ERROR("clusterSurf has 0 faces."); //if(gts_surface_face_number(ssurf[i])==0) LOG_ERROR("Surface #"<<i<<" has 0 faces."); GNode* t1=gts_bb_tree_surface(clusterSurf); GNode* t2=gts_bb_tree_surface(ssurf[i]); GtsSurfaceInter* I=gts_surface_inter_new(gts_surface_inter_class(),clusterSurf,ssurf[i],t1,t2,/*is_open_1*/false,/*is_open_2*/false); GtsSurface* merged=gts_surface_new(gts_surface_class(),gts_face_class(),gts_edge_class(),gts_vertex_class()); gts_surface_inter_boolean(I,merged,GTS_1_OUT_2); gts_surface_inter_boolean(I,merged,GTS_2_OUT_1); gts_object_destroy(GTS_OBJECT(I)); gts_bb_tree_destroy(t1,TRUE); gts_bb_tree_destroy(t2,TRUE); if(gts_surface_face_number(merged)==0){ LOG_ERROR("Cluster #"<<n<<": 0 faces after fusing #"<<i<<" (why?), adding #"<<i<<" separately!"); // this will cause an extra 1-particle cluster to be created clusters[i]=numClusters; numClusters+=1; } else { // not from global vectors (cleanup at the end), explicit delete! if(clusterSurf!=ssurf[cluster1st]) gts_object_destroy(GTS_OBJECT(clusterSurf)); clusterSurf=merged; } } } #if 0 LOG_TRACE(" GTS surface cleanups..."); pygts_vertex_cleanup(clusterSurf,.1*tol); // cleanup 10× smaller than tolerance pygts_edge_cleanup(clusterSurf); pygts_face_cleanup(clusterSurf); #endif LOG_TRACE(" STL: cluster "<<n<<" output"); stl<<"solid "<<solid<<"_"<<n<<"\n"; /* output cluster to STL here */ _gts_face_to_stl_data data(stl,scene,clipCell,numTri); gts_surface_foreach_face(clusterSurf,(GtsFunc)_gts_face_to_stl,(gpointer)&data); stl<<"endsolid\n"; if(clusterSurf!=ssurf[cluster1st]) gts_object_destroy(GTS_OBJECT(clusterSurf)); } // this deallocates also edges and vertices for(size_t i=0; i<ssurf.size(); i++) gts_object_destroy(GTS_OBJECT(ssurf[i])); return numTri; #endif /* WOO_GTS */ }
/* set - compute set operations between surfaces */ int main (int argc, char * argv[]) { GtsSurface * s1, * s2, * s3; GtsSurfaceInter * si; GNode * tree1, * tree2; FILE * fptr; GtsFile * fp; int c = 0; gboolean verbose = TRUE; gboolean inter = FALSE; gboolean check_self_intersection = FALSE; gchar * operation, * file1, * file2; gboolean closed = TRUE, is_open1, is_open2; if (!setlocale (LC_ALL, "POSIX")) g_warning ("cannot set locale to POSIX"); /* parse options using getopt */ while (c != EOF) { #ifdef HAVE_GETOPT_LONG static struct option long_options[] = { {"inter", no_argument, NULL, 'i'}, {"self", no_argument, NULL, 's'}, {"help", no_argument, NULL, 'h'}, {"verbose", no_argument, NULL, 'v'} }; int option_index = 0; switch ((c = getopt_long (argc, argv, "hvis", long_options, &option_index))) { #else /* not HAVE_GETOPT_LONG */ switch ((c = getopt (argc, argv, "hvis"))) { #endif /* not HAVE_GETOPT_LONG */ case 's': /* self */ check_self_intersection = TRUE; break; case 'i': /* inter */ inter = TRUE; break; case 'v': /* verbose */ verbose = FALSE; break; case 'h': /* help */ fprintf (stderr, "Usage: set [OPTION] OPERATION FILE1 FILE2\n" "Compute set operations between surfaces, where OPERATION is either.\n" "union, inter, diff.\n" "\n" " -i --inter output an OOGL (Geomview) representation of the curve\n" " intersection of the surfaces\n" " -s --self checks that the surfaces are not self-intersecting\n" " if one of them is, the set of self-intersecting faces\n" " is written (as a GtsSurface) on standard output\n" " -v --verbose do not print statistics about the surface\n" " -h --help display this help and exit\n" "\n" "Reports bugs to %s\n", GTS_MAINTAINER); return 0; /* success */ break; case '?': /* wrong options */ fprintf (stderr, "Try `set --help' for more information.\n"); return 1; /* failure */ } } if (optind >= argc) { /* missing OPERATION */ fprintf (stderr, "set: missing OPERATION\n" "Try `set --help' for more information.\n"); return 1; /* failure */ } operation = argv[optind++]; if (optind >= argc) { /* missing FILE1 */ fprintf (stderr, "set: missing FILE1\n" "Try `set --help' for more information.\n"); return 1; /* failure */ } file1 = argv[optind++]; if (optind >= argc) { /* missing FILE2 */ fprintf (stderr, "set: missing FILE2\n" "Try `set --help' for more information.\n"); return 1; /* failure */ } file2 = argv[optind++]; /* open first file */ if ((fptr = fopen (file1, "rt")) == NULL) { fprintf (stderr, "set: can not open file `%s'\n", file1); return 1; } /* reads in first surface file */ s1 = GTS_SURFACE (gts_object_new (GTS_OBJECT_CLASS (gts_surface_class ()))); fp = gts_file_new (fptr); if (gts_surface_read (s1, fp)) { fprintf (stderr, "set: `%s' is not a valid GTS surface file\n", file1); fprintf (stderr, "%s:%d:%d: %s\n", file1, fp->line, fp->pos, fp->error); return 1; } gts_file_destroy (fp); fclose (fptr); /* open second file */ if ((fptr = fopen (file2, "rt")) == NULL) { fprintf (stderr, "set: can not open file `%s'\n", file2); return 1; } /* reads in second surface file */ s2 = GTS_SURFACE (gts_object_new (GTS_OBJECT_CLASS (gts_surface_class ()))); fp = gts_file_new (fptr); if (gts_surface_read (s2, fp)) { fprintf (stderr, "set: `%s' is not a valid GTS surface file\n", file2); fprintf (stderr, "%s:%d:%d: %s\n", file2, fp->line, fp->pos, fp->error); return 1; } gts_file_destroy (fp); fclose (fptr); /* display summary information about both surfaces */ if (verbose) { gts_surface_print_stats (s1, stderr); gts_surface_print_stats (s2, stderr); } /* check that the surfaces are orientable manifolds */ if (!gts_surface_is_orientable (s1)) { fprintf (stderr, "set: surface `%s' is not an orientable manifold\n", file1); return 1; } if (!gts_surface_is_orientable (s2)) { fprintf (stderr, "set: surface `%s' is not an orientable manifold\n", file2); return 1; } /* check that the surfaces are not self-intersecting */ if (check_self_intersection) { GtsSurface * self_intersects; self_intersects = gts_surface_is_self_intersecting (s1); if (self_intersects != NULL) { fprintf (stderr, "set: surface `%s' is self-intersecting\n", file1); if (verbose) gts_surface_print_stats (self_intersects, stderr); gts_surface_write (self_intersects, stdout); gts_object_destroy (GTS_OBJECT (self_intersects)); return 1; } self_intersects = gts_surface_is_self_intersecting (s2); if (self_intersects != NULL) { fprintf (stderr, "set: surface `%s' is self-intersecting\n", file2); if (verbose) gts_surface_print_stats (self_intersects, stderr); gts_surface_write (self_intersects, stdout); gts_object_destroy (GTS_OBJECT (self_intersects)); return 1; } } /* build bounding box tree for first surface */ tree1 = gts_bb_tree_surface (s1); is_open1 = gts_surface_volume (s1) < 0. ? TRUE : FALSE; /* build bounding box tree for second surface */ tree2 = gts_bb_tree_surface (s2); is_open2 = gts_surface_volume (s2) < 0. ? TRUE : FALSE; si = gts_surface_inter_new (gts_surface_inter_class (), s1, s2, tree1, tree2, is_open1, is_open2); g_assert (gts_surface_inter_check (si, &closed)); if (!closed) { fprintf (stderr, "set: the intersection of `%s' and `%s' is not a closed curve\n", file1, file2); return 1; } s3 = gts_surface_new (gts_surface_class (), gts_face_class (), gts_edge_class (), gts_vertex_class ()); if (!strcmp (operation, "union")) { gts_surface_inter_boolean (si, s3, GTS_1_OUT_2); gts_surface_inter_boolean (si, s3, GTS_2_OUT_1); } else if (!strcmp (operation, "inter")) { gts_surface_inter_boolean (si, s3, GTS_1_IN_2); gts_surface_inter_boolean (si, s3, GTS_2_IN_1); } else if (!strcmp (operation, "diff")) { gts_surface_inter_boolean (si, s3, GTS_1_OUT_2); gts_surface_inter_boolean (si, s3, GTS_2_IN_1); gts_surface_foreach_face (si->s2, (GtsFunc) gts_triangle_revert, NULL); gts_surface_foreach_face (s2, (GtsFunc) gts_triangle_revert, NULL); } else { fprintf (stderr, "set: operation `%s' unknown\n" "Try `set --help' for more information.\n", operation); return 1; } /* check that the resulting surface is not self-intersecting */ if (check_self_intersection) { GtsSurface * self_intersects; self_intersects = gts_surface_is_self_intersecting (s3); if (self_intersects != NULL) { fprintf (stderr, "set: the resulting surface is self-intersecting\n"); if (verbose) gts_surface_print_stats (self_intersects, stderr); gts_surface_write (self_intersects, stdout); gts_object_destroy (GTS_OBJECT (self_intersects)); return 1; } } /* display summary information about the resulting surface */ if (verbose) gts_surface_print_stats (s3, stderr); /* write resulting surface to standard output */ if (inter) { printf ("LIST {\n"); g_slist_foreach (si->edges, (GFunc) write_edge, stdout); printf ("}\n"); } else { GTS_POINT_CLASS (gts_vertex_class ())->binary = TRUE; gts_surface_write (s3, stdout); } /* destroy surfaces */ gts_object_destroy (GTS_OBJECT (s1)); gts_object_destroy (GTS_OBJECT (s2)); gts_object_destroy (GTS_OBJECT (s3)); gts_object_destroy (GTS_OBJECT (si)); /* destroy bounding box trees (including bounding boxes) */ gts_bb_tree_destroy (tree1, TRUE); gts_bb_tree_destroy (tree2, TRUE); return 0; }