コード例 #1
0
static void *run(hashpipe_thread_args_t * args)
{
    // Local aliases to shorten access to args fields
    // Our output buffer happens to be a paper_input_databuf
    hashpipe_status_t st = args->st;
    const char * status_key = args->thread_desc->skey;

    st_p = &st;	// allow global (this source file) access to the status buffer

    // Get inital value for crc32 function
    uint32_t init_crc = crc32(0,0,0);

    // Flag that holds off the crc thread
    int holdoff = 1;

    // Force ourself into the hold off state
    hashpipe_status_lock_safe(&st);
    hputi4(st.buf, "CRCHOLD", 1);
    hashpipe_status_unlock_safe(&st);

    while(holdoff) {
	// We're not in any hurry to startup
	sleep(1);
	hashpipe_status_lock_safe(&st);
	// Look for CRCHOLD value
	hgeti4(st.buf, "CRCHOLD", &holdoff);
	if(!holdoff) {
	    // Done holding, so delete the key
	    hdel(st.buf, "CRCHOLD");
	}
	hashpipe_status_unlock_safe(&st);
    }

    /* Read network params */
    struct hashpipe_udp_params up = {
	.bindhost = "0.0.0.0",
	.bindport = 8511,
	.packet_size = 8200
    };
    hashpipe_status_lock_safe(&st);
    // Get info from status buffer if present (no change if not present)
    hgets(st.buf, "BINDHOST", 80, up.bindhost);
    hgeti4(st.buf, "BINDPORT", &up.bindport);
    // Store bind host/port info etc in status buffer
    hputs(st.buf, "BINDHOST", up.bindhost);
    hputi4(st.buf, "BINDPORT", up.bindport);
    hputu4(st.buf, "CRCPKOK", 0);
    hputu4(st.buf, "CRCPKERR", 0);
    hputs(st.buf, status_key, "running");
    hashpipe_status_unlock_safe(&st);

    struct hashpipe_udp_packet p;

    /* Give all the threads a chance to start before opening network socket */
    sleep(1);


    /* Set up UDP socket */
    int rv = hashpipe_udp_init(&up);
    if (rv!=HASHPIPE_OK) {
        hashpipe_error("paper_crc_thread",
                "Error opening UDP socket.");
        pthread_exit(NULL);
    }
    pthread_cleanup_push((void *)hashpipe_udp_close, &up);

    /* Main loop */
    uint64_t packet_count = 0;
    uint64_t good_count = 0;
    uint64_t error_count = 0;
    uint64_t elapsed_wait_ns = 0;
    uint64_t elapsed_recv_ns = 0;
    uint64_t elapsed_proc_ns = 0;
    float ns_per_wait = 0.0;
    float ns_per_recv = 0.0;
    float ns_per_proc = 0.0;
    struct timespec start, stop;
    struct timespec recv_start, recv_stop;
    packet_header_t hdr;

    while (run_threads()) {

        /* Read packet */
	clock_gettime(CLOCK_MONOTONIC, &recv_start);
	do {
	    clock_gettime(CLOCK_MONOTONIC, &start);
	    p.packet_size = recv(up.sock, p.data, HASHPIPE_MAX_PACKET_SIZE, 0);
	    clock_gettime(CLOCK_MONOTONIC, &recv_stop);
	} while (p.packet_size == -1 && (errno == EAGAIN || errno == EWOULDBLOCK) && run_threads());

	// Break out of loop if stopping
	if(!run_threads()) break;

	// Increment packet count
	packet_count++;

	// Check CRC
        if(crc32(init_crc, (/*const?*/ uint8_t *)p.data, p.packet_size) == 0xffffffff) {
	    // CRC OK! Increment good counter
	    good_count++;
	} else {
	    // CRC error!  Increment error counter
	    error_count++;

	    // Log message
	    get_header(&p, &hdr);
	    hashpipe_warn("paper_crc", "CRC error mcnt %llu ; fid %u ; xid %u",
		    hdr.mcnt, hdr.fid, hdr.xid);
	}

	clock_gettime(CLOCK_MONOTONIC, &stop);
	elapsed_wait_ns += ELAPSED_NS(recv_start, start);
	elapsed_recv_ns += ELAPSED_NS(start, recv_stop);
	elapsed_proc_ns += ELAPSED_NS(recv_stop, stop);

        if(packet_count % 1000 == 0) {
	    // Compute stats
	    get_header(&p, &hdr);
            ns_per_wait = (float)elapsed_wait_ns / packet_count;
            ns_per_recv = (float)elapsed_recv_ns / packet_count;
            ns_per_proc = (float)elapsed_proc_ns / packet_count;

            // Update status
            hashpipe_status_lock_busywait_safe(&st);
            hputu8(st.buf, "CRCMCNT", hdr.mcnt);
	    // Gbps = bits_per_packet / ns_per_packet
	    // (N_BYTES_PER_PACKET excludes header, so +8 for the header)
            hputr4(st.buf, "CRCGBPS", 8*(N_BYTES_PER_PACKET+8)/(ns_per_recv+ns_per_proc));
            hputr4(st.buf, "CRCWATNS", ns_per_wait);
            hputr4(st.buf, "CRCRECNS", ns_per_recv);
            hputr4(st.buf, "CRCPRCNS", ns_per_proc);
	    // TODO Provide some way to recognize request to zero out the
	    // CRCERR and CRCOK fields.
	    hputu8(st.buf, "CRCPKOK",  good_count);
	    hputu8(st.buf, "CRCPKERR", error_count);
            hashpipe_status_unlock_safe(&st);

	    // Start new average
	    elapsed_wait_ns = 0;
	    elapsed_recv_ns = 0;
	    elapsed_proc_ns = 0;
	    packet_count = 0;
        }

        /* Will exit if thread has been cancelled */
        pthread_testcancel();
    }

    /* Have to close all push's */
    pthread_cleanup_pop(1); /* Closes push(hashpipe_udp_close) */

    return NULL;
}

static hashpipe_thread_desc_t crc_thread = {
    name: "paper_crc_thread",
    skey: "CRCSTAT",
    init: NULL,
    run:  run,
    ibuf_desc: {NULL},
コード例 #2
0
ファイル: flag_net_thread.c プロジェクト: jay-brady/FLAG-RTB
// Run method for the thread
// It is meant to do the following:
// (1) Initialize status buffer
// (2) Set up network parameters and socket
// (3) Start main loop
//     (3a) Receive packet on socket
//     (3b) Error check packet (packet size, etc)
//     (3c) Call process_packet on received packet
// (4) Terminate thread cleanly
static void *run(hashpipe_thread_args_t * args) {

    fprintf(stdout, "N_INPUTS = %d\n", N_INPUTS);
    fprintf(stdout, "N_CHAN = %d\n", N_CHAN);
    fprintf(stdout, "N_CHAN_PER_X = %d\n", N_CHAN_PER_X);
    fprintf(stdout, "N_CHAN_PER_PACKET = %d\n", N_CHAN_PER_PACKET);
    fprintf(stdout, "N_TIME_PER_PACKET = %d\n", N_TIME_PER_PACKET);
    fprintf(stdout, "N_TIME_PER_BLOCK = %d\n", N_TIME_PER_BLOCK);
    fprintf(stdout, "N_BYTES_PER_BLOCK = %d\n", N_BYTES_PER_BLOCK);
    fprintf(stdout, "N_BYTES_PER_PACKET = %d\n", N_BYTES_PER_PACKET);
    fprintf(stdout, "N_PACKETS_PER_BLOCK = %d\n", N_PACKETS_PER_BLOCK);
    fprintf(stdout, "N_COR_MATRIX = %d\n", N_COR_MATRIX);

    // Local aliases to shorten access to args fields
    // Our output buffer happens to be a paper_input_databuf
    flag_input_databuf_t *db = (flag_input_databuf_t *)args->obuf;
    hashpipe_status_t st = args->st;
    const char * status_key = args->thread_desc->skey;

    st_p = &st;	// allow global (this source file) access to the status buffer

    /* Read network params */
    fprintf(stdout, "Setting up network parameters\n");
    struct hashpipe_udp_params up = {
	.bindhost = "0.0.0.0",
	.bindport = 8511,
	.packet_size = 8008
    };

    hashpipe_status_lock_safe(&st);
    	// Get info from status buffer if present (no change if not present)
    	hgets(st.buf, "BINDHOST", 80, up.bindhost);
    	hgeti4(st.buf, "BINDPORT", &up.bindport);
    
    	// Store bind host/port info etc in status buffer
    	hputs(st.buf, "BINDHOST", up.bindhost);
    	hputi4(st.buf, "BINDPORT", up.bindport);
    	hputu4(st.buf, "MISSEDFE", 0);
    	hputu4(st.buf, "MISSEDPK", 0);
    	hputs(st.buf, status_key, "running");
    hashpipe_status_unlock_safe(&st);

    struct hashpipe_udp_packet p;

    /* Give all the threads a chance to start before opening network socket */
    int netready = 0;
    int corready = 0;
    int checkready = 0;
    while (!netready) {
        sleep(1);
        // Check the correlator to see if it's ready yet
        hashpipe_status_lock_safe(&st);
        hgeti4(st.buf, "CORREADY",  &corready);
        hgeti4(st.buf, "SAVEREADY", &checkready);
        hashpipe_status_unlock_safe(&st);
        if (!corready) {
            continue;
        }
        //if (!checkready) {
        //    continue;
        //}

        // Check the other threads to see if they're ready yet
        // TBD

        // If we get here, then all threads are initialized
        netready = 1;
    }
    sleep(3);

    /* Set up UDP socket */
    fprintf(stderr, "NET: BINDHOST = %s\n", up.bindhost);
    fprintf(stderr, "NET: BINDPORT = %d\n", up.bindport);
    int rv = hashpipe_udp_init(&up);
    
    if (rv!=HASHPIPE_OK) {
        hashpipe_error("paper_net_thread",
                "Error opening UDP socket.");
        pthread_exit(NULL);
    }
    pthread_cleanup_push((void *)hashpipe_udp_close, &up);


    // Initialize first few blocks in the buffer
    int i;
    for (i = 0; i < 2; i++) {
        // Wait until block semaphore is free
        if (flag_input_databuf_wait_free(db, i) != HASHPIPE_OK) {
            if (errno == EINTR) { // Interrupt occurred
                hashpipe_error(__FUNCTION__, "waiting for free block interrupted\n");
                pthread_exit(NULL);
            } else {
                hashpipe_error(__FUNCTION__, "error waiting for free block\n");
                pthread_exit(NULL);
            }
        }
        initialize_block(db, i*Nm);
    }


    // Set correlator to "start" state
    hashpipe_status_lock_safe(&st);
    hputs(st.buf, "INTSTAT", "start");
    hashpipe_status_unlock_safe(&st);

    /* Main loop */
    uint64_t packet_count = 0;

    fprintf(stdout, "Net: Starting Thread!\n");
    
    while (run_threads()) {
        // Get packet
	do {
	    p.packet_size = recv(up.sock, p.data, HASHPIPE_MAX_PACKET_SIZE, 0);
	} while (p.packet_size == -1 && (errno == EAGAIN || errno == EWOULDBLOCK) && run_threads());
	if(!run_threads()) break;
        
        if (up.packet_size != p.packet_size && up.packet_size != p.packet_size-8) {
	    // If an error was returned instead of a valid packet size
            if (p.packet_size == -1) {
                fprintf(stderr, "uh oh!\n");
		// Log error and exit
                hashpipe_error("paper_net_thread",
                        "hashpipe_udp_recv returned error");
                perror("hashpipe_udp_recv");
                pthread_exit(NULL);
            } else {
		// Log warning and ignore wrongly sized packet
                hashpipe_warn("paper_net_thread", "Incorrect pkt size (%d)", p.packet_size);
                continue;
            }
	}
	packet_count++;
        process_packet(db, &p);

        /* Will exit if thread has been cancelled */
        pthread_testcancel();
    }

    pthread_cleanup_pop(1); /* Closes push(hashpipe_udp_close) */

    hashpipe_status_lock_busywait_safe(&st);
    hputs(st.buf, status_key, "terminated");
    hashpipe_status_unlock_safe(&st);
    return NULL;
}


static hashpipe_thread_desc_t net_thread = {
    name: "flag_net_thread",
    skey: "NETSTAT",
    init: NULL,
    run:  run,
    ibuf_desc: {NULL},