コード例 #1
0
ファイル: main.c プロジェクト: JOHNNYROJASMED/bsp430
void main ()
{
  hBSP430halPORT b0hal = hBSP430portLookup(BSP430_PLATFORM_BUTTON0_PORT_PERIPH_HANDLE);
  volatile sBSP430hplPORTIE * b0hpl;
  int b0pin = iBSP430portBitPosition(BSP430_PLATFORM_BUTTON0_PORT_BIT);

  vBSP430platformInitialize_ni();
  (void)iBSP430consoleInitialize();

  cprintf("\nbutton " __DATE__ " " __TIME__ "\n");

  cprintf("There's supposed to be a button at %s.%u\n",
          xBSP430portName(BSP430_PLATFORM_BUTTON0_PORT_PERIPH_HANDLE),
          b0pin);
  if (! b0hal) {
    cprintf("Whoops, guess it's not really there\n");
    return;
  }
  b0hpl = BSP430_PORT_HAL_GET_HPL_PORTIE(b0hal);
  button_state.button_cb.next_ni = b0hal->pin_cbchain_ni[b0pin];
  b0hal->pin_cbchain_ni[b0pin] = &button_state.button_cb;
  b0hpl->sel &= ~BSP430_PLATFORM_BUTTON0_PORT_BIT;
  b0hpl->dir &= ~BSP430_PLATFORM_BUTTON0_PORT_BIT;
#if (BSP430_PORT_SUPPORTS_REN - 0)
  BSP430_PORT_HAL_SET_REN(b0hal, BSP430_PLATFORM_BUTTON0_PORT_BIT, BSP430_PORT_REN_PULL_UP);
#endif /* BSP430_PORT_SUPPORTS_REN */
  if (b0hpl->in & BSP430_PLATFORM_BUTTON0_PORT_BIT) {
    button_state.in_mask = BSP430_PLATFORM_BUTTON0_PORT_BIT;
    b0hpl->ies |= BSP430_PLATFORM_BUTTON0_PORT_BIT;
  } else {
    button_state.in_mask = 0;
    b0hpl->ies &= ~BSP430_PLATFORM_BUTTON0_PORT_BIT;
  }
  b0hpl->ifg &= ~BSP430_PLATFORM_BUTTON0_PORT_BIT;
  b0hpl->ie |= BSP430_PLATFORM_BUTTON0_PORT_BIT;
  cprintf("Button is configured.  Try pressing it.  No debouncing is done.\n");
#if ! (configBSP430_CORE_LPM_EXIT_CLEAR_GIE - 0)
  cprintf("WARNING: Interrupts remain enabled after wakeup\n");
#endif /* configBSP430_CORE_LPM_EXIT_CLEAR_GIE */

  vBSP430ledSet(0, 1);

  while (1) {
    static const char * state_str[] = { "released", "pressed" };

    cprintf("Count %u, in mask 0x%02x: %s\n", button_state.count, button_state.in_mask, state_str[!button_state.in_mask]);

    /* Note that we've never turned interrupts on, but
     * BSP430_CORE_LPM_ENTER_NI() does so internally so the ISR can be
     * executed.  Whether they are cleared before returning to this
     * loop depends on #configBSP430_CORE_LPM_EXIT_CLEAR_GIE. */
    BSP430_CORE_LPM_ENTER_NI(LPM0_bits);
#if ! (configBSP430_CORE_LPM_EXIT_CLEAR_GIE - 0)
    /* Infrastructure didn't clear this, so we should */
    BSP430_CORE_DISABLE_INTERRUPT();
#endif /* configBSP430_CORE_LPM_EXIT_CLEAR_GIE */
  }
}
コード例 #2
0
ファイル: main.c プロジェクト: hodiapa/bsp430
void main ()
{
  sBSP430halPORT * hh10d_port = hBSP430portLookup(APP_HH10D_PORT_PERIPH_HANDLE);
  hBSP430halSERIAL i2c = hBSP430serialLookup(APP_HH10D_I2C_PERIPH_HANDLE);
  int uptime_Hz;
  int hh10d_offs;
  int hh10d_sens;

  vBSP430platformInitialize_ni();

  (void)iBSP430consoleInitialize();
  cprintf("\nApplication starting\n");
  BSP430_CORE_DELAY_CYCLES(10000);

  if (NULL == hh10d_port) {
    cprintf("\nERROR: No port HAL; did you enable configBSP430_HAL_%s?\n", xBSP430portName(APP_HH10D_PORT_PERIPH_HANDLE) ?: "whatever");
    return;
  }
コード例 #3
0
ファイル: main.c プロジェクト: JOHNNYROJASMED/bsp430
void main ()
{
  int rc = 0;

  /* GDO0 and GDO2 are always interrupt-capable. */
  volatile sBSP430hplPORTIE * gdo0 = xBSP430hplLookupPORTIE(BSP430_RF_CC110X_GDO0_PORT_PERIPH_HANDLE);
  volatile sBSP430hplPORTIE * gdo2 = xBSP430hplLookupPORTIE(BSP430_RF_CC110X_GDO2_PORT_PERIPH_HANDLE);
  hBSP430halPORT hgdo1 = hBSP430portLookup(BSP430_RF_CC110X_GDO1_PORT_PERIPH_HANDLE);
  hBSP430halPORT hcsn = hBSP430portLookup(BSP430_RF_CC110X_CSn_PORT_PERIPH_HANDLE);

  spi = hBSP430serialLookup(BSP430_RF_CC110X_SPI_PERIPH_HANDLE);

  vBSP430platformInitialize_ni();
  (void)iBSP430consoleInitialize();
  cprintf("\nccid " __DATE__ " " __TIME__ "\n");

  cprintf("GDO0 %p at %s.%u\n", gdo0, xBSP430portName(BSP430_RF_CC110X_GDO0_PORT_PERIPH_HANDLE), iBSP430portBitPosition(BSP430_RF_CC110X_GDO0_PORT_BIT));
  cprintf("GDO1 HAL %p HPL %p at %s.%u\n", hgdo1, hgdo1->hpl.any, xBSP430portName(BSP430_RF_CC110X_GDO1_PORT_PERIPH_HANDLE), iBSP430portBitPosition(BSP430_RF_CC110X_GDO1_PORT_BIT));
  cprintf("GDO2 %p at %s.%u\n", gdo2, xBSP430portName(BSP430_RF_CC110X_GDO2_PORT_PERIPH_HANDLE), iBSP430portBitPosition(BSP430_RF_CC110X_GDO2_PORT_BIT));
  cprintf("CSn HAL %p HPL %p at %s.%u\n", hcsn, hcsn->hpl.any, xBSP430portName(BSP430_RF_CC110X_CSn_PORT_PERIPH_HANDLE), iBSP430portBitPosition(BSP430_RF_CC110X_CSn_PORT_BIT));
  cprintf("SPI %p is %s\n", spi, xBSP430serialName(BSP430_RF_CC110X_SPI_PERIPH_HANDLE));
#if BSP430_PLATFORM_PERIPHERAL_HELP
  cprintf("SPI Pins: %s\n", xBSP430platformPeripheralHelp(BSP430_RF_CC110X_SPI_PERIPH_HANDLE, BSP430_PERIPHCFG_SERIAL_SPI3));
#endif /* BSP430_PLATFORM_PERIPHERAL_HELP */
  cprintf(__DATE__ " " __TIME__ "\n");


  /* Configure the SPI interface, but immediately put it into hold
   * mode so we can check CHIP_RDYn on the MISO/GDO1 input. */
  spi = hBSP430serialOpenSPI(spi, BSP430_RF_CC110X_SPI_CTL0_BYTE, 0, 0);
  if (spi) {
    rc = iBSP430serialSetHold_rh(spi, 1);
    /* GDO1 to input, pull-up */
    BSP430_PORT_HAL_HPL_DIR(hgdo1) &= ~BSP430_RF_CC110X_GDO1_PORT_BIT;
    BSP430_PORT_HAL_SET_REN(hgdo1, BSP430_RF_CC110X_GDO1_PORT_BIT, BSP430_PORT_REN_PULL_UP);
  }

  cprintf("SPI device %p hold returned %d\n", spi, rc);
  if (! spi) {
    return;
  }

  /* Configure CSn initial high to ensure we have a falling edge when
   * we first enable the radio. */
  BSP430_PORT_HAL_HPL_SEL(hcsn) &= ~BSP430_RF_CC110X_CSn_PORT_BIT;
  BSP430_PORT_HAL_HPL_OUT(hcsn) |= BSP430_RF_CC110X_CSn_PORT_BIT;
  BSP430_PORT_HAL_HPL_DIR(hcsn) |= BSP430_RF_CC110X_CSn_PORT_BIT;

  /* Now enable the radio */
  BSP430_PORT_HAL_HPL_OUT(hcsn) &= ~BSP430_RF_CC110X_CSn_PORT_BIT;

  /* Spin until GDO1 (CHP_RDYn) is clear indicating radio is responsive */
  while (BSP430_PORT_HAL_HPL_IN(hgdo1) & BSP430_RF_CC110X_GDO1_PORT_BIT) {
    cprintf("Waiting for radio ready\n");
    BSP430_CORE_DELAY_CYCLES(BSP430_CLOCK_NOMINAL_MCLK_HZ);
  }

  /* Enable SPI */
  rc = iBSP430serialSetHold_rh(spi, 0);
  cprintf("Radio is up, hold release %d; sending SRES strobe\n", rc);

  /* Send a reset */
  do {
    rc = sendStrobe(0x30);
    cprintf("Strobe response %#02x\n", rc);
    if (0x0F != rc) {
      BSP430_CORE_DELAY_CYCLES(BSP430_CLOCK_NOMINAL_MCLK_HZ);
    }
  } while (0x0F != rc);

  cprintf("PARTNUM response %#02x\n", readRegister(0x30));
  cprintf("VERSION response %#02x\n", readRegister(0x31));
  cprintf("IOCFG2 read %#02x\n", readRegister(0x00));
  cprintf("IOCFG1 read %#02x\n", readRegister(0x01));
  cprintf("IOCFG0 read %#02x\n", readRegister(0x02));

  /* ChipCon radios consume 1.4mA when idle.  That goes down to
   * nominally 400 nA if the GDOs are configured to "HW to 0" and the
   * chip is told to power-down on loss of CSn.  On the EXP430F5438
   * the RF PWR header indicates that a CC1101 is using 40 nA in this
   * mode.*/
  rc = writeRegister(0x00, 0x2f);
  rc = writeRegister(0x01, 0x2f);
  rc = writeRegister(0x02, 0x2f);
  cprintf("Cleared IOCFG\n");
  cprintf("IOCFG2 read %#02x\n", readRegister(0x00));
  cprintf("IOCFG1 read %#02x\n", readRegister(0x01));
  cprintf("IOCFG0 read %#02x\n", readRegister(0x02));

  /* SPWD */
  rc = sendStrobe(0x39);
  cprintf("SPWD got %d\n", rc);

  /* Disable SPI before removing CSn otherwise the sequence isn't
   * right. */
  rc = iBSP430serialSetHold_rh(spi, 1);
  BSP430_PORT_HAL_HPL_OUT(hcsn) |= BSP430_RF_CC110X_CSn_PORT_BIT;

  /* This gets the RF2500T power down to about 120 nA.  Note:
   * Purposefully enter LPM with #GIE off since we do not intend to
   * wake up.*/
  BSP430_CORE_LPM_ENTER(LPM3_bits);
}
コード例 #4
0
ファイル: main.c プロジェクト: pabigot/bsp430
void main ()
{
  sBSP430halPORT * port_hal;
  hBSP430halTIMER hal;
  volatile sBSP430hplTIMER * hpl;

  vBSP430platformInitialize_ni();
  (void)iBSP430consoleInitialize();
  cputchar('\n');
  BSP430_CORE_DELAY_CYCLES(BSP430_CLOCK_NOMINAL_MCLK_HZ / 1000);

  cprintf("\n\nsynccap " __DATE__ " " __TIME__ "\n");
  cprintf("External input on %s.%u corresponds to %s.%u%c\n",
          xBSP430portName(BSP430_TIMER_CCACLK_CC1_PORT_PERIPH_HANDLE),
          bitToPin(BSP430_TIMER_CCACLK_CC1_PORT_BIT),
          xBSP430timerName(BSP430_TIMER_CCACLK_PERIPH_HANDLE),
          PORT_CCIDX,
          'A' + (BSP430_TIMER_CCACLK_CC1_CCIS / CCIS0));
  port_hal = hBSP430portLookup(BSP430_TIMER_CCACLK_CC1_PORT_PERIPH_HANDLE);
  if (NULL == port_hal) {
    cprintf("Port HAL not available\n");
    return;
  }
  hal = hBSP430timerLookup(BSP430_TIMER_CCACLK_PERIPH_HANDLE);
  if (NULL == hal) {
    cprintf("Can't find timer\n");
    return;
  }

  BSP430_PORT_HAL_HPL_DIR(port_hal) &= ~BSP430_TIMER_CCACLK_CC1_PORT_BIT;
  BSP430_PORT_HAL_HPL_SEL(port_hal) |= BSP430_TIMER_CCACLK_CC1_PORT_BIT;
  hpl = hal->hpl;
  hpl->cctl[1] = CM_3 | BSP430_TIMER_CCACLK_CC1_CCIS | SCS | CAP | CCIE;
  captured.last_cci = !!(hpl->cctl[1] & CCI);
  BSP430_HAL_ISR_CALLBACK_LINK_NI(sBSP430halISRIndexedChainNode,
                                  hal->cc_cbchain_ni[PORT_CCIDX],
                                  captured.cb,
                                  next_ni);
  hpl->ctl = TASSEL_2 | MC_2 | TACLR | TAIE;

  /* Need to enable interrupts so timer overflow events are properly
   * acknowledged */
  while (1) {
    unsigned int ccr;
    unsigned int cctl;
    unsigned int count;
    unsigned int errors;
    int last_cci;
    unsigned long event_tt;

    BSP430_CORE_DISABLE_INTERRUPT();
    do {
      event_tt = captured.event_tt;
      captured.event_tt = 0;
      count = captured.count;
      errors = captured.errors;
      captured.count = 0;
      captured.errors = 0;
      last_cci = captured.last_cci;
      cctl = hpl->cctl[PORT_CCIDX];
      ccr = hpl->ccr[PORT_CCIDX];
      hpl->cctl[PORT_CCIDX] &= ~COV;
    } while (0);
    BSP430_CORE_ENABLE_INTERRUPT();

    cprintf("Up %lu ACLK ticks, timer %lu event %lx ccr %x cctl %04x\n"
            "\tCCI %d SCCI %d COV %d ; recorded CCI %d ; count %u errors %d\n",
            ulBSP430uptime(),
            ulBSP430timerCounter(hal, NULL),
            event_tt,
            ccr,
            cctl,
            !!(cctl & CCI), !!(cctl & SCCI), !!(cctl & COV), last_cci, count, errors);
    BSP430_CORE_DELAY_CYCLES(BSP430_CLOCK_NOMINAL_MCLK_HZ);
  }
}
コード例 #5
0
ファイル: main.c プロジェクト: JOHNNYROJASMED/bsp430
void main ()
{
  volatile sBSP430hplTIMER * const timer_hpl = xBSP430hplLookupTIMER(BSP430_TIMER_CCACLK_PERIPH_HANDLE);
  unsigned int outclk;
  unsigned int last_outclk;
  unsigned int cctl;
  hBSP430halPORT const inclk_port_hal = hBSP430portLookup(BSP430_TIMER_CCACLK_CLK_PORT_PERIPH_HANDLE);
  hBSP430halPORT const cc_port_hal = hBSP430portLookup(APP_CC_PORT_PERIPH_HANDLE);
  hBSP430halPORT const outclk_port_hal = hBSP430portLookup(APP_OUTCLK_PORT_PERIPH_HANDLE);
  hBSP430halPORT const trigger_port_hal = hBSP430portLookup(APP_TRIGGER_PORT_PERIPH_HANDLE);
  vBSP430platformInitialize_ni();
  vBSP430unittestInitialize();

  cprintf("timer_scs_test: " __DATE__ " " __TIME__ "\n");
  if (NULL == timer_hpl) {
    cprintf("ERROR: Unable to get timer HPL access\n");
    return;
  }
  if (NULL == inclk_port_hal) {
    cprintf("ERROR: Unable to get INCLK port access\n");
    return;
  }
  if (NULL == cc_port_hal) {
    cprintf("ERROR: Unable to get CC0 port access\n");
    return;
  }
  if (NULL == outclk_port_hal) {
    cprintf("ERROR: Unable to get OUTCLK port access\n");
    return;
  }
  if (NULL == trigger_port_hal) {
    cprintf("ERROR: Unable to get TRIGGER port access\n");
    return;
  }
  cprintf("Please connect OUTCLK at %s.%u to %s INCLK at %s.%u\n",
          xBSP430portName(APP_OUTCLK_PORT_PERIPH_HANDLE),
          iBSP430portBitPosition(APP_OUTCLK_PORT_BIT),
          xBSP430timerName(BSP430_TIMER_CCACLK_PERIPH_HANDLE),
          xBSP430portName(BSP430_TIMER_CCACLK_CLK_PORT_PERIPH_HANDLE),
          iBSP430portBitPosition(BSP430_TIMER_CCACLK_CLK_PORT_BIT));
  cprintf("Please connect TRIGGER at %s.%u to %s CCI0%c at %s.%u\n",
          xBSP430portName(APP_TRIGGER_PORT_PERIPH_HANDLE),
          iBSP430portBitPosition(APP_TRIGGER_PORT_BIT),
          xBSP430timerName(BSP430_TIMER_CCACLK_PERIPH_HANDLE),
          'A' + (APP_CC_CCIS / CCIS0),
          xBSP430portName(APP_CC_PORT_PERIPH_HANDLE),
          iBSP430portBitPosition(APP_CC_PORT_BIT));

  /* OUTCLK: output low */
  outclk = 0;
  BSP430_PORT_HAL_HPL_OUT(outclk_port_hal) &= ~APP_OUTCLK_PORT_BIT;
  BSP430_PORT_HAL_HPL_DIR(outclk_port_hal) |= APP_OUTCLK_PORT_BIT;
  BSP430_PORT_HAL_HPL_SEL(outclk_port_hal) &= ~APP_OUTCLK_PORT_BIT;

  /* TRIGGER: output low */
  BSP430_PORT_HAL_HPL_OUT(trigger_port_hal) &= ~APP_TRIGGER_PORT_BIT;
  BSP430_PORT_HAL_HPL_DIR(trigger_port_hal) |= APP_TRIGGER_PORT_BIT;
  BSP430_PORT_HAL_HPL_SEL(trigger_port_hal) &= ~APP_TRIGGER_PORT_BIT;

  /* INCLK: input peripheral function */
  BSP430_PORT_HAL_HPL_SEL(inclk_port_hal) &= ~BSP430_TIMER_CCACLK_CLK_PORT_BIT;
  BSP430_PORT_HAL_HPL_SEL(inclk_port_hal) |= BSP430_TIMER_CCACLK_CLK_PORT_BIT;

  /* CC0: input peripheral function */
  BSP430_PORT_HAL_HPL_DIR(cc_port_hal) &= ~APP_CC_PORT_BIT;
  BSP430_PORT_HAL_HPL_SEL(cc_port_hal) |= APP_CC_PORT_BIT;
  cprintf("P4: DIR %04x SEL %04x\n", P4DIR, P4SEL);

#define CLEAR_CAPTURE() do {                    \
    timer_hpl->cctl[APP_CCIDX] &= ~CCIFG;                 \
    timer_hpl->ccr[APP_CCIDX] = 0;                        \
  } while (0)

#define ASSERT_CLOCK_HIGH() do {                                        \
    BSP430_UNITTEST_ASSERT_TRUE(BSP430_PORT_HAL_HPL_OUT(outclk_port_hal) & APP_OUTCLK_PORT_BIT); \
  } while (0)

#define ASSERT_CLOCK_LOW() do {                                         \
    BSP430_UNITTEST_ASSERT_FALSE(BSP430_PORT_HAL_HPL_OUT(outclk_port_hal) & APP_OUTCLK_PORT_BIT); \
  } while (0)

#define ASSERT_CCI_HIGH() do {                              \
    BSP430_UNITTEST_ASSERT_TRUE(CCI & timer_hpl->cctl[APP_CCIDX]);        \
  } while (0)

#define ASSERT_CCI_LOW() do {                                \
    BSP430_UNITTEST_ASSERT_FALSE(CCI & timer_hpl->cctl[APP_CCIDX]);        \
  } while (0)

#define ASSERT_INTERNAL_TRIGGER_HIGH() do {                             \
    BSP430_UNITTEST_ASSERT_TRUE(CCIS_3 == (CCIS_3 & timer_hpl->cctl[APP_CCIDX])); \
  } while (0)

#define ASSERT_INTERNAL_TRIGGER_LOW() do {                              \
    BSP430_UNITTEST_ASSERT_TRUE(CCIS_2 == (CCIS_3 & timer_hpl->cctl[APP_CCIDX])); \
  } while (0)

#define ASSERT_NO_CAPTURE() do {                                \
    BSP430_UNITTEST_ASSERT_FALSE(CCIFG & timer_hpl->cctl[APP_CCIDX]);     \
    BSP430_UNITTEST_ASSERT_EQUAL_FMTx(0, timer_hpl->ccr[APP_CCIDX]);      \
  } while (0)

#define ASSERT_YES_CAPTURE() do {                                       \
    BSP430_UNITTEST_ASSERT_TRUE(CCIFG & timer_hpl->cctl[APP_CCIDX]);              \
    BSP430_UNITTEST_ASSERT_EQUAL_FMTx(timer_hpl->r, timer_hpl->ccr[APP_CCIDX]);   \
  } while (0)

  /* Capture asynchronously on falling edge from TRIGGER. */
  timer_hpl->ccr[APP_CCIDX] = 0;
  timer_hpl->cctl[APP_CCIDX] = CM_2 | APP_CC_CCIS | SCCI | CAP;
  timer_hpl->cctl[APP_CCIDX] = CM_3 | APP_CC_CCIS | SCCI | CAP;
  cprintf("%u: Timer: R %04x CTL %04x CCR %04x CCTL %04x\n", __LINE__, timer_hpl->r, timer_hpl->ctl, timer_hpl->ccr[APP_CCIDX], timer_hpl->cctl[APP_CCIDX]);

  /* Count upwards. */
  timer_hpl->ctl = TASSEL_0 | MC_2 | TACLR;

  /* Validate that we can control the clock input. */
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, 0);
  ASSERT_CLOCK_LOW();
  HALF_TICK_OUTCLK();
  ASSERT_CLOCK_HIGH();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, 1);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);
  HALF_TICK_OUTCLK();
  ASSERT_CLOCK_LOW();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, 1);
  HALF_TICK_OUTCLK();
  ASSERT_CLOCK_HIGH();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);
  HALF_TICK_OUTCLK();
  ASSERT_CLOCK_LOW();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);

  /* Verify that we can control the trigger, and that asynchronous
   * captures work. */
  ASSERT_NO_CAPTURE();
  ASSERT_CCI_LOW();
  HALF_TRIGGER();
  if (CM0 & timer_hpl->cctl[APP_CCIDX]) {
    ASSERT_YES_CAPTURE();
    if (! (CM1 & timer_hpl->cctl[APP_CCIDX])) {
      CLEAR_CAPTURE();
    }
  } else {
    ASSERT_NO_CAPTURE();
  }
  ASSERT_CCI_HIGH();
  HALF_TRIGGER();
  ASSERT_YES_CAPTURE();
  ASSERT_CCI_LOW();
  CLEAR_CAPTURE();

  /* Advance the clock.  Make sure no capture occurred. */
  last_outclk = outclk;
  HALF_TICK_OUTCLK();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, last_outclk+1);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);
  ASSERT_NO_CAPTURE();
  last_outclk = outclk;
  HALF_TICK_OUTCLK();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(last_outclk, timer_hpl->r);
  ASSERT_NO_CAPTURE();

  /* Now turn on synchronous capture */
  timer_hpl->cctl[APP_CCIDX] |= SCS;

  /* Advance the clock.  Make sure no capture occurred */
  cctl = timer_hpl->cctl[APP_CCIDX];
  last_outclk = outclk;
  ASSERT_CLOCK_LOW();
  HALF_TICK_OUTCLK();
  ASSERT_CLOCK_HIGH();
  ASSERT_NO_CAPTURE();
  HALF_TICK_OUTCLK();
  ASSERT_CLOCK_LOW();
  ASSERT_NO_CAPTURE();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(last_outclk+1, timer_hpl->r);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(cctl, timer_hpl->cctl[APP_CCIDX]);

  /* Do this again to make really sure no capture occurred. */
  HALF_TICK_OUTCLK();
  ASSERT_NO_CAPTURE();
  HALF_TICK_OUTCLK();
  ASSERT_NO_CAPTURE();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(last_outclk+2, timer_hpl->r);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(cctl, timer_hpl->cctl[APP_CCIDX]);

  /*
  F1) CCI rises then falls while CLK remains low.  CCIFG remains low.  When CLK
  rises the counter is incremented but CCIFG remains low.  CCIFG is set only
  when CLK falls.
  */

  /* CLK is low. */
  ASSERT_CLOCK_LOW();

  /* Check that external triggers with sync async do not trigger when
   * clock does not advance. */
  ASSERT_NO_CAPTURE();
  ASSERT_CCI_LOW();
  HALF_TRIGGER();
  ASSERT_NO_CAPTURE();
  ASSERT_CCI_HIGH();
  HALF_TRIGGER();
  ASSERT_NO_CAPTURE();
  ASSERT_CCI_LOW();

  /* Advance the clock.  No action on rising edge. */
  last_outclk = outclk;
  HALF_TICK_OUTCLK();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, last_outclk+1);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);
  ASSERT_NO_CAPTURE();
  ASSERT_CCI_LOW();
  ASSERT_CLOCK_HIGH();

  /* Falling edge does not increment counter but does cause capture */
  last_outclk = outclk;
  HALF_TICK_OUTCLK();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, last_outclk);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);
  ASSERT_YES_CAPTURE();
  ASSERT_CCI_LOW();
  CLEAR_CAPTURE();

  /*
  F2) CCI rises then falls while CLK remains high.  CCIFG remains low.  When
  CLK falls CCIFG is set.
  */

  /* Advance the clock.  No action on rising edge. */
  last_outclk = outclk;
  HALF_TICK_OUTCLK();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, last_outclk+1);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);
  ASSERT_NO_CAPTURE();
  ASSERT_CCI_LOW();
  ASSERT_CLOCK_HIGH();

  /* Check that external triggers with sync async do not trigger when
   * clock does not advance. */
  ASSERT_NO_CAPTURE();
  ASSERT_CCI_LOW();
  HALF_TRIGGER();
  ASSERT_NO_CAPTURE();
  ASSERT_CCI_HIGH();
  HALF_TRIGGER();
  ASSERT_NO_CAPTURE();
  ASSERT_CCI_LOW();

  /* Falling edge does not increment counter but does cause capture */
  last_outclk = outclk;
  HALF_TICK_OUTCLK();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, last_outclk);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);
  ASSERT_YES_CAPTURE();
  ASSERT_CCI_LOW();
  CLEAR_CAPTURE();

  /* Now test it with internal toggles.  First, asynchronous: */
  timer_hpl->cctl[APP_CCIDX] = CM_3 | CCIS_2 | SCCI | CAP;
  ASSERT_NO_CAPTURE();
  ASSERT_INTERNAL_TRIGGER_LOW();
  ASSERT_CCI_LOW();
  HALF_TRIGGER();
  ASSERT_CCI_LOW();
  ASSERT_NO_CAPTURE();
  INTERNAL_HALF_TRIGGER();
  ASSERT_CCI_HIGH();
  ASSERT_INTERNAL_TRIGGER_HIGH();
  ASSERT_YES_CAPTURE();
  CLEAR_CAPTURE();
  HALF_TRIGGER();
  ASSERT_CCI_HIGH();
  ASSERT_NO_CAPTURE();
  INTERNAL_HALF_TRIGGER();
  ASSERT_CCI_LOW();
  ASSERT_INTERNAL_TRIGGER_LOW();
  ASSERT_YES_CAPTURE();
  ASSERT_CCI_LOW();
  CLEAR_CAPTURE();

  /* Now synchronous */
  timer_hpl->cctl[APP_CCIDX] |= SCS;

  ASSERT_NO_CAPTURE();
  ASSERT_INTERNAL_TRIGGER_LOW();
  INTERNAL_HALF_TRIGGER();
  ASSERT_INTERNAL_TRIGGER_HIGH();
  ASSERT_NO_CAPTURE();
  INTERNAL_HALF_TRIGGER();
  ASSERT_INTERNAL_TRIGGER_LOW();
  ASSERT_NO_CAPTURE();

  /* Advance the clock.  No action on rising edge. */
  last_outclk = outclk;
  HALF_TICK_OUTCLK();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, last_outclk+1);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);
  ASSERT_NO_CAPTURE();
  ASSERT_CCI_LOW();
  ASSERT_CLOCK_HIGH();

  /* Falling edge does not increment counter but does cause capture */
  last_outclk = outclk;
  HALF_TICK_OUTCLK();
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, last_outclk);
  BSP430_UNITTEST_ASSERT_EQUAL_FMTx(outclk, timer_hpl->r);
  ASSERT_YES_CAPTURE();
  ASSERT_CCI_LOW();
  CLEAR_CAPTURE();

  cprintf("%u: Timer: R %04x CTL %04x CCR %04x CCTL %04x\n", __LINE__, timer_hpl->r, timer_hpl->ctl, timer_hpl->ccr[APP_CCIDX], timer_hpl->cctl[APP_CCIDX]);
  vBSP430unittestFinalize();
}