コード例 #1
0
ファイル: tup_convert.c プロジェクト: colinet/sqlix
/*
 * Perform conversion of a tuple according to the map.
 */
struct heap_tuple*
convert_tuple(struct heap_tuple *tuple, struct tuple_conv_map *map)
{
	attr_nr_t *attrMap = map->attrMap;
	datum_t *invalues = map->invalues;
	bool *inisnull = map->inisnull;
	datum_t *outvalues = map->outvalues;
	bool *outisnull = map->outisnull;
	int outnatts = map->outdesc->natts;
	int i;

	/*
	 * Extract all the values of the old tuple, offsetting the arrays so that
	 * invalues[0] is left NULL and invalues[1] is the first source attribute;
	 * this exactly matches the numbering convention in attrMap.
	 */
	heap_deform_tuple(tuple, map->indesc, invalues + 1, inisnull + 1);

	/*
	 * Transpose into proper fields of the new tuple.
	 */
	for (i = 0; i < outnatts; i++) {
		int j;

		j = attrMap[i];
		outvalues[i] = invalues[j];
		outisnull[i] = inisnull[j];
	}

	/*
	 * Now form the new tuple.
	 */
	return heap_form_tuple(map->outdesc, outvalues, outisnull);
}
コード例 #2
0
ファイル: execReplication.c プロジェクト: timmui/postgres
/*
 * Compare the tuple and slot and check if they have equal values.
 *
 * We use binary datum comparison which might return false negatives but
 * that's the best we can do here as there may be multiple notions of
 * equality for the data types and table columns don't specify which one
 * to use.
 */
static bool
tuple_equals_slot(TupleDesc desc, HeapTuple tup, TupleTableSlot *slot)
{
	Datum		values[MaxTupleAttributeNumber];
	bool		isnull[MaxTupleAttributeNumber];
	int			attrnum;
	Form_pg_attribute att;

	heap_deform_tuple(tup, desc, values, isnull);

	/* Check equality of the attributes. */
	for (attrnum = 0; attrnum < desc->natts; attrnum++)
	{
		/*
		 * If one value is NULL and other is not, then they are certainly not
		 * equal
		 */
		if (isnull[attrnum] != slot->tts_isnull[attrnum])
			return false;

		/*
		 * If both are NULL, they can be considered equal.
		 */
		if (isnull[attrnum])
			continue;

		att = desc->attrs[attrnum];
		if (!datumIsEqual(values[attrnum], slot->tts_values[attrnum],
						  att->attbyval, att->attlen))
			return false;
	}

	return true;
}
コード例 #3
0
ファイル: heaptuple.c プロジェクト: chrishajas/gpdb
/*
 * heap_modify_tuple
 *		form a new tuple from an old tuple and a set of replacement values.
 *
 * The replValues, replIsnull, and doReplace arrays must be of the length
 * indicated by tupleDesc->natts.  The new tuple is constructed using the data
 * from replValues/replIsnull at columns where doReplace is true, and using
 * the data from the old tuple at columns where doReplace is false.
 *
 * The result is allocated in the current memory context.
 */
HeapTuple
heap_modify_tuple(HeapTuple tuple,
				  TupleDesc tupleDesc,
				  Datum *replValues,
				  bool *replIsnull,
				  bool *doReplace)
{
	int			numberOfAttributes = tupleDesc->natts;
	int			attoff;
	Datum	   *values;
	bool	   *isnull;
	HeapTuple	newTuple;

	Assert(!is_heaptuple_memtuple(tuple));

	/*
	 * allocate and fill values and isnull arrays from either the tuple or the
	 * repl information, as appropriate.
	 *
	 * NOTE: it's debatable whether to use heap_deform_tuple() here or just
	 * heap_getattr() only the non-replaced colums.  The latter could win if
	 * there are many replaced columns and few non-replaced ones. However,
	 * heap_deform_tuple costs only O(N) while the heap_getattr way would cost
	 * O(N^2) if there are many non-replaced columns, so it seems better to
	 * err on the side of linear cost.
	 */
	values = (Datum *) palloc(numberOfAttributes * sizeof(Datum));
	isnull = (bool *) palloc(numberOfAttributes * sizeof(bool));

	heap_deform_tuple(tuple, tupleDesc, values, isnull);

	for (attoff = 0; attoff < numberOfAttributes; attoff++)
	{
		if (doReplace[attoff])
		{
			values[attoff] = replValues[attoff];
			isnull[attoff] = replIsnull[attoff];
		}
	}

	/*
	 * create a new tuple from the values and isnull arrays
	 */
	newTuple = heap_form_tuple(tupleDesc, values, isnull);

	pfree(values);
	pfree(isnull);

	/*
	 * copy the identification info of the old tuple: t_ctid, t_self, and OID
	 * (if any)
	 */
	newTuple->t_data->t_ctid = tuple->t_data->t_ctid;
	newTuple->t_self = tuple->t_self;
	if (tupleDesc->tdhasoid)
		HeapTupleSetOid(newTuple, HeapTupleGetOid(tuple));

	return newTuple;
}
コード例 #4
0
ファイル: tuptoaster.c プロジェクト: nskyzh/gpdb
/* ----------
 * toast_delete -
 *
 *	Cascaded delete toast-entries on DELETE
 * ----------
 */
void
toast_delete(Relation rel, HeapTuple oldtup, MemTupleBinding *pbind)
{
	TupleDesc	tupleDesc;
	Form_pg_attribute *att;
	int			numAttrs;
	int			i;
	Datum		toast_values[MaxHeapAttributeNumber];
	bool		toast_isnull[MaxHeapAttributeNumber];
	bool 		ismemtuple = is_heaptuple_memtuple(oldtup);
	
	AssertImply(ismemtuple, pbind);
	AssertImply(!ismemtuple, !pbind);

	/*
	 * We should only ever be called for tuples of plain relations ---
	 * recursing on a toast rel is bad news.
	 */
	Assert(rel->rd_rel->relkind == RELKIND_RELATION);

	/*
	 * Get the tuple descriptor and break down the tuple into fields.
	 *
	 * NOTE: it's debatable whether to use heap_deform_tuple() here or just
	 * heap_getattr() only the varlena columns.  The latter could win if there
	 * are few varlena columns and many non-varlena ones. However,
	 * heap_deform_tuple costs only O(N) while the heap_getattr way would cost
	 * O(N^2) if there are many varlena columns, so it seems better to err on
	 * the side of linear cost.  (We won't even be here unless there's at
	 * least one varlena column, by the way.)
	 */
	tupleDesc = rel->rd_att;
	att = tupleDesc->attrs;
	numAttrs = tupleDesc->natts;

	Assert(numAttrs <= MaxHeapAttributeNumber);

	if(ismemtuple)
		memtuple_deform((MemTuple) oldtup, pbind, toast_values, toast_isnull);
	else
		heap_deform_tuple(oldtup, tupleDesc, toast_values, toast_isnull);

	/*
	 * Check for external stored attributes and delete them from the secondary
	 * relation.
	 */
	for (i = 0; i < numAttrs; i++)
	{
		if (att[i]->attlen == -1)
		{
			Datum		value = toast_values[i];

			if (!toast_isnull[i] && VARATT_IS_EXTERNAL_D(value))
				toast_delete_datum(rel, value);
		}
	}
}
コード例 #5
0
ファイル: cdbdatabaseinfo.c プロジェクト: AnLingm/gpdb
static void
DatabaseInfo_CollectGpRelationNode(
	DatabaseInfo 		*info,
	HTAB				*dbInfoRelHashTable)
{
	HeapScanDesc		scan;
	Relation			gp_relation_node_rel;
	HeapTuple			tuple;

	gp_relation_node_rel = 
			DirectOpen_GpRelationNodeOpen(
							info->defaultTablespace, 
							info->database);
	scan = heap_beginscan(gp_relation_node_rel, SnapshotNow, 0, NULL);
	while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
	{
		bool			nulls[Natts_gp_relation_node];
		Datum			values[Natts_gp_relation_node];

		Oid				relfilenode;
		int32			segmentFileNum;
		int64			createMirrorDataLossTrackingSessionNum;
		ItemPointerData	persistentTid;
		int64			persistentSerialNum;
		
		heap_deform_tuple(tuple, RelationGetDescr(gp_relation_node_rel), values, nulls);

		GpRelationNode_GetValues(
							values,
							&relfilenode,
							&segmentFileNum,
							&createMirrorDataLossTrackingSessionNum,
							&persistentTid,
							&persistentSerialNum);
		
		if (!DatabaseInfo_AddGpRelationNode(
									info,
									dbInfoRelHashTable,
									relfilenode,
									segmentFileNum,
									&persistentTid,
									persistentSerialNum,
									&tuple->t_self))
		{
			elog(WARNING, "Did not find matching pg_class entry for gp_relation_node entry relfilenode %u (parentless!!!)",
				 relfilenode);
		}
	}
	heap_endscan(scan);

	DirectOpen_GpRelationNodeClose(gp_relation_node_rel);
}
コード例 #6
0
ファイル: heaptuple.c プロジェクト: BenjaminYu/gpdb
/*
 *		heap_deformtuple
 *
 *		Given a tuple, extract data into values/nulls arrays; this is
 *		the inverse of heap_formtuple.
 *
 *		Storage for the values/nulls arrays is provided by the caller;
 *		it should be sized according to tupleDesc->natts not tuple->t_natts.
 *
 *		Note that for pass-by-reference datatypes, the pointer placed
 *		in the Datum will point into the given tuple.
 *
 *		When all or most of a tuple's fields need to be extracted,
 *		this routine will be significantly quicker than a loop around
 *		heap_getattr; the loop will become O(N^2) as soon as any
 *		noncacheable attribute offsets are involved.
 *
 * OLD API with char 'n'/' ' convention for indicating nulls.
 * This is deprecated and should not be used in new code, but we keep it
 * around for use by old add-on modules.
 */
void
heap_deformtuple(HeapTuple tuple,
				 TupleDesc tupleDesc,
				 Datum *values,
				 char *nulls)
{
	int			i;
	bool	   *isnull = (bool *) palloc(tupleDesc->natts * sizeof(bool));

	heap_deform_tuple(tuple, tupleDesc, values, isnull);

	for(i=0; i<tupleDesc->natts; ++i)
		nulls[i] = isnull[i] ? 'n' : ' ';

	pfree(isnull);
}
コード例 #7
0
ファイル: heaptuple.c プロジェクト: PengJi/gpdb-comments
/*
 *		heap_deformtuple
 *
 *		Given a tuple, extract data into values/nulls arrays; this is
 *		the inverse of heap_formtuple.
 *
 *		Storage for the values/nulls arrays is provided by the caller;
 *		it should be sized according to tupleDesc->natts not tuple->t_natts.
 *
 *		Note that for pass-by-reference datatypes, the pointer placed
 *		in the Datum will point into the given tuple.
 *
 *		When all or most of a tuple's fields need to be extracted,
 *		this routine will be significantly quicker than a loop around
 *		heap_getattr; the loop will become O(N^2) as soon as any
 *		noncacheable attribute offsets are involved.
 *
 * OLD API with char 'n'/' ' convention for indicating nulls.
 * This is deprecated and should not be used in new code, but we keep it
 * around for use by old add-on modules.
 */
void
heap_deformtuple(HeapTuple tuple,
				 TupleDesc tupleDesc,
				 Datum *values,
				 char *nulls)
{
	int			natts = tupleDesc->natts;
	bool	   *boolNulls = (bool *) palloc(natts * sizeof(bool));
	int			attnum;

	heap_deform_tuple(tuple, tupleDesc, values, boolNulls);

	for (attnum = 0; attnum < natts; attnum++)
		nulls[attnum] = (boolNulls[attnum] ? 'n' : ' ');

	pfree(boolNulls);
}
コード例 #8
0
ファイル: trigger.c プロジェクト: ddo88/plmono
/*
 * plmono_trigger_build_args
 *
 *     Create TableRow object based trigger's "OLD" row tuple
 */
void
plmono_trigger_build_args(TriggerData *trigdata, MonoObject *cols)
{
	MonoClass *rowklass;
	MonoClass *objklass;
	MonoMethod* additem;
	TupleDesc resdesc;
	gpointer kvpair[2];
	char *attname;
	Oid atttype;
	Datum *atts;
	bool *nulls;
	gpointer val;
	int i;

	resdesc = trigdata->tg_relation->rd_att;

	if (!(atts = palloc(resdesc->natts * sizeof(Datum))))
		elog(ERROR, "Not enough memory");

	if (!(nulls = palloc(resdesc->natts * sizeof(bool))))
		elog(ERROR, "Not enough memory");

	heap_deform_tuple(trigdata->tg_trigtuple, resdesc, atts, nulls);

	rowklass = mono_object_get_class(cols);
	additem = mono_class_get_method_from_name(rowklass, "Add", 2);

	for (i = 0; i < resdesc->natts; i++)
	{
		attname = NameStr(resdesc->attrs[i]->attname);
		atttype = resdesc->attrs[i]->atttypid;
		val = plmono_datum_to_obj(atts[i], atttype);

		objklass = plmono_typeoid_to_class(atttype);
		kvpair[0] = mono_string_new(plmono_get_domain(), attname); /* attribute name */
		//elog(ERROR, "Val %p ObjClass %p", val, objklass);

		if (atttype != TEXTOID)
			kvpair[1] = mono_value_box(plmono_get_domain(), objklass, val); /* attribute value */
		else
			kvpair[1] = val;

		mono_runtime_invoke(additem, cols, kvpair, NULL);
	}
}
コード例 #9
0
ファイル: execReplication.c プロジェクト: adityavs/postgres
/*
 * Compare the tuple and slot and check if they have equal values.
 *
 * We use binary datum comparison which might return false negatives but
 * that's the best we can do here as there may be multiple notions of
 * equality for the data types and table columns don't specify which one
 * to use.
 */
static bool
tuple_equals_slot(TupleDesc desc, HeapTuple tup, TupleTableSlot *slot)
{
	Datum		values[MaxTupleAttributeNumber];
	bool		isnull[MaxTupleAttributeNumber];
	int			attrnum;

	heap_deform_tuple(tup, desc, values, isnull);

	/* Check equality of the attributes. */
	for (attrnum = 0; attrnum < desc->natts; attrnum++)
	{
		Form_pg_attribute att;
		TypeCacheEntry *typentry;

		/*
		 * If one value is NULL and other is not, then they are certainly not
		 * equal
		 */
		if (isnull[attrnum] != slot->tts_isnull[attrnum])
			return false;

		/*
		 * If both are NULL, they can be considered equal.
		 */
		if (isnull[attrnum])
			continue;

		att = TupleDescAttr(desc, attrnum);

		typentry = lookup_type_cache(att->atttypid, TYPECACHE_EQ_OPR_FINFO);
		if (!OidIsValid(typentry->eq_opr_finfo.fn_oid))
			ereport(ERROR,
					(errcode(ERRCODE_UNDEFINED_FUNCTION),
					 errmsg("could not identify an equality operator for type %s",
							format_type_be(att->atttypid))));

		if (!DatumGetBool(FunctionCall2(&typentry->eq_opr_finfo,
										values[attrnum],
										slot->tts_values[attrnum])))
			return false;
	}

	return true;
}
コード例 #10
0
ファイル: cdbpersistentstore.c プロジェクト: 50wu/gpdb
void PersistentStore_DeformTuple(
	PersistentStoreData 	*storeData,
	TupleDesc				tupleDesc,			
						/* tuple descriptor */
    HeapTuple 				tuple,
	Datum					*values)
{
	bool	*nulls;
	int i;

	nulls = (bool*)palloc(storeData->numAttributes * sizeof(bool));
	heap_deform_tuple(tuple, tupleDesc, values, nulls);

	for (i = 1; i <= storeData->numAttributes; i++)
		Assert(!nulls[i - 1]);

	pfree(nulls);
}
コード例 #11
0
ファイル: tuptoaster.c プロジェクト: CraigBryan/PostgresqlFun
/* ----------
 * toast_delete -
 *
 *	Cascaded delete toast-entries on DELETE
 * ----------
 */
void
toast_delete(Relation rel, HeapTuple oldtup)
{
	TupleDesc	tupleDesc;
	Form_pg_attribute *att;
	int			numAttrs;
	int			i;
	Datum		toast_values[MaxHeapAttributeNumber];
	bool		toast_isnull[MaxHeapAttributeNumber];

	/*
	 * Get the tuple descriptor and break down the tuple into fields.
	 *
	 * NOTE: it's debatable whether to use heap_deformtuple() here or just
	 * heap_getattr() only the varlena columns.  The latter could win if there
	 * are few varlena columns and many non-varlena ones. However,
	 * heap_deformtuple costs only O(N) while the heap_getattr way would cost
	 * O(N^2) if there are many varlena columns, so it seems better to err on
	 * the side of linear cost.  (We won't even be here unless there's at
	 * least one varlena column, by the way.)
	 */
	tupleDesc = rel->rd_att;
	att = tupleDesc->attrs;
	numAttrs = tupleDesc->natts;

	Assert(numAttrs <= MaxHeapAttributeNumber);
	heap_deform_tuple(oldtup, tupleDesc, toast_values, toast_isnull);

	/*
	 * Check for external stored attributes and delete them from the secondary
	 * relation.
	 */
	for (i = 0; i < numAttrs; i++)
	{
		if (att[i]->attlen == -1)
		{
			Datum		value = toast_values[i];

			if (!toast_isnull[i] && VARATT_IS_EXTERNAL(value))
				toast_delete_datum(rel, value);
		}
	}
}
コード例 #12
0
ファイル: cdbglobalsequence.c プロジェクト: LJoNe/gpdb
static void GlobalSequence_ReadTuple(
	GpGlobalSequence		gpGlobalSequence,

	int64					*currentSequenceNum)
{
	Relation	gpGlobalSequenceRel;
	bool 		nulls[Anum_gp_global_sequence_sequence_num];
	Datum 		values[Anum_gp_global_sequence_sequence_num];

	HeapTupleData 	globalSequenceTuple;
	Buffer			buffer;

	gpGlobalSequenceRel = 
				DirectOpen_GpGlobalSequenceOpenShared();

	GlobalSequence_MakeTid(
						gpGlobalSequence,
						&globalSequenceTuple.t_self);
	
	if (!heap_fetch(gpGlobalSequenceRel, SnapshotAny,
					&globalSequenceTuple, &buffer, false, NULL))
		elog(ERROR, "Failed to fetch global sequence tuple at %s",
			 ItemPointerToString(&globalSequenceTuple.t_self));

	heap_deform_tuple(
				&globalSequenceTuple, 
				gpGlobalSequenceRel->rd_att, 
				values, 
				nulls);

	GpGlobalSequence_GetValues(
							values,
							currentSequenceNum);

	ReleaseBuffer(buffer);
	
	DirectOpen_GpGlobalSequenceClose(gpGlobalSequenceRel);
}
コード例 #13
0
ファイル: tuptoaster.c プロジェクト: LittleForker/postgres
/* ----------
 * toast_insert_or_update -
 *
 *	Delete no-longer-used toast-entries and create new ones to
 *	make the new tuple fit on INSERT or UPDATE
 *
 * Inputs:
 *	newtup: the candidate new tuple to be inserted
 *	oldtup: the old row version for UPDATE, or NULL for INSERT
 *	options: options to be passed to heap_insert() for toast rows
 * Result:
 *	either newtup if no toasting is needed, or a palloc'd modified tuple
 *	that is what should actually get stored
 *
 * NOTE: neither newtup nor oldtup will be modified.  This is a change
 * from the pre-8.1 API of this routine.
 * ----------
 */
HeapTuple
toast_insert_or_update(Relation rel, HeapTuple newtup, HeapTuple oldtup,
					   int options)
{
	HeapTuple	result_tuple;
	TupleDesc	tupleDesc;
	Form_pg_attribute *att;
	int			numAttrs;
	int			i;

	bool		need_change = false;
	bool		need_free = false;
	bool		need_delold = false;
	bool		has_nulls = false;

	Size		maxDataLen;
	Size		hoff;

	char		toast_action[MaxHeapAttributeNumber];
	bool		toast_isnull[MaxHeapAttributeNumber];
	bool		toast_oldisnull[MaxHeapAttributeNumber];
	Datum		toast_values[MaxHeapAttributeNumber];
	Datum		toast_oldvalues[MaxHeapAttributeNumber];
	int32		toast_sizes[MaxHeapAttributeNumber];
	bool		toast_free[MaxHeapAttributeNumber];
	bool		toast_delold[MaxHeapAttributeNumber];

	/*
	 * We should only ever be called for tuples of plain relations ---
	 * recursing on a toast rel is bad news.
	 */
	Assert(rel->rd_rel->relkind == RELKIND_RELATION);

	/*
	 * Get the tuple descriptor and break down the tuple(s) into fields.
	 */
	tupleDesc = rel->rd_att;
	att = tupleDesc->attrs;
	numAttrs = tupleDesc->natts;

	Assert(numAttrs <= MaxHeapAttributeNumber);
	heap_deform_tuple(newtup, tupleDesc, toast_values, toast_isnull);
	if (oldtup != NULL)
		heap_deform_tuple(oldtup, tupleDesc, toast_oldvalues, toast_oldisnull);

	/* ----------
	 * Then collect information about the values given
	 *
	 * NOTE: toast_action[i] can have these values:
	 *		' '		default handling
	 *		'p'		already processed --- don't touch it
	 *		'x'		incompressible, but OK to move off
	 *
	 * NOTE: toast_sizes[i] is only made valid for varlena attributes with
	 *		toast_action[i] different from 'p'.
	 * ----------
	 */
	memset(toast_action, ' ', numAttrs * sizeof(char));
	memset(toast_free, 0, numAttrs * sizeof(bool));
	memset(toast_delold, 0, numAttrs * sizeof(bool));

	for (i = 0; i < numAttrs; i++)
	{
		struct varlena *old_value;
		struct varlena *new_value;

		if (oldtup != NULL)
		{
			/*
			 * For UPDATE get the old and new values of this attribute
			 */
			old_value = (struct varlena *) DatumGetPointer(toast_oldvalues[i]);
			new_value = (struct varlena *) DatumGetPointer(toast_values[i]);

			/*
			 * If the old value is an external stored one, check if it has
			 * changed so we have to delete it later.
			 */
			if (att[i]->attlen == -1 && !toast_oldisnull[i] &&
				VARATT_IS_EXTERNAL(old_value))
			{
				if (toast_isnull[i] || !VARATT_IS_EXTERNAL(new_value) ||
					memcmp((char *) old_value, (char *) new_value,
						   VARSIZE_EXTERNAL(old_value)) != 0)
				{
					/*
					 * The old external stored value isn't needed any more
					 * after the update
					 */
					toast_delold[i] = true;
					need_delold = true;
				}
				else
				{
					/*
					 * This attribute isn't changed by this update so we reuse
					 * the original reference to the old value in the new
					 * tuple.
					 */
					toast_action[i] = 'p';
					continue;
				}
			}
		}
		else
		{
			/*
			 * For INSERT simply get the new value
			 */
			new_value = (struct varlena *) DatumGetPointer(toast_values[i]);
		}

		/*
		 * Handle NULL attributes
		 */
		if (toast_isnull[i])
		{
			toast_action[i] = 'p';
			has_nulls = true;
			continue;
		}

		/*
		 * Now look at varlena attributes
		 */
		if (att[i]->attlen == -1)
		{
			/*
			 * If the table's attribute says PLAIN always, force it so.
			 */
			if (att[i]->attstorage == 'p')
				toast_action[i] = 'p';

			/*
			 * We took care of UPDATE above, so any external value we find
			 * still in the tuple must be someone else's we cannot reuse.
			 * Fetch it back (without decompression, unless we are forcing
			 * PLAIN storage).	If necessary, we'll push it out as a new
			 * external value below.
			 */
			if (VARATT_IS_EXTERNAL(new_value))
			{
				if (att[i]->attstorage == 'p')
					new_value = heap_tuple_untoast_attr(new_value);
				else
					new_value = heap_tuple_fetch_attr(new_value);
				toast_values[i] = PointerGetDatum(new_value);
				toast_free[i] = true;
				need_change = true;
				need_free = true;
			}

			/*
			 * Remember the size of this attribute
			 */
			toast_sizes[i] = VARSIZE_ANY(new_value);
		}
		else
		{
			/*
			 * Not a varlena attribute, plain storage always
			 */
			toast_action[i] = 'p';
		}
	}

	/* ----------
	 * Compress and/or save external until data fits into target length
	 *
	 *	1: Inline compress attributes with attstorage 'x', and store very
	 *	   large attributes with attstorage 'x' or 'e' external immediately
	 *	2: Store attributes with attstorage 'x' or 'e' external
	 *	3: Inline compress attributes with attstorage 'm'
	 *	4: Store attributes with attstorage 'm' external
	 * ----------
	 */

	/* compute header overhead --- this should match heap_form_tuple() */
	hoff = offsetof(HeapTupleHeaderData, t_bits);
	if (has_nulls)
		hoff += BITMAPLEN(numAttrs);
	if (newtup->t_data->t_infomask & HEAP_HASOID)
		hoff += sizeof(Oid);
	hoff = MAXALIGN(hoff);
	Assert(hoff == newtup->t_data->t_hoff);
	/* now convert to a limit on the tuple data size */
	maxDataLen = TOAST_TUPLE_TARGET - hoff;

	/*
	 * Look for attributes with attstorage 'x' to compress.  Also find large
	 * attributes with attstorage 'x' or 'e', and store them external.
	 */
	while (heap_compute_data_size(tupleDesc,
								  toast_values, toast_isnull) > maxDataLen)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(TOAST_POINTER_SIZE);
		Datum		old_value;
		Datum		new_value;

		/*
		 * Search for the biggest yet unprocessed internal attribute
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] != ' ')
				continue;
			if (VARATT_IS_EXTERNAL(DatumGetPointer(toast_values[i])))
				continue;		/* can't happen, toast_action would be 'p' */
			if (VARATT_IS_COMPRESSED(DatumGetPointer(toast_values[i])))
				continue;
			if (att[i]->attstorage != 'x' && att[i]->attstorage != 'e')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Attempt to compress it inline, if it has attstorage 'x'
		 */
		i = biggest_attno;
		if (att[i]->attstorage == 'x')
		{
			old_value = toast_values[i];
			new_value = toast_compress_datum(old_value);

			if (DatumGetPointer(new_value) != NULL)
			{
				/* successful compression */
				if (toast_free[i])
					pfree(DatumGetPointer(old_value));
				toast_values[i] = new_value;
				toast_free[i] = true;
				toast_sizes[i] = VARSIZE(DatumGetPointer(toast_values[i]));
				need_change = true;
				need_free = true;
			}
			else
			{
				/* incompressible, ignore on subsequent compression passes */
				toast_action[i] = 'x';
			}
		}
		else
		{
			/* has attstorage 'e', ignore on subsequent compression passes */
			toast_action[i] = 'x';
		}

		/*
		 * If this value is by itself more than maxDataLen (after compression
		 * if any), push it out to the toast table immediately, if possible.
		 * This avoids uselessly compressing other fields in the common case
		 * where we have one long field and several short ones.
		 *
		 * XXX maybe the threshold should be less than maxDataLen?
		 */
		if (toast_sizes[i] > maxDataLen &&
			rel->rd_rel->reltoastrelid != InvalidOid)
		{
			old_value = toast_values[i];
			toast_action[i] = 'p';
			toast_values[i] = toast_save_datum(rel, toast_values[i], options);
			if (toast_free[i])
				pfree(DatumGetPointer(old_value));
			toast_free[i] = true;
			need_change = true;
			need_free = true;
		}
	}

	/*
	 * Second we look for attributes of attstorage 'x' or 'e' that are still
	 * inline.	But skip this if there's no toast table to push them to.
	 */
	while (heap_compute_data_size(tupleDesc,
								  toast_values, toast_isnull) > maxDataLen &&
		   rel->rd_rel->reltoastrelid != InvalidOid)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(TOAST_POINTER_SIZE);
		Datum		old_value;

		/*------
		 * Search for the biggest yet inlined attribute with
		 * attstorage equals 'x' or 'e'
		 *------
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] == 'p')
				continue;
			if (VARATT_IS_EXTERNAL(DatumGetPointer(toast_values[i])))
				continue;		/* can't happen, toast_action would be 'p' */
			if (att[i]->attstorage != 'x' && att[i]->attstorage != 'e')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Store this external
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		toast_action[i] = 'p';
		toast_values[i] = toast_save_datum(rel, toast_values[i], options);
		if (toast_free[i])
			pfree(DatumGetPointer(old_value));
		toast_free[i] = true;

		need_change = true;
		need_free = true;
	}

	/*
	 * Round 3 - this time we take attributes with storage 'm' into
	 * compression
	 */
	while (heap_compute_data_size(tupleDesc,
								  toast_values, toast_isnull) > maxDataLen)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(TOAST_POINTER_SIZE);
		Datum		old_value;
		Datum		new_value;

		/*
		 * Search for the biggest yet uncompressed internal attribute
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] != ' ')
				continue;
			if (VARATT_IS_EXTERNAL(DatumGetPointer(toast_values[i])))
				continue;		/* can't happen, toast_action would be 'p' */
			if (VARATT_IS_COMPRESSED(DatumGetPointer(toast_values[i])))
				continue;
			if (att[i]->attstorage != 'm')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Attempt to compress it inline
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		new_value = toast_compress_datum(old_value);

		if (DatumGetPointer(new_value) != NULL)
		{
			/* successful compression */
			if (toast_free[i])
				pfree(DatumGetPointer(old_value));
			toast_values[i] = new_value;
			toast_free[i] = true;
			toast_sizes[i] = VARSIZE(DatumGetPointer(toast_values[i]));
			need_change = true;
			need_free = true;
		}
		else
		{
			/* incompressible, ignore on subsequent compression passes */
			toast_action[i] = 'x';
		}
	}

	/*
	 * Finally we store attributes of type 'm' externally.	At this point we
	 * increase the target tuple size, so that 'm' attributes aren't stored
	 * externally unless really necessary.
	 */
	maxDataLen = TOAST_TUPLE_TARGET_MAIN - hoff;

	while (heap_compute_data_size(tupleDesc,
								  toast_values, toast_isnull) > maxDataLen &&
		   rel->rd_rel->reltoastrelid != InvalidOid)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(TOAST_POINTER_SIZE);
		Datum		old_value;

		/*--------
		 * Search for the biggest yet inlined attribute with
		 * attstorage = 'm'
		 *--------
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] == 'p')
				continue;
			if (VARATT_IS_EXTERNAL(DatumGetPointer(toast_values[i])))
				continue;		/* can't happen, toast_action would be 'p' */
			if (att[i]->attstorage != 'm')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Store this external
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		toast_action[i] = 'p';
		toast_values[i] = toast_save_datum(rel, toast_values[i], options);
		if (toast_free[i])
			pfree(DatumGetPointer(old_value));
		toast_free[i] = true;

		need_change = true;
		need_free = true;
	}

	/*
	 * In the case we toasted any values, we need to build a new heap tuple
	 * with the changed values.
	 */
	if (need_change)
	{
		HeapTupleHeader olddata = newtup->t_data;
		HeapTupleHeader new_data;
		int32		new_len;
		int32		new_data_len;

		/*
		 * Calculate the new size of the tuple.  Header size should not
		 * change, but data size might.
		 */
		new_len = offsetof(HeapTupleHeaderData, t_bits);
		if (has_nulls)
			new_len += BITMAPLEN(numAttrs);
		if (olddata->t_infomask & HEAP_HASOID)
			new_len += sizeof(Oid);
		new_len = MAXALIGN(new_len);
		Assert(new_len == olddata->t_hoff);
		new_data_len = heap_compute_data_size(tupleDesc,
											  toast_values, toast_isnull);
		new_len += new_data_len;

		/*
		 * Allocate and zero the space needed, and fill HeapTupleData fields.
		 */
		result_tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + new_len);
		result_tuple->t_len = new_len;
		result_tuple->t_self = newtup->t_self;
		result_tuple->t_tableOid = newtup->t_tableOid;
		new_data = (HeapTupleHeader) ((char *) result_tuple + HEAPTUPLESIZE);
		result_tuple->t_data = new_data;

		/*
		 * Put the existing tuple header and the changed values into place
		 */
		memcpy(new_data, olddata, olddata->t_hoff);

		heap_fill_tuple(tupleDesc,
						toast_values,
						toast_isnull,
						(char *) new_data + olddata->t_hoff,
						new_data_len,
						&(new_data->t_infomask),
						has_nulls ? new_data->t_bits : NULL);
	}
	else
		result_tuple = newtup;

	/*
	 * Free allocated temp values
	 */
	if (need_free)
		for (i = 0; i < numAttrs; i++)
			if (toast_free[i])
				pfree(DatumGetPointer(toast_values[i]));

	/*
	 * Delete external values from the old tuple
	 */
	if (need_delold)
		for (i = 0; i < numAttrs; i++)
			if (toast_delold[i])
				toast_delete_datum(rel, toast_oldvalues[i]);

	return result_tuple;
}
コード例 #14
0
ファイル: tupser.c プロジェクト: 50wu/gpdb
/*
 * Convert a HeapTuple into a byte-sequence, and store it directly
 * into a chunklist for transmission.
 *
 * This code is based on the printtup_internal_20() function in printtup.c.
 */
void
SerializeTupleIntoChunks(HeapTuple tuple, SerTupInfo * pSerInfo, TupleChunkList tcList)
{
	TupleChunkListItem tcItem = NULL;
	MemoryContext oldCtxt;
	TupleDesc	tupdesc;
	int			i,
		natts;
	bool		fHandled;

	AssertArg(tcList != NULL);
	AssertArg(tuple != NULL);
	AssertArg(pSerInfo != NULL);

	tupdesc = pSerInfo->tupdesc;
	natts = tupdesc->natts;

	/* get ready to go */
	tcList->p_first = NULL;
	tcList->p_last = NULL;
	tcList->num_chunks = 0;
	tcList->serialized_data_length = 0;
	tcList->max_chunk_length = Gp_max_tuple_chunk_size;

	if (natts == 0)
	{
		tcItem = getChunkFromCache(&pSerInfo->chunkCache);
		if (tcItem == NULL)
		{
			ereport(FATAL, (errcode(ERRCODE_OUT_OF_MEMORY),
							errmsg("Could not allocate space for first chunk item in new chunk list.")));
		}

		/* TC_EMTPY is just one chunk */
		SetChunkType(tcItem->chunk_data, TC_EMPTY);
		tcItem->chunk_length = TUPLE_CHUNK_HEADER_SIZE;
		appendChunkToTCList(tcList, tcItem);

		return;
	}

	tcItem = getChunkFromCache(&pSerInfo->chunkCache);
	if (tcItem == NULL)
	{
		ereport(FATAL, (errcode(ERRCODE_OUT_OF_MEMORY),
						errmsg("Could not allocate space for first chunk item in new chunk list.")));
	}

	/* assume that we'll take a single chunk */
	SetChunkType(tcItem->chunk_data, TC_WHOLE);
	tcItem->chunk_length = TUPLE_CHUNK_HEADER_SIZE;
	appendChunkToTCList(tcList, tcItem);

	AssertState(s_tupSerMemCtxt != NULL);

	if (is_heaptuple_memtuple(tuple))
	{
		addByteStringToChunkList(tcList, (char *)tuple, memtuple_get_size((MemTuple)tuple, NULL), &pSerInfo->chunkCache);
		addPadding(tcList, &pSerInfo->chunkCache, memtuple_get_size((MemTuple)tuple, NULL));
	}
	else
	{
		TupSerHeader tsh;

		unsigned int	datalen;
		unsigned int	nullslen;

		HeapTupleHeader t_data = tuple->t_data;

		datalen = tuple->t_len - t_data->t_hoff;
		if (HeapTupleHasNulls(tuple))
			nullslen = BITMAPLEN(HeapTupleHeaderGetNatts(t_data));
		else
			nullslen = 0;

		tsh.tuplen = sizeof(TupSerHeader) + TYPEALIGN(TUPLE_CHUNK_ALIGN,nullslen) + datalen;
		tsh.natts = HeapTupleHeaderGetNatts(t_data);
		tsh.infomask = t_data->t_infomask;

		addByteStringToChunkList(tcList, (char *)&tsh, sizeof(TupSerHeader), &pSerInfo->chunkCache);
		/* If we don't have any attributes which have been toasted, we
		 * can be very very simple: just send the raw data. */
		if ((tsh.infomask & HEAP_HASEXTERNAL) == 0)
		{
			if (nullslen)
			{
				addByteStringToChunkList(tcList, (char *)t_data->t_bits, nullslen, &pSerInfo->chunkCache);
				addPadding(tcList,&pSerInfo->chunkCache,nullslen);
			}

			addByteStringToChunkList(tcList, (char *)t_data + t_data->t_hoff, datalen, &pSerInfo->chunkCache);
			addPadding(tcList,&pSerInfo->chunkCache,datalen);
		}
		else
		{
			/* We have to be more careful when we have tuples that
			 * have been toasted. Ideally we'd like to send the
			 * untoasted attributes in as "raw" a format as possible
			 * but that makes rebuilding the tuple harder .
			 */
			oldCtxt = MemoryContextSwitchTo(s_tupSerMemCtxt);

			/* deconstruct the tuple (faster than a heap_getattr loop) */
			heap_deform_tuple(tuple, tupdesc, pSerInfo->values, pSerInfo->nulls);

			MemoryContextSwitchTo(oldCtxt);

			/* Send the nulls character-array. */
			addByteStringToChunkList(tcList, pSerInfo->nulls, natts, &pSerInfo->chunkCache);
			addPadding(tcList,&pSerInfo->chunkCache,natts);

			/*
			 * send the attributes of this tuple: NOTE anything which allocates
			 * temporary space (e.g. could result in a PG_DETOAST_DATUM) should be
			 * executed with the memory context set to s_tupSerMemCtxt
			 */
			for (i = 0; i < natts; ++i)
			{
				SerAttrInfo *attrInfo = pSerInfo->myinfo + i;
				Datum		origattr = pSerInfo->values[i],
					attr;
				bytea	   *outputbytes=0;

				/* skip null attributes (already taken care of above) */
				if (pSerInfo->nulls[i])
					continue;

				/*
				 * If we have a toasted datum, forcibly detoast it here to avoid
				 * memory leakage: we want to force the detoast allocation(s) to
				 * happen in our reset-able serialization context.
				 */
				if (attrInfo->typisvarlena)
				{
					oldCtxt = MemoryContextSwitchTo(s_tupSerMemCtxt);
					/* we want to detoast but leave compressed, if
					 * possible, but we have to handle varlena
					 * attributes (and others ?) differently than we
					 * currently do (first step is to use
					 * heap_tuple_fetch_attr() instead of
					 * PG_DETOAST_DATUM()). */
					attr = PointerGetDatum(PG_DETOAST_DATUM(origattr));
					MemoryContextSwitchTo(oldCtxt);
				}
				else
					attr = origattr;

				/*
				 * Assume that the data's output will be handled by the special IO
				 * code, and if not then we can handle it the slow way.
				 */
				fHandled = true;
				switch (attrInfo->atttypid)
				{
					case INT4OID:
						addInt32ToChunkList(tcList, DatumGetInt32(attr), &pSerInfo->chunkCache);
						break;
					case CHAROID:
						addCharToChunkList(tcList, DatumGetChar(attr), &pSerInfo->chunkCache);
						addPadding(tcList,&pSerInfo->chunkCache,1);
						break;
					case BPCHAROID:
					case VARCHAROID:
					case INT2VECTOROID: /* postgres serialization logic broken, use our own */
					case OIDVECTOROID: /* postgres serialization logic broken, use our own */
					case ANYARRAYOID:
					{
						text	   *pText = DatumGetTextP(attr);
						int32		textSize = VARSIZE(pText) - VARHDRSZ;

						addInt32ToChunkList(tcList, textSize, &pSerInfo->chunkCache);
						addByteStringToChunkList(tcList, (char *) VARDATA(pText), textSize, &pSerInfo->chunkCache);
						addPadding(tcList,&pSerInfo->chunkCache,textSize);
						break;
					}
					case DATEOID:
					{
						DateADT date = DatumGetDateADT(attr);

						addByteStringToChunkList(tcList, (char *) &date, sizeof(DateADT), &pSerInfo->chunkCache);
						break;
					}
					case NUMERICOID:
					{
						/*
						 * Treat the numeric as a varlena variable, and just push
						 * the whole shebang to the output-buffer.	We don't care
						 * about the guts of the numeric.
						 */
						Numeric		num = DatumGetNumeric(attr);
						int32		numSize = VARSIZE(num) - VARHDRSZ;

						addInt32ToChunkList(tcList, numSize, &pSerInfo->chunkCache);
						addByteStringToChunkList(tcList, (char *) VARDATA(num), numSize, &pSerInfo->chunkCache);
						addPadding(tcList,&pSerInfo->chunkCache,numSize);
						break;
					}

					case ACLITEMOID:
					{
						AclItem		*aip = DatumGetAclItemP(attr);
						char		*outputstring;
						int32		aclSize ;

						outputstring = DatumGetCString(DirectFunctionCall1(aclitemout,
																		   PointerGetDatum(aip)));

						aclSize = strlen(outputstring);
						addInt32ToChunkList(tcList, aclSize, &pSerInfo->chunkCache);
						addByteStringToChunkList(tcList, outputstring,aclSize, &pSerInfo->chunkCache);
						addPadding(tcList,&pSerInfo->chunkCache,aclSize);
						break;
					}	

					case 210: /* storage manager */
					{
						char		*smgrstr;
						int32		strsize;

						smgrstr = DatumGetCString(DirectFunctionCall1(smgrout, 0));
						strsize = strlen(smgrstr);
						addInt32ToChunkList(tcList, strsize, &pSerInfo->chunkCache);
						addByteStringToChunkList(tcList, smgrstr, strsize, &pSerInfo->chunkCache);
						addPadding(tcList,&pSerInfo->chunkCache,strsize);
						break;
					}

					default:
						fHandled = false;
				}

				if (fHandled)
					continue;

				/*
				 * the FunctionCall2 call into the send function may result in some
				 * allocations which we'd like to have contained by our reset-able
				 * context
				 */
				oldCtxt = MemoryContextSwitchTo(s_tupSerMemCtxt);						  
							  
				/* Call the attribute type's binary input converter. */
				if (attrInfo->send_finfo.fn_nargs == 1)
					outputbytes =
						DatumGetByteaP(FunctionCall1(&attrInfo->send_finfo,
													 attr));
				else if (attrInfo->send_finfo.fn_nargs == 2)
					outputbytes =
						DatumGetByteaP(FunctionCall2(&attrInfo->send_finfo,
													 attr,
													 ObjectIdGetDatum(attrInfo->send_typio_param)));
				else if (attrInfo->send_finfo.fn_nargs == 3)
					outputbytes =
						DatumGetByteaP(FunctionCall3(&attrInfo->send_finfo,
													 attr,
													 ObjectIdGetDatum(attrInfo->send_typio_param),
													 Int32GetDatum(tupdesc->attrs[i]->atttypmod)));
				else
				{
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
							 errmsg("Conversion function takes %d args",attrInfo->recv_finfo.fn_nargs)));
				}
		
				MemoryContextSwitchTo(oldCtxt);

				/* We assume the result will not have been toasted */
				addInt32ToChunkList(tcList, VARSIZE(outputbytes) - VARHDRSZ, &pSerInfo->chunkCache);
				addByteStringToChunkList(tcList, VARDATA(outputbytes),
										 VARSIZE(outputbytes) - VARHDRSZ, &pSerInfo->chunkCache);
				addPadding(tcList,&pSerInfo->chunkCache,VARSIZE(outputbytes) - VARHDRSZ);

				/*
				 * this was allocated in our reset-able context, but we *are* done
				 * with it; and for tuples with several large columns it'd be nice to
				 * free the memory back to the context
				 */
				pfree(outputbytes);

			}

			MemoryContextReset(s_tupSerMemCtxt);
		}
	}

	/*
	 * if we have more than 1 chunk we have to set the chunk types on our
	 * first chunk and last chunk
	 */
	if (tcList->num_chunks > 1)
	{
		TupleChunkListItem first,
			last;

		first = tcList->p_first;
		last = tcList->p_last;

		Assert(first != NULL);
		Assert(first != last);
		Assert(last != NULL);

		SetChunkType(first->chunk_data, TC_PARTIAL_START);
		SetChunkType(last->chunk_data, TC_PARTIAL_END);

		/*
		 * any intervening chunks are already set to TC_PARTIAL_MID when
		 * allocated
		 */
	}

	return;
}
コード例 #15
0
ファイル: pg_btree.c プロジェクト: chuongnn/pg_bulkload
char *
tuple_to_cstring(TupleDesc tupdesc, HeapTuple tuple)
{
	bool		needComma = false;
	int			ncolumns;
	int			i;
	Datum	   *values;
	bool	   *nulls;
	StringInfoData buf;

	ncolumns = tupdesc->natts;

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	/* Break down the tuple into fields */
	heap_deform_tuple(tuple, tupdesc, values, nulls);

	/* And build the result string */
	initStringInfo(&buf);

	for (i = 0; i < ncolumns; i++)
	{
		char	   *value;
		char	   *tmp;
		bool		nq;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
			continue;

		if (needComma)
			appendStringInfoChar(&buf, ',');
		needComma = true;

		if (nulls[i])
		{
			/* emit nothing... */
			continue;
		}
		else
		{
			Oid			foutoid;
			bool		typisvarlena;

			getTypeOutputInfo(tupdesc->attrs[i]->atttypid,
							  &foutoid, &typisvarlena);
			value = OidOutputFunctionCall(foutoid, values[i]);
		}

		/* Detect whether we need double quotes for this value */
		nq = (value[0] == '\0');	/* force quotes for empty string */
		for (tmp = value; *tmp; tmp++)
		{
			char		ch = *tmp;

			if (ch == '"' || ch == '\\' ||
				ch == '(' || ch == ')' || ch == ',' ||
				isspace((unsigned char) ch))
			{
				nq = true;
				break;
			}
		}

		/* And emit the string */
		if (nq)
			appendStringInfoChar(&buf, '"');
		for (tmp = value; *tmp; tmp++)
		{
			char		ch = *tmp;

			if (ch == '"' || ch == '\\')
				appendStringInfoChar(&buf, ch);
			appendStringInfoChar(&buf, ch);
		}
		if (nq)
			appendStringInfoChar(&buf, '"');
	}

	pfree(values);
	pfree(nulls);

	return buf.data;
}
コード例 #16
0
ファイル: jsonfuncs.c プロジェクト: 50wu/gpdb
static void
populate_recordset_object_end(void *state)
{
	PopulateRecordsetState _state = (PopulateRecordsetState) state;
	HTAB	   *json_hash = _state->json_hash;
	Datum	   *values;
	bool	   *nulls;
	char		fname[NAMEDATALEN];
	int			i;
	RecordIOData *my_extra = _state->my_extra;
	int			ncolumns = my_extra->ncolumns;
	TupleDesc	tupdesc = _state->ret_tdesc;
	JsonHashEntry hashentry;
	HeapTupleHeader rec = _state->rec;
	HeapTuple	rettuple;

	if (_state->lex->lex_level > 1)
		return;

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	if (_state->rec)
	{
		HeapTupleData tuple;

		/* Build a temporary HeapTuple control structure */
		tuple.t_len = HeapTupleHeaderGetDatumLength(_state->rec);
		ItemPointerSetInvalid(&(tuple.t_self));
		tuple.t_data = _state->rec;

		/* Break down the tuple into fields */
		heap_deform_tuple(&tuple, tupdesc, values, nulls);
	}
	else
	{
		for (i = 0; i < ncolumns; ++i)
		{
			values[i] = (Datum) 0;
			nulls[i] = true;
		}
	}

	for (i = 0; i < ncolumns; ++i)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		char	   *value;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
		{
			nulls[i] = true;
			continue;
		}

		memset(fname, 0, NAMEDATALEN);
		strncpy(fname, NameStr(tupdesc->attrs[i]->attname), NAMEDATALEN);
		hashentry = hash_search(json_hash, fname, HASH_FIND, NULL);

		/*
		 * we can't just skip here if the key wasn't found since we might have
		 * a domain to deal with. If we were passed in a non-null record
		 * datum, we assume that the existing values are valid (if they're
		 * not, then it's not our fault), but if we were passed in a null,
		 * then every field which we don't populate needs to be run through
		 * the input function just in case it's a domain type.
		 */
		if (hashentry == NULL && rec)
			continue;

		/*
		 * Prepare to convert the column value from text
		 */
		if (column_info->column_type != column_type)
		{
			getTypeInputInfo(column_type,
							 &column_info->typiofunc,
							 &column_info->typioparam);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  _state->fn_mcxt);
			column_info->column_type = column_type;
		}
		if (hashentry == NULL || hashentry->isnull)
		{
			/*
			 * need InputFunctionCall to happen even for nulls, so that domain
			 * checks are done
			 */
			values[i] = InputFunctionCall(&column_info->proc, NULL,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = true;
		}
		else
		{
			value = hashentry->val;

			values[i] = InputFunctionCall(&column_info->proc, value,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = false;
		}
	}

	rettuple = heap_form_tuple(tupdesc, values, nulls);

	tuplestore_puttuple(_state->tuple_store, rettuple);

	hash_destroy(json_hash);
}
コード例 #17
0
ファイル: jsonfuncs.c プロジェクト: 50wu/gpdb
/*
 * SQL function json_populate_record
 *
 * set fields in a record from the argument json
 *
 * Code adapted shamelessly from hstore's populate_record
 * which is in turn partly adapted from record_out.
 *
 * The json is decomposed into a hash table, in which each
 * field in the record is then looked up by name.
 */
Datum
json_populate_record(PG_FUNCTION_ARGS)
{
	Oid			argtype = get_fn_expr_argtype(fcinfo->flinfo, 0);
	text	   *json = PG_GETARG_TEXT_P(1);
	bool		use_json_as_text = PG_GETARG_BOOL(2);
	HTAB	   *json_hash;
	HeapTupleHeader rec;
	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTupleData tuple;
	HeapTuple	rettuple;
	RecordIOData *my_extra;
	int			ncolumns;
	int			i;
	Datum	   *values;
	bool	   *nulls;
	char		fname[NAMEDATALEN];
	JsonHashEntry hashentry;


	if (!type_is_rowtype(argtype))
		ereport(ERROR,
				(errcode(ERRCODE_DATATYPE_MISMATCH),
				 errmsg("first argument must be a rowtype")));

	if (PG_ARGISNULL(0))
	{
		if (PG_ARGISNULL(1))
			PG_RETURN_NULL();

		rec = NULL;

		/*
		 * have no tuple to look at, so the only source of type info is the
		 * argtype. The lookup_rowtype_tupdesc call below will error out if we
		 * don't have a known composite type oid here.
		 */
		tupType = argtype;
		tupTypmod = -1;
	}
	else
	{
		rec = PG_GETARG_HEAPTUPLEHEADER(0);

		if (PG_ARGISNULL(1))
			PG_RETURN_POINTER(rec);

		/* Extract type info from the tuple itself */
		tupType = HeapTupleHeaderGetTypeId(rec);
		tupTypmod = HeapTupleHeaderGetTypMod(rec);
	}

	json_hash = get_json_object_as_hash(json, "json_populate_record", use_json_as_text);

	/*
	 * if the input json is empty, we can only skip the rest if we were passed
	 * in a non-null record, since otherwise there may be issues with domain
	 * nulls.
	 */
	if (hash_get_num_entries(json_hash) == 0 && rec)
		PG_RETURN_POINTER(rec);


	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	if (rec)
	{
		/* Build a temporary HeapTuple control structure */
		tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
		ItemPointerSetInvalid(&(tuple.t_self));
		tuple.t_data = rec;
	}

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	if (rec)
	{
		/* Break down the tuple into fields */
		heap_deform_tuple(&tuple, tupdesc, values, nulls);
	}
	else
	{
		for (i = 0; i < ncolumns; ++i)
		{
			values[i] = (Datum) 0;
			nulls[i] = true;
		}
	}

	for (i = 0; i < ncolumns; ++i)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		char	   *value;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
		{
			nulls[i] = true;
			continue;
		}

		memset(fname, 0, NAMEDATALEN);
		strncpy(fname, NameStr(tupdesc->attrs[i]->attname), NAMEDATALEN);
		hashentry = hash_search(json_hash, fname, HASH_FIND, NULL);

		/*
		 * we can't just skip here if the key wasn't found since we might have
		 * a domain to deal with. If we were passed in a non-null record
		 * datum, we assume that the existing values are valid (if they're
		 * not, then it's not our fault), but if we were passed in a null,
		 * then every field which we don't populate needs to be run through
		 * the input function just in case it's a domain type.
		 */
		if (hashentry == NULL && rec)
			continue;

		/*
		 * Prepare to convert the column value from text
		 */
		if (column_info->column_type != column_type)
		{
			getTypeInputInfo(column_type,
							 &column_info->typiofunc,
							 &column_info->typioparam);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}
		if (hashentry == NULL || hashentry->isnull)
		{
			/*
			 * need InputFunctionCall to happen even for nulls, so that domain
			 * checks are done
			 */
			values[i] = InputFunctionCall(&column_info->proc, NULL,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = true;
		}
		else
		{
			value = hashentry->val;

			values[i] = InputFunctionCall(&column_info->proc, value,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = false;
		}
	}

	rettuple = heap_form_tuple(tupdesc, values, nulls);

	ReleaseTupleDesc(tupdesc);

	PG_RETURN_DATUM(HeapTupleGetDatum(rettuple));
}
コード例 #18
0
ファイル: rowtypes.c プロジェクト: PJMODOS/postgres
/*
 * record_image_eq :
 *		  compares two records for identical contents, based on byte images
 * result :
 *		  returns true if the records are identical, false otherwise.
 *
 * Note: we do not use record_image_cmp here, since we can avoid
 * de-toasting for unequal lengths this way.
 */
Datum
record_image_eq(PG_FUNCTION_ARGS)
{
	HeapTupleHeader record1 = PG_GETARG_HEAPTUPLEHEADER(0);
	HeapTupleHeader record2 = PG_GETARG_HEAPTUPLEHEADER(1);
	bool		result = true;
	Oid			tupType1;
	Oid			tupType2;
	int32		tupTypmod1;
	int32		tupTypmod2;
	TupleDesc	tupdesc1;
	TupleDesc	tupdesc2;
	HeapTupleData tuple1;
	HeapTupleData tuple2;
	int			ncolumns1;
	int			ncolumns2;
	RecordCompareData *my_extra;
	int			ncols;
	Datum	   *values1;
	Datum	   *values2;
	bool	   *nulls1;
	bool	   *nulls2;
	int			i1;
	int			i2;
	int			j;

	/* Extract type info from the tuples */
	tupType1 = HeapTupleHeaderGetTypeId(record1);
	tupTypmod1 = HeapTupleHeaderGetTypMod(record1);
	tupdesc1 = lookup_rowtype_tupdesc(tupType1, tupTypmod1);
	ncolumns1 = tupdesc1->natts;
	tupType2 = HeapTupleHeaderGetTypeId(record2);
	tupTypmod2 = HeapTupleHeaderGetTypMod(record2);
	tupdesc2 = lookup_rowtype_tupdesc(tupType2, tupTypmod2);
	ncolumns2 = tupdesc2->natts;

	/* Build temporary HeapTuple control structures */
	tuple1.t_len = HeapTupleHeaderGetDatumLength(record1);
	ItemPointerSetInvalid(&(tuple1.t_self));
	tuple1.t_tableOid = InvalidOid;
	tuple1.t_data = record1;
	tuple2.t_len = HeapTupleHeaderGetDatumLength(record2);
	ItemPointerSetInvalid(&(tuple2.t_self));
	tuple2.t_tableOid = InvalidOid;
	tuple2.t_data = record2;

	/*
	 * We arrange to look up the needed comparison info just once per series
	 * of calls, assuming the record types don't change underneath us.
	 */
	ncols = Max(ncolumns1, ncolumns2);
	my_extra = (RecordCompareData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns < ncols)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   offsetof(RecordCompareData, columns) +
							   ncols * sizeof(ColumnCompareData));
		my_extra = (RecordCompareData *) fcinfo->flinfo->fn_extra;
		my_extra->ncolumns = ncols;
		my_extra->record1_type = InvalidOid;
		my_extra->record1_typmod = 0;
		my_extra->record2_type = InvalidOid;
		my_extra->record2_typmod = 0;
	}

	if (my_extra->record1_type != tupType1 ||
		my_extra->record1_typmod != tupTypmod1 ||
		my_extra->record2_type != tupType2 ||
		my_extra->record2_typmod != tupTypmod2)
	{
		MemSet(my_extra->columns, 0, ncols * sizeof(ColumnCompareData));
		my_extra->record1_type = tupType1;
		my_extra->record1_typmod = tupTypmod1;
		my_extra->record2_type = tupType2;
		my_extra->record2_typmod = tupTypmod2;
	}

	/* Break down the tuples into fields */
	values1 = (Datum *) palloc(ncolumns1 * sizeof(Datum));
	nulls1 = (bool *) palloc(ncolumns1 * sizeof(bool));
	heap_deform_tuple(&tuple1, tupdesc1, values1, nulls1);
	values2 = (Datum *) palloc(ncolumns2 * sizeof(Datum));
	nulls2 = (bool *) palloc(ncolumns2 * sizeof(bool));
	heap_deform_tuple(&tuple2, tupdesc2, values2, nulls2);

	/*
	 * Scan corresponding columns, allowing for dropped columns in different
	 * places in the two rows.  i1 and i2 are physical column indexes, j is
	 * the logical column index.
	 */
	i1 = i2 = j = 0;
	while (i1 < ncolumns1 || i2 < ncolumns2)
	{
		/*
		 * Skip dropped columns
		 */
		if (i1 < ncolumns1 && tupdesc1->attrs[i1]->attisdropped)
		{
			i1++;
			continue;
		}
		if (i2 < ncolumns2 && tupdesc2->attrs[i2]->attisdropped)
		{
			i2++;
			continue;
		}
		if (i1 >= ncolumns1 || i2 >= ncolumns2)
			break;				/* we'll deal with mismatch below loop */

		/*
		 * Have two matching columns, they must be same type
		 */
		if (tupdesc1->attrs[i1]->atttypid !=
			tupdesc2->attrs[i2]->atttypid)
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
					 errmsg("cannot compare dissimilar column types %s and %s at record column %d",
							format_type_be(tupdesc1->attrs[i1]->atttypid),
							format_type_be(tupdesc2->attrs[i2]->atttypid),
							j + 1)));

		/*
		 * We consider two NULLs equal; NULL > not-NULL.
		 */
		if (!nulls1[i1] || !nulls2[i2])
		{
			if (nulls1[i1] || nulls2[i2])
			{
				result = false;
				break;
			}

			/* Compare the pair of elements */
			if (tupdesc1->attrs[i1]->attlen == -1)
			{
				Size		len1,
							len2;

				len1 = toast_raw_datum_size(values1[i1]);
				len2 = toast_raw_datum_size(values2[i2]);
				/* No need to de-toast if lengths don't match. */
				if (len1 != len2)
					result = false;
				else
				{
					struct varlena *arg1val;
					struct varlena *arg2val;

					arg1val = PG_DETOAST_DATUM_PACKED(values1[i1]);
					arg2val = PG_DETOAST_DATUM_PACKED(values2[i2]);

					result = (memcmp(VARDATA_ANY(arg1val),
									 VARDATA_ANY(arg2val),
									 len1 - VARHDRSZ) == 0);

					/* Only free memory if it's a copy made here. */
					if ((Pointer) arg1val != (Pointer) values1[i1])
						pfree(arg1val);
					if ((Pointer) arg2val != (Pointer) values2[i2])
						pfree(arg2val);
				}
			}
			else if (tupdesc1->attrs[i1]->attbyval)
			{
				switch (tupdesc1->attrs[i1]->attlen)
				{
					case 1:
						result = (GET_1_BYTE(values1[i1]) ==
								  GET_1_BYTE(values2[i2]));
						break;
					case 2:
						result = (GET_2_BYTES(values1[i1]) ==
								  GET_2_BYTES(values2[i2]));
						break;
					case 4:
						result = (GET_4_BYTES(values1[i1]) ==
								  GET_4_BYTES(values2[i2]));
						break;
#if SIZEOF_DATUM == 8
					case 8:
						result = (GET_8_BYTES(values1[i1]) ==
								  GET_8_BYTES(values2[i2]));
						break;
#endif
					default:
						Assert(false);	/* cannot happen */
				}
			}
			else
			{
				result = (memcmp(DatumGetPointer(values1[i1]),
								 DatumGetPointer(values2[i2]),
								 tupdesc1->attrs[i1]->attlen) == 0);
			}
			if (!result)
				break;
		}

		/* equal, so continue to next column */
		i1++, i2++, j++;
	}

	/*
	 * If we didn't break out of the loop early, check for column count
	 * mismatch.  (We do not report such mismatch if we found unequal column
	 * values; is that a feature or a bug?)
	 */
	if (result)
	{
		if (i1 != ncolumns1 || i2 != ncolumns2)
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
					 errmsg("cannot compare record types with different numbers of columns")));
	}

	pfree(values1);
	pfree(nulls1);
	pfree(values2);
	pfree(nulls2);
	ReleaseTupleDesc(tupdesc1);
	ReleaseTupleDesc(tupdesc2);

	/* Avoid leaking memory when handed toasted input. */
	PG_FREE_IF_COPY(record1, 0);
	PG_FREE_IF_COPY(record2, 1);

	PG_RETURN_BOOL(result);
}
コード例 #19
0
/*
 * record_send		- binary output routine for any composite type.
 */
Datum
record_send(PG_FUNCTION_ARGS)
{
	HeapTupleHeader rec = PG_GETARG_HEAPTUPLEHEADER(0);
	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTupleData tuple;
	RecordIOData *my_extra;
	int			ncolumns;
	int			validcols;
	int			i;
	Datum	   *values;
	bool	   *nulls;
	StringInfoData buf;

	/* Extract type info from the tuple itself */
	tupType = HeapTupleHeaderGetTypeId(rec);
	tupTypmod = HeapTupleHeaderGetTypMod(rec);
	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	/* Build a temporary HeapTuple control structure */
	tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
	ItemPointerSetInvalid(&(tuple.t_self));
	tuple.t_tableOid = InvalidOid;
	tuple.t_data = rec;

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	/* Break down the tuple into fields */
	heap_deform_tuple(&tuple, tupdesc, values, nulls);

	/* And build the result string */
	pq_begintypsend(&buf);

	/* Need to scan to count nondeleted columns */
	validcols = 0;
	for (i = 0; i < ncolumns; i++)
	{
		if (!tupdesc->attrs[i]->attisdropped)
			validcols++;
	}
	pq_sendint(&buf, validcols, 4);

	for (i = 0; i < ncolumns; i++)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		bytea	   *outputbytes;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
			continue;

		pq_sendint(&buf, column_type, sizeof(Oid));

		if (nulls[i])
		{
			/* emit -1 data length to signify a NULL */
			pq_sendint(&buf, -1, 4);
			continue;
		}

		/*
		 * Convert the column value to binary
		 */
		if (column_info->column_type != column_type)
		{
			bool		typIsVarlena;

			getTypeBinaryOutputInfo(column_type,
									&column_info->typiofunc,
									&typIsVarlena);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}

		outputbytes = SendFunctionCall(&column_info->proc, values[i]);

		/* We assume the result will not have been toasted */
		pq_sendint(&buf, VARSIZE(outputbytes) - VARHDRSZ, 4);
		pq_sendbytes(&buf, VARDATA(outputbytes),
					 VARSIZE(outputbytes) - VARHDRSZ);
		pfree(outputbytes);
	}

	pfree(values);
	pfree(nulls);
	ReleaseTupleDesc(tupdesc);

	PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
コード例 #20
0
ファイル: hstore_io.c プロジェクト: d/gpdb
Datum
hstore_populate_record(PG_FUNCTION_ARGS)
{
	Oid			argtype = get_fn_expr_argtype(fcinfo->flinfo, 0);
	HStore	   *hs;
	HEntry	   *entries;
	char	   *ptr;
	HeapTupleHeader rec;
	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTupleData tuple;
	HeapTuple	rettuple;
	RecordIOData *my_extra;
	int			ncolumns;
	int			i;
	Datum	   *values;
	bool	   *nulls;

	if (!type_is_rowtype(argtype))
		ereport(ERROR,
				(errcode(ERRCODE_DATATYPE_MISMATCH),
				 errmsg("first argument must be a rowtype")));

	if (PG_ARGISNULL(0))
	{
		if (PG_ARGISNULL(1))
			PG_RETURN_NULL();

		rec = NULL;

		/*
		 * have no tuple to look at, so the only source of type info is the
		 * argtype. The lookup_rowtype_tupdesc call below will error out if we
		 * don't have a known composite type oid here.
		 */
		tupType = argtype;
		tupTypmod = -1;
	}
	else
	{
		rec = PG_GETARG_HEAPTUPLEHEADER(0);

		if (PG_ARGISNULL(1))
			PG_RETURN_POINTER(rec);

		/* Extract type info from the tuple itself */
		tupType = HeapTupleHeaderGetTypeId(rec);
		tupTypmod = HeapTupleHeaderGetTypMod(rec);
	}

	hs = PG_GETARG_HS(1);
	entries = ARRPTR(hs);
	ptr = STRPTR(hs);

	/*
	 * if the input hstore is empty, we can only skip the rest if we were
	 * passed in a non-null record, since otherwise there may be issues with
	 * domain nulls.
	 */

	if (HS_COUNT(hs) == 0 && rec)
		PG_RETURN_POINTER(rec);

	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	if (rec)
	{
		/* Build a temporary HeapTuple control structure */
		tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
		ItemPointerSetInvalid(&(tuple.t_self));
		//tuple.t_tableOid = InvalidOid;
		tuple.t_data = rec;
	}

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	if (rec)
	{
		/* Break down the tuple into fields */
		heap_deform_tuple(&tuple, tupdesc, values, nulls);
	}
	else
	{
		for (i = 0; i < ncolumns; ++i)
		{
			values[i] = (Datum) 0;
			nulls[i] = true;
		}
	}

	for (i = 0; i < ncolumns; ++i)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		char	   *value;
		int			idx;
		int			vallen;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
		{
			nulls[i] = true;
			continue;
		}

		idx = hstoreFindKey(hs, 0,
							NameStr(tupdesc->attrs[i]->attname),
							strlen(NameStr(tupdesc->attrs[i]->attname)));

		/*
		 * we can't just skip here if the key wasn't found since we might have
		 * a domain to deal with. If we were passed in a non-null record
		 * datum, we assume that the existing values are valid (if they're
		 * not, then it's not our fault), but if we were passed in a null,
		 * then every field which we don't populate needs to be run through
		 * the input function just in case it's a domain type.
		 */
		if (idx < 0 && rec)
			continue;

		/*
		 * Prepare to convert the column value from text
		 */
		if (column_info->column_type != column_type)
		{
			getTypeInputInfo(column_type,
							 &column_info->typiofunc,
							 &column_info->typioparam);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}

		if (idx < 0 || HS_VALISNULL(entries, idx))
		{
			/*
			 * need InputFunctionCall to happen even for nulls, so that domain
			 * checks are done
			 */
			values[i] = InputFunctionCall(&column_info->proc, NULL,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = true;
		}
		else
		{
			vallen = HS_VALLEN(entries, idx);
			value = palloc(1 + vallen);
			memcpy(value, HS_VAL(entries, ptr, idx), vallen);
			value[vallen] = 0;

			values[i] = InputFunctionCall(&column_info->proc, value,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = false;
		}
	}

	rettuple = heap_form_tuple(tupdesc, values, nulls);

	ReleaseTupleDesc(tupdesc);

	PG_RETURN_DATUM(HeapTupleGetDatum(rettuple));
}
コード例 #21
0
ファイル: tuptoaster.c プロジェクト: LittleForker/postgres
/* ----------
 * toast_flatten_tuple_attribute -
 *
 *	If a Datum is of composite type, "flatten" it to contain no toasted fields.
 *	This must be invoked on any potentially-composite field that is to be
 *	inserted into a tuple.	Doing this preserves the invariant that toasting
 *	goes only one level deep in a tuple.
 *
 *	Note that flattening does not mean expansion of short-header varlenas,
 *	so in one sense toasting is allowed within composite datums.
 * ----------
 */
Datum
toast_flatten_tuple_attribute(Datum value,
							  Oid typeId, int32 typeMod)
{
	TupleDesc	tupleDesc;
	HeapTupleHeader olddata;
	HeapTupleHeader new_data;
	int32		new_len;
	int32		new_data_len;
	HeapTupleData tmptup;
	Form_pg_attribute *att;
	int			numAttrs;
	int			i;
	bool		need_change = false;
	bool		has_nulls = false;
	Datum		toast_values[MaxTupleAttributeNumber];
	bool		toast_isnull[MaxTupleAttributeNumber];
	bool		toast_free[MaxTupleAttributeNumber];

	/*
	 * See if it's a composite type, and get the tupdesc if so.
	 */
	tupleDesc = lookup_rowtype_tupdesc_noerror(typeId, typeMod, true);
	if (tupleDesc == NULL)
		return value;			/* not a composite type */

	att = tupleDesc->attrs;
	numAttrs = tupleDesc->natts;

	/*
	 * Break down the tuple into fields.
	 */
	olddata = DatumGetHeapTupleHeader(value);
	Assert(typeId == HeapTupleHeaderGetTypeId(olddata));
	Assert(typeMod == HeapTupleHeaderGetTypMod(olddata));
	/* Build a temporary HeapTuple control structure */
	tmptup.t_len = HeapTupleHeaderGetDatumLength(olddata);
	ItemPointerSetInvalid(&(tmptup.t_self));
	tmptup.t_tableOid = InvalidOid;
	tmptup.t_data = olddata;

	Assert(numAttrs <= MaxTupleAttributeNumber);
	heap_deform_tuple(&tmptup, tupleDesc, toast_values, toast_isnull);

	memset(toast_free, 0, numAttrs * sizeof(bool));

	for (i = 0; i < numAttrs; i++)
	{
		/*
		 * Look at non-null varlena attributes
		 */
		if (toast_isnull[i])
			has_nulls = true;
		else if (att[i]->attlen == -1)
		{
			struct varlena *new_value;

			new_value = (struct varlena *) DatumGetPointer(toast_values[i]);
			if (VARATT_IS_EXTERNAL(new_value) ||
				VARATT_IS_COMPRESSED(new_value))
			{
				new_value = heap_tuple_untoast_attr(new_value);
				toast_values[i] = PointerGetDatum(new_value);
				toast_free[i] = true;
				need_change = true;
			}
		}
	}

	/*
	 * If nothing to untoast, just return the original tuple.
	 */
	if (!need_change)
	{
		ReleaseTupleDesc(tupleDesc);
		return value;
	}

	/*
	 * Calculate the new size of the tuple.  Header size should not change,
	 * but data size might.
	 */
	new_len = offsetof(HeapTupleHeaderData, t_bits);
	if (has_nulls)
		new_len += BITMAPLEN(numAttrs);
	if (olddata->t_infomask & HEAP_HASOID)
		new_len += sizeof(Oid);
	new_len = MAXALIGN(new_len);
	Assert(new_len == olddata->t_hoff);
	new_data_len = heap_compute_data_size(tupleDesc,
										  toast_values, toast_isnull);
	new_len += new_data_len;

	new_data = (HeapTupleHeader) palloc0(new_len);

	/*
	 * Put the tuple header and the changed values into place
	 */
	memcpy(new_data, olddata, olddata->t_hoff);

	HeapTupleHeaderSetDatumLength(new_data, new_len);

	heap_fill_tuple(tupleDesc,
					toast_values,
					toast_isnull,
					(char *) new_data + olddata->t_hoff,
					new_data_len,
					&(new_data->t_infomask),
					has_nulls ? new_data->t_bits : NULL);

	/*
	 * Free allocated temp values
	 */
	for (i = 0; i < numAttrs; i++)
		if (toast_free[i])
			pfree(DatumGetPointer(toast_values[i]));
	ReleaseTupleDesc(tupleDesc);

	return PointerGetDatum(new_data);
}
コード例 #22
0
ファイル: regress.c プロジェクト: meibenjin/postgres
Datum
make_tuple_indirect(PG_FUNCTION_ARGS)
{
	HeapTupleHeader rec = PG_GETARG_HEAPTUPLEHEADER(0);
	HeapTupleData tuple;
	int			ncolumns;
	Datum	   *values;
	bool	   *nulls;

	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;

	HeapTuple	newtup;

	int			i;

	MemoryContext old_context;

	/* Extract type info from the tuple itself */
	tupType = HeapTupleHeaderGetTypeId(rec);
	tupTypmod = HeapTupleHeaderGetTypMod(rec);
	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	/* Build a temporary HeapTuple control structure */
	tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
	ItemPointerSetInvalid(&(tuple.t_self));
	tuple.t_tableOid = InvalidOid;
	tuple.t_data = rec;

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	heap_deform_tuple(&tuple, tupdesc, values, nulls);

	old_context = MemoryContextSwitchTo(TopTransactionContext);

	for (i = 0; i < ncolumns; i++)
	{
		struct varlena *attr;
		struct varlena *new_attr;
		struct varatt_indirect redirect_pointer;

		/* only work on existing, not-null varlenas */
		if (tupdesc->attrs[i]->attisdropped ||
			nulls[i] ||
			tupdesc->attrs[i]->attlen != -1)
			continue;

		attr = (struct varlena *) DatumGetPointer(values[i]);

		/* don't recursively indirect */
		if (VARATT_IS_EXTERNAL_INDIRECT(attr))
			continue;

		/* copy datum, so it still lives later */
		if (VARATT_IS_EXTERNAL_ONDISK(attr))
			attr = heap_tuple_fetch_attr(attr);
		else
		{
			struct varlena *oldattr = attr;
			attr = palloc0(VARSIZE_ANY(oldattr));
			memcpy(attr, oldattr, VARSIZE_ANY(oldattr));
		}

		/* build indirection Datum */
		new_attr = (struct varlena *) palloc0(INDIRECT_POINTER_SIZE);
		redirect_pointer.pointer = attr;
		SET_VARTAG_EXTERNAL(new_attr, VARTAG_INDIRECT);
		memcpy(VARDATA_EXTERNAL(new_attr), &redirect_pointer,
			   sizeof(redirect_pointer));

		values[i] = PointerGetDatum(new_attr);
	}

	newtup = heap_form_tuple(tupdesc, values, nulls);
	pfree(values);
	pfree(nulls);
	ReleaseTupleDesc(tupdesc);

	MemoryContextSwitchTo(old_context);

	PG_RETURN_HEAPTUPLEHEADER(newtup->t_data);
}
コード例 #23
0
void PersistentStore_ReadTuple(
	PersistentStoreData 		*storeData,

	PersistentStoreSharedData 	*storeSharedData,

	ItemPointer					readTid,

	Datum						*values,

	HeapTuple					*tupleCopy)
{
	Relation	persistentRel;

	HeapTupleData 	tuple;
	Buffer			buffer;

	bool *nulls;
	
#ifdef USE_ASSERT_CHECKING
	if (storeSharedData == NULL ||
		!PersistentStoreSharedData_EyecatcherIsValid(storeSharedData))
		elog(ERROR, "Persistent store shared-memory not valid");
#endif
	
	if (Debug_persistent_store_print)
		elog(PersistentStore_DebugPrintLevel(), 
			 "PersistentStore_ReadTuple: Going to read tuple at TID %s ('%s', shared data %p)",
			 ItemPointerToString(readTid),
			 storeData->tableName,
			 storeSharedData);

	if (PersistentStore_IsZeroTid(readTid))
		elog(ERROR, "TID for fetch persistent tuple is invalid (0,0) ('%s')",
			 storeData->tableName);

	// UNDONE: I think the InRecovery test only applies to physical Master Mirroring on Standby.
	/* Only test this outside of recovery scenarios */
	if (!InRecovery 
		&& 
		(PersistentStore_IsZeroTid(&storeSharedData->maxTid)
		 ||
		 ItemPointerCompare(
						readTid,
						&storeSharedData->maxTid) == 1 // Greater-than.
		))
	{
		elog(ERROR, "TID %s for fetch persistent tuple is greater than the last known TID %s ('%s')",
			 ItemPointerToString(readTid),
			 ItemPointerToString2(&storeSharedData->maxTid),
			 storeData->tableName);
	}
	
	persistentRel = (*storeData->openRel)();

	tuple.t_self = *readTid;

	if (!heap_fetch(persistentRel, SnapshotAny,
					&tuple, &buffer, false, NULL))
	{
		elog(ERROR, "Failed to fetch persistent tuple at %s (maximum known TID %s, '%s')",
			 ItemPointerToString(&tuple.t_self),
			 ItemPointerToString2(&storeSharedData->maxTid),
			 storeData->tableName);
	}

	
	*tupleCopy = heaptuple_copy_to(&tuple, NULL, NULL);

	ReleaseBuffer(buffer);
	
	/*
	 * In order to keep the tuples the exact same size to enable direct reuse of
	 * free tuples, we do not use NULLs.
	 */
	nulls = (bool*)palloc(storeData->numAttributes * sizeof(bool));

	heap_deform_tuple(*tupleCopy, persistentRel->rd_att, values, nulls);

	(*storeData->closeRel)(persistentRel);
	
	if (Debug_persistent_store_print)
	{
		elog(PersistentStore_DebugPrintLevel(), 
			 "PersistentStore_ReadTuple: Successfully read tuple at TID %s ('%s')",
			 ItemPointerToString(readTid),
			 storeData->tableName);

		(*storeData->printTupleCallback)(
									PersistentStore_DebugPrintLevel(),
									"STORE READ TUPLE",
									readTid,
									values);
	}

	pfree(nulls);
}
コード例 #24
0
ファイル: tuptoaster.c プロジェクト: CraigBryan/PostgresqlFun
/* ----------
 * toast_insert_or_update -
 *
 *	Delete no-longer-used toast-entries and create new ones to
 *	make the new tuple fit on INSERT or UPDATE
 *
 * Inputs:
 *	newtup: the candidate new tuple to be inserted
 *	oldtup: the old row version for UPDATE, or NULL for INSERT
 * Result:
 *	either newtup if no toasting is needed, or a palloc'd modified tuple
 *	that is what should actually get stored
 *
 * NOTE: neither newtup nor oldtup will be modified.  This is a change
 * from the pre-8.1 API of this routine.
 * ----------
 */
HeapTuple
toast_insert_or_update(Relation rel, HeapTuple newtup, HeapTuple oldtup)
{
	HeapTuple	result_tuple;
	TupleDesc	tupleDesc;
	Form_pg_attribute *att;
	int			numAttrs;
	int			i;

	bool		need_change = false;
	bool		need_free = false;
	bool		need_delold = false;
	bool		has_nulls = false;

	Size		maxDataLen;

	char		toast_action[MaxHeapAttributeNumber];
	bool		toast_isnull[MaxHeapAttributeNumber];
	bool		toast_oldisnull[MaxHeapAttributeNumber];
	Datum		toast_values[MaxHeapAttributeNumber];
	Datum		toast_oldvalues[MaxHeapAttributeNumber];
	int32		toast_sizes[MaxHeapAttributeNumber];
	bool		toast_free[MaxHeapAttributeNumber];
	bool		toast_delold[MaxHeapAttributeNumber];

	/*
	 * Get the tuple descriptor and break down the tuple(s) into fields.
	 */
	tupleDesc = rel->rd_att;
	att = tupleDesc->attrs;
	numAttrs = tupleDesc->natts;

	Assert(numAttrs <= MaxHeapAttributeNumber);
	heap_deform_tuple(newtup, tupleDesc, toast_values, toast_isnull);
	if (oldtup != NULL)
		heap_deform_tuple(oldtup, tupleDesc, toast_oldvalues, toast_oldisnull);

	/* ----------
	 * Then collect information about the values given
	 *
	 * NOTE: toast_action[i] can have these values:
	 *		' '		default handling
	 *		'p'		already processed --- don't touch it
	 *		'x'		incompressible, but OK to move off
	 *
	 * NOTE: toast_sizes[i] is only made valid for varlena attributes with
	 *		toast_action[i] different from 'p'.
	 * ----------
	 */
	memset(toast_action, ' ', numAttrs * sizeof(char));
	memset(toast_free, 0, numAttrs * sizeof(bool));
	memset(toast_delold, 0, numAttrs * sizeof(bool));

	for (i = 0; i < numAttrs; i++)
	{
		varattrib  *old_value;
		varattrib  *new_value;

		if (oldtup != NULL)
		{
			/*
			 * For UPDATE get the old and new values of this attribute
			 */
			old_value = (varattrib *) DatumGetPointer(toast_oldvalues[i]);
			new_value = (varattrib *) DatumGetPointer(toast_values[i]);

			/*
			 * If the old value is an external stored one, check if it has
			 * changed so we have to delete it later.
			 */
			if (att[i]->attlen == -1 && !toast_oldisnull[i] &&
				VARATT_IS_EXTERNAL(old_value))
			{
				if (toast_isnull[i] || !VARATT_IS_EXTERNAL(new_value) ||
					old_value->va_content.va_external.va_valueid !=
					new_value->va_content.va_external.va_valueid ||
					old_value->va_content.va_external.va_toastrelid !=
					new_value->va_content.va_external.va_toastrelid)
				{
					/*
					 * The old external stored value isn't needed any more
					 * after the update
					 */
					toast_delold[i] = true;
					need_delold = true;
				}
				else
				{
					/*
					 * This attribute isn't changed by this update so we reuse
					 * the original reference to the old value in the new
					 * tuple.
					 */
					toast_action[i] = 'p';
					toast_sizes[i] = VARATT_SIZE(toast_values[i]);
					continue;
				}
			}
		}
		else
		{
			/*
			 * For INSERT simply get the new value
			 */
			new_value = (varattrib *) DatumGetPointer(toast_values[i]);
		}

		/*
		 * Handle NULL attributes
		 */
		if (toast_isnull[i])
		{
			toast_action[i] = 'p';
			has_nulls = true;
			continue;
		}

		/*
		 * Now look at varlena attributes
		 */
		if (att[i]->attlen == -1)
		{
			/*
			 * If the table's attribute says PLAIN always, force it so.
			 */
			if (att[i]->attstorage == 'p')
				toast_action[i] = 'p';

			/*
			 * We took care of UPDATE above, so any external value we find
			 * still in the tuple must be someone else's we cannot reuse.
			 * Expand it to plain (and, probably, toast it again below).
			 */
			if (VARATT_IS_EXTERNAL(new_value))
			{
				new_value = heap_tuple_untoast_attr(new_value);
				toast_values[i] = PointerGetDatum(new_value);
				toast_free[i] = true;
				need_change = true;
				need_free = true;
			}

			/*
			 * Remember the size of this attribute
			 */
			toast_sizes[i] = VARATT_SIZE(new_value);
		}
		else
		{
			/*
			 * Not a varlena attribute, plain storage always
			 */
			toast_action[i] = 'p';
		}
	}

	/* ----------
	 * Compress and/or save external until data fits into target length
	 *
	 *	1: Inline compress attributes with attstorage 'x'
	 *	2: Store attributes with attstorage 'x' or 'e' external
	 *	3: Inline compress attributes with attstorage 'm'
	 *	4: Store attributes with attstorage 'm' external
	 * ----------
	 */
	maxDataLen = offsetof(HeapTupleHeaderData, t_bits);
	if (has_nulls)
		maxDataLen += BITMAPLEN(numAttrs);
	maxDataLen = TOAST_TUPLE_TARGET - MAXALIGN(maxDataLen);

	/*
	 * Look for attributes with attstorage 'x' to compress
	 */
	while (MAXALIGN(heap_compute_data_size(tupleDesc,
										   toast_values, toast_isnull)) >
		   maxDataLen)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(sizeof(varattrib));
		Datum		old_value;
		Datum		new_value;

		/*
		 * Search for the biggest yet uncompressed internal attribute
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] != ' ')
				continue;
			if (VARATT_IS_EXTENDED(toast_values[i]))
				continue;
			if (att[i]->attstorage != 'x')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Attempt to compress it inline
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		new_value = toast_compress_datum(old_value);

		if (DatumGetPointer(new_value) != NULL)
		{
			/* successful compression */
			if (toast_free[i])
				pfree(DatumGetPointer(old_value));
			toast_values[i] = new_value;
			toast_free[i] = true;
			toast_sizes[i] = VARATT_SIZE(toast_values[i]);
			need_change = true;
			need_free = true;
		}
		else
		{
			/*
			 * incompressible data, ignore on subsequent compression passes
			 */
			toast_action[i] = 'x';
		}
	}

	/*
	 * Second we look for attributes of attstorage 'x' or 'e' that are still
	 * inline.
	 */
	while (MAXALIGN(heap_compute_data_size(tupleDesc,
										   toast_values, toast_isnull)) >
		   maxDataLen && rel->rd_rel->reltoastrelid != InvalidOid)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(sizeof(varattrib));
		Datum		old_value;

		/*------
		 * Search for the biggest yet inlined attribute with
		 * attstorage equals 'x' or 'e'
		 *------
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] == 'p')
				continue;
			if (VARATT_IS_EXTERNAL(toast_values[i]))
				continue;
			if (att[i]->attstorage != 'x' && att[i]->attstorage != 'e')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Store this external
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		toast_action[i] = 'p';
		toast_values[i] = toast_save_datum(rel, toast_values[i]);
		if (toast_free[i])
			pfree(DatumGetPointer(old_value));

		toast_free[i] = true;
		toast_sizes[i] = VARATT_SIZE(toast_values[i]);

		need_change = true;
		need_free = true;
	}

	/*
	 * Round 3 - this time we take attributes with storage 'm' into
	 * compression
	 */
	while (MAXALIGN(heap_compute_data_size(tupleDesc,
										   toast_values, toast_isnull)) >
		   maxDataLen)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(sizeof(varattrib));
		Datum		old_value;
		Datum		new_value;

		/*
		 * Search for the biggest yet uncompressed internal attribute
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] != ' ')
				continue;
			if (VARATT_IS_EXTENDED(toast_values[i]))
				continue;
			if (att[i]->attstorage != 'm')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Attempt to compress it inline
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		new_value = toast_compress_datum(old_value);

		if (DatumGetPointer(new_value) != NULL)
		{
			/* successful compression */
			if (toast_free[i])
				pfree(DatumGetPointer(old_value));
			toast_values[i] = new_value;
			toast_free[i] = true;
			toast_sizes[i] = VARATT_SIZE(toast_values[i]);
			need_change = true;
			need_free = true;
		}
		else
		{
			/*
			 * incompressible data, ignore on subsequent compression passes
			 */
			toast_action[i] = 'x';
		}
	}

	/*
	 * Finally we store attributes of type 'm' external
	 */
	while (MAXALIGN(heap_compute_data_size(tupleDesc,
										   toast_values, toast_isnull)) >
		   maxDataLen && rel->rd_rel->reltoastrelid != InvalidOid)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(sizeof(varattrib));
		Datum		old_value;

		/*--------
		 * Search for the biggest yet inlined attribute with
		 * attstorage = 'm'
		 *--------
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] == 'p')
				continue;
			if (VARATT_IS_EXTERNAL(toast_values[i]))
				continue;
			if (att[i]->attstorage != 'm')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Store this external
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		toast_action[i] = 'p';
		toast_values[i] = toast_save_datum(rel, toast_values[i]);
		if (toast_free[i])
			pfree(DatumGetPointer(old_value));

		toast_free[i] = true;
		toast_sizes[i] = VARATT_SIZE(toast_values[i]);

		need_change = true;
		need_free = true;
	}

	/*
	 * In the case we toasted any values, we need to build a new heap tuple
	 * with the changed values.
	 */
	if (need_change)
	{
		HeapTupleHeader olddata = newtup->t_data;
		HeapTupleHeader new_data;
		int32		new_len;

		/*
		 * Calculate the new size of the tuple.  Header size should not
		 * change, but data size might.
		 */
		new_len = offsetof(HeapTupleHeaderData, t_bits);
		if (has_nulls)
			new_len += BITMAPLEN(numAttrs);
		if (olddata->t_infomask & HEAP_HASOID)
			new_len += sizeof(Oid);
		new_len = MAXALIGN(new_len);
		Assert(new_len == olddata->t_hoff);
		new_len += heap_compute_data_size(tupleDesc,
										  toast_values, toast_isnull);

		/*
		 * Allocate and zero the space needed, and fill HeapTupleData fields.
		 */
		result_tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + new_len);
		result_tuple->t_len = new_len;
		result_tuple->t_self = newtup->t_self;
		result_tuple->t_tableOid = newtup->t_tableOid;
		result_tuple->t_datamcxt = CurrentMemoryContext;
		new_data = (HeapTupleHeader) ((char *) result_tuple + HEAPTUPLESIZE);
		result_tuple->t_data = new_data;

		/*
		 * Put the existing tuple header and the changed values into place
		 */
		memcpy(new_data, olddata, olddata->t_hoff);

		heap_fill_tuple(tupleDesc,
						toast_values,
						toast_isnull,
						(char *) new_data + olddata->t_hoff,
						&(new_data->t_infomask),
						has_nulls ? new_data->t_bits : NULL);
	}
	else
		result_tuple = newtup;

	/*
	 * Free allocated temp values
	 */
	if (need_free)
		for (i = 0; i < numAttrs; i++)
			if (toast_free[i])
				pfree(DatumGetPointer(toast_values[i]));

	/*
	 * Delete external values from the old tuple
	 */
	if (need_delold)
		for (i = 0; i < numAttrs; i++)
			if (toast_delold[i])
				toast_delete_datum(rel, toast_oldvalues[i]);

	return result_tuple;
}
コード例 #25
0
ファイル: hstore_io.c プロジェクト: d/gpdb
Datum
hstore_from_record(PG_FUNCTION_ARGS)
{
	HeapTupleHeader rec;
	int4		buflen;
	HStore	   *out;
	Pairs	   *pairs;
	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTupleData tuple;
	RecordIOData *my_extra;
	int			ncolumns;
	int			i,
				j;
	Datum	   *values;
	bool	   *nulls;

	if (PG_ARGISNULL(0))
	{
		Oid			argtype = get_fn_expr_argtype(fcinfo->flinfo, 0);

		/*
		 * have no tuple to look at, so the only source of type info is the
		 * argtype. The lookup_rowtype_tupdesc call below will error out if we
		 * don't have a known composite type oid here.
		 */
		tupType = argtype;
		tupTypmod = -1;

		rec = NULL;
	}
	else
	{
		rec = PG_GETARG_HEAPTUPLEHEADER(0);

		/* Extract type info from the tuple itself */
		tupType = HeapTupleHeaderGetTypeId(rec);
		tupTypmod = HeapTupleHeaderGetTypMod(rec);
	}

	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	pairs = palloc(ncolumns * sizeof(Pairs));

	if (rec)
	{
		/* Build a temporary HeapTuple control structure */
		tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
		ItemPointerSetInvalid(&(tuple.t_self));
		//tuple.t_tableOid = InvalidOid;
		tuple.t_data = rec;

		values = (Datum *) palloc(ncolumns * sizeof(Datum));
		nulls = (bool *) palloc(ncolumns * sizeof(bool));

		/* Break down the tuple into fields */
		heap_deform_tuple(&tuple, tupdesc, values, nulls);
	}
	else
	{
		values = NULL;
		nulls = NULL;
	}

	for (i = 0, j = 0; i < ncolumns; ++i)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		char	   *value;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
			continue;

		pairs[j].key = NameStr(tupdesc->attrs[i]->attname);
		pairs[j].keylen = hstoreCheckKeyLen(strlen(NameStr(tupdesc->attrs[i]->attname)));

		if (!nulls || nulls[i])
		{
			pairs[j].val = NULL;
			pairs[j].vallen = 4;
			pairs[j].isnull = true;
			pairs[j].needfree = false;
			++j;
			continue;
		}

		/*
		 * Convert the column value to text
		 */
		if (column_info->column_type != column_type)
		{
			bool		typIsVarlena;

			getTypeOutputInfo(column_type,
							  &column_info->typiofunc,
							  &typIsVarlena);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}

		value = OutputFunctionCall(&column_info->proc, values[i]);

		pairs[j].val = value;
		pairs[j].vallen = hstoreCheckValLen(strlen(value));
		pairs[j].isnull = false;
		pairs[j].needfree = false;
		++j;
	}

	ncolumns = hstoreUniquePairs(pairs, j, &buflen);

	out = hstorePairs(pairs, ncolumns, buflen);

	ReleaseTupleDesc(tupdesc);

	PG_RETURN_POINTER(out);
}
コード例 #26
0
/*
 * Write a tuple to the outputstream, in the most efficient format possible.
 */
static void
pglogical_write_tuple(StringInfo out, PGLogicalOutputData *data,
					   Relation rel, HeapTuple tuple)
{
	TupleDesc	desc;
	Datum		values[MaxTupleAttributeNumber];
	bool		isnull[MaxTupleAttributeNumber];
	int			i;
	uint16		nliveatts = 0;

	desc = RelationGetDescr(rel);

	pq_sendbyte(out, 'T');			/* sending TUPLE */

	for (i = 0; i < desc->natts; i++)
	{
		if (desc->attrs[i]->attisdropped)
			continue;
		nliveatts++;
	}
	pq_sendint(out, nliveatts, 2);

	/* try to allocate enough memory from the get go */
	enlargeStringInfo(out, tuple->t_len +
					  nliveatts * (1 + 4));

	/*
	 * XXX: should this prove to be a relevant bottleneck, it might be
	 * interesting to inline heap_deform_tuple() here, we don't actually need
	 * the information in the form we get from it.
	 */
	heap_deform_tuple(tuple, desc, values, isnull);

	for (i = 0; i < desc->natts; i++)
	{
		HeapTuple	typtup;
		Form_pg_type typclass;
		Form_pg_attribute att = desc->attrs[i];
		char		transfer_type;

		/* skip dropped columns */
		if (att->attisdropped)
			continue;

		if (isnull[i])
		{
			pq_sendbyte(out, 'n');	/* null column */
			continue;
		}
		else if (att->attlen == -1 && VARATT_IS_EXTERNAL_ONDISK(values[i]))
		{
			pq_sendbyte(out, 'u');	/* unchanged toast column */
			continue;
		}

		typtup = SearchSysCache1(TYPEOID, ObjectIdGetDatum(att->atttypid));
		if (!HeapTupleIsValid(typtup))
			elog(ERROR, "cache lookup failed for type %u", att->atttypid);
		typclass = (Form_pg_type) GETSTRUCT(typtup);

		transfer_type = decide_datum_transfer(att, typclass,
											  data->allow_internal_basetypes,
											  data->allow_binary_basetypes);
        pq_sendbyte(out, transfer_type);
		switch (transfer_type)
		{
			case 'b':	/* internal-format binary data follows */

				/* pass by value */
				if (att->attbyval)
				{
					pq_sendint(out, att->attlen, 4); /* length */

					enlargeStringInfo(out, att->attlen);
					store_att_byval(out->data + out->len, values[i],
									att->attlen);
					out->len += att->attlen;
					out->data[out->len] = '\0';
				}
				/* fixed length non-varlena pass-by-reference type */
				else if (att->attlen > 0)
				{
					pq_sendint(out, att->attlen, 4); /* length */

					appendBinaryStringInfo(out, DatumGetPointer(values[i]),
										   att->attlen);
				}
				/* varlena type */
				else if (att->attlen == -1)
				{
					char *data = DatumGetPointer(values[i]);

					/* send indirect datums inline */
					if (VARATT_IS_EXTERNAL_INDIRECT(values[i]))
					{
						struct varatt_indirect redirect;
						VARATT_EXTERNAL_GET_POINTER(redirect, data);
						data = (char *) redirect.pointer;
					}

					Assert(!VARATT_IS_EXTERNAL(data));

					pq_sendint(out, VARSIZE_ANY(data), 4); /* length */

					appendBinaryStringInfo(out, data, VARSIZE_ANY(data));
				}
				else
					elog(ERROR, "unsupported tuple type");

				break;

			case 's': /* binary send/recv data follows */
				{
					bytea	   *outputbytes;
					int			len;

					outputbytes = OidSendFunctionCall(typclass->typsend,
													  values[i]);

					len = VARSIZE(outputbytes) - VARHDRSZ;
					pq_sendint(out, len, 4); /* length */
					pq_sendbytes(out, VARDATA(outputbytes), len); /* data */
					pfree(outputbytes);
				}
				break;

			default:
				{
					char   	   *outputstr;
					int			len;

					outputstr =	OidOutputFunctionCall(typclass->typoutput,
													  values[i]);
					len = strlen(outputstr) + 1;
					pq_sendint(out, len, 4); /* length */
					appendBinaryStringInfo(out, outputstr, len); /* data */
					pfree(outputstr);
				}
		}

		ReleaseSysCache(typtup);
	}
}
コード例 #27
0
/*
 * record_out		- output routine for any composite type.
 */
Datum
record_out(PG_FUNCTION_ARGS)
{
	HeapTupleHeader rec = PG_GETARG_HEAPTUPLEHEADER(0);
	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTupleData tuple;
	RecordIOData *my_extra;
	bool		needComma = false;
	int			ncolumns;
	int			i;
	Datum	   *values;
	bool	   *nulls;
	StringInfoData buf;

	/* Extract type info from the tuple itself */
	tupType = HeapTupleHeaderGetTypeId(rec);
	tupTypmod = HeapTupleHeaderGetTypMod(rec);
	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	/* Build a temporary HeapTuple control structure */
	tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
	ItemPointerSetInvalid(&(tuple.t_self));
	tuple.t_tableOid = InvalidOid;
	tuple.t_data = rec;

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	/* Break down the tuple into fields */
	heap_deform_tuple(&tuple, tupdesc, values, nulls);

	/* And build the result string */
	initStringInfo(&buf);

	appendStringInfoChar(&buf, '(');

	for (i = 0; i < ncolumns; i++)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		char	   *value;
		char	   *tmp;
		bool		nq;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
			continue;

		if (needComma)
			appendStringInfoChar(&buf, ',');
		needComma = true;

		if (nulls[i])
		{
			/* emit nothing... */
			continue;
		}

		/*
		 * Convert the column value to text
		 */
		if (column_info->column_type != column_type)
		{
			bool		typIsVarlena;

			getTypeOutputInfo(column_type,
							  &column_info->typiofunc,
							  &typIsVarlena);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}

		value = OutputFunctionCall(&column_info->proc, values[i]);

		/* Detect whether we need double quotes for this value */
		nq = (value[0] == '\0');	/* force quotes for empty string */
		for (tmp = value; *tmp; tmp++)
		{
			char		ch = *tmp;

			if (ch == '"' || ch == '\\' ||
				ch == '(' || ch == ')' || ch == ',' ||
				isspace((unsigned char) ch))
			{
				nq = true;
				break;
			}
		}

		/* And emit the string */
		if (nq)
			appendStringInfoChar(&buf, '"');
		for (tmp = value; *tmp; tmp++)
		{
			char		ch = *tmp;

			if (ch == '"' || ch == '\\')
				appendStringInfoChar(&buf, ch);
			appendStringInfoChar(&buf, ch);
		}
		if (nq)
			appendStringInfoChar(&buf, '"');
	}

	appendStringInfoChar(&buf, ')');

	pfree(values);
	pfree(nulls);
	ReleaseTupleDesc(tupdesc);

	PG_RETURN_CSTRING(buf.data);
}
コード例 #28
0
ファイル: regress.c プロジェクト: MasahikoSawada/postgresql
Datum
make_tuple_indirect(PG_FUNCTION_ARGS)
{
	HeapTupleHeader rec = PG_GETARG_HEAPTUPLEHEADER(0);
	HeapTupleData tuple;
	int			ncolumns;
	Datum	   *values;
	bool	   *nulls;

	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;

	HeapTuple	newtup;

	int			i;

	MemoryContext old_context;

	/* Extract type info from the tuple itself */
	tupType = HeapTupleHeaderGetTypeId(rec);
	tupTypmod = HeapTupleHeaderGetTypMod(rec);
	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	/* Build a temporary HeapTuple control structure */
	tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
	ItemPointerSetInvalid(&(tuple.t_self));
	tuple.t_tableOid = InvalidOid;
	tuple.t_data = rec;

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	heap_deform_tuple(&tuple, tupdesc, values, nulls);

	old_context = MemoryContextSwitchTo(TopTransactionContext);

	for (i = 0; i < ncolumns; i++)
	{
		struct varlena *attr;
		struct varlena *new_attr;
		struct varatt_indirect redirect_pointer;

		/* only work on existing, not-null varlenas */
		if (TupleDescAttr(tupdesc, i)->attisdropped ||
			nulls[i] ||
			TupleDescAttr(tupdesc, i)->attlen != -1)
			continue;

		attr = (struct varlena *) DatumGetPointer(values[i]);

		/* don't recursively indirect */
		if (VARATT_IS_EXTERNAL_INDIRECT(attr))
			continue;

		/* copy datum, so it still lives later */
		if (VARATT_IS_EXTERNAL_ONDISK(attr))
			attr = heap_tuple_fetch_attr(attr);
		else
		{
			struct varlena *oldattr = attr;

			attr = palloc0(VARSIZE_ANY(oldattr));
			memcpy(attr, oldattr, VARSIZE_ANY(oldattr));
		}

		/* build indirection Datum */
		new_attr = (struct varlena *) palloc0(INDIRECT_POINTER_SIZE);
		redirect_pointer.pointer = attr;
		SET_VARTAG_EXTERNAL(new_attr, VARTAG_INDIRECT);
		memcpy(VARDATA_EXTERNAL(new_attr), &redirect_pointer,
			   sizeof(redirect_pointer));

		values[i] = PointerGetDatum(new_attr);
	}

	newtup = heap_form_tuple(tupdesc, values, nulls);
	pfree(values);
	pfree(nulls);
	ReleaseTupleDesc(tupdesc);

	MemoryContextSwitchTo(old_context);

	/*
	 * We intentionally don't use PG_RETURN_HEAPTUPLEHEADER here, because that
	 * would cause the indirect toast pointers to be flattened out of the
	 * tuple immediately, rendering subsequent testing irrelevant.  So just
	 * return the HeapTupleHeader pointer as-is.  This violates the general
	 * rule that composite Datums shouldn't contain toast pointers, but so
	 * long as the regression test scripts don't insert the result of this
	 * function into a container type (record, array, etc) it should be OK.
	 */
	PG_RETURN_POINTER(newtup->t_data);
}
コード例 #29
0
/*
 * record_cmp()
 * Internal comparison function for records.
 *
 * Returns -1, 0 or 1
 *
 * Do not assume that the two inputs are exactly the same record type;
 * for instance we might be comparing an anonymous ROW() construct against a
 * named composite type.  We will compare as long as they have the same number
 * of non-dropped columns of the same types.
 */
static int
record_cmp(FunctionCallInfo fcinfo)
{
	HeapTupleHeader record1 = PG_GETARG_HEAPTUPLEHEADER(0);
	HeapTupleHeader record2 = PG_GETARG_HEAPTUPLEHEADER(1);
	int			result = 0;
	Oid			tupType1;
	Oid			tupType2;
	int32		tupTypmod1;
	int32		tupTypmod2;
	TupleDesc	tupdesc1;
	TupleDesc	tupdesc2;
	HeapTupleData tuple1;
	HeapTupleData tuple2;
	int			ncolumns1;
	int			ncolumns2;
	RecordCompareData *my_extra;
	int			ncols;
	Datum	   *values1;
	Datum	   *values2;
	bool	   *nulls1;
	bool	   *nulls2;
	int			i1;
	int			i2;
	int			j;

	/* Extract type info from the tuples */
	tupType1 = HeapTupleHeaderGetTypeId(record1);
	tupTypmod1 = HeapTupleHeaderGetTypMod(record1);
	tupdesc1 = lookup_rowtype_tupdesc(tupType1, tupTypmod1);
	ncolumns1 = tupdesc1->natts;
	tupType2 = HeapTupleHeaderGetTypeId(record2);
	tupTypmod2 = HeapTupleHeaderGetTypMod(record2);
	tupdesc2 = lookup_rowtype_tupdesc(tupType2, tupTypmod2);
	ncolumns2 = tupdesc2->natts;

	/* Build temporary HeapTuple control structures */
	tuple1.t_len = HeapTupleHeaderGetDatumLength(record1);
	ItemPointerSetInvalid(&(tuple1.t_self));
	tuple1.t_tableOid = InvalidOid;
	tuple1.t_data = record1;
	tuple2.t_len = HeapTupleHeaderGetDatumLength(record2);
	ItemPointerSetInvalid(&(tuple2.t_self));
	tuple2.t_tableOid = InvalidOid;
	tuple2.t_data = record2;

	/*
	 * We arrange to look up the needed comparison info just once per series
	 * of calls, assuming the record types don't change underneath us.
	 */
	ncols = Max(ncolumns1, ncolumns2);
	my_extra = (RecordCompareData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns < ncols)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
						sizeof(RecordCompareData) - sizeof(ColumnCompareData)
							   + ncols * sizeof(ColumnCompareData));
		my_extra = (RecordCompareData *) fcinfo->flinfo->fn_extra;
		my_extra->ncolumns = ncols;
		my_extra->record1_type = InvalidOid;
		my_extra->record1_typmod = 0;
		my_extra->record2_type = InvalidOid;
		my_extra->record2_typmod = 0;
	}

	if (my_extra->record1_type != tupType1 ||
		my_extra->record1_typmod != tupTypmod1 ||
		my_extra->record2_type != tupType2 ||
		my_extra->record2_typmod != tupTypmod2)
	{
		MemSet(my_extra->columns, 0, ncols * sizeof(ColumnCompareData));
		my_extra->record1_type = tupType1;
		my_extra->record1_typmod = tupTypmod1;
		my_extra->record2_type = tupType2;
		my_extra->record2_typmod = tupTypmod2;
	}

	/* Break down the tuples into fields */
	values1 = (Datum *) palloc(ncolumns1 * sizeof(Datum));
	nulls1 = (bool *) palloc(ncolumns1 * sizeof(bool));
	heap_deform_tuple(&tuple1, tupdesc1, values1, nulls1);
	values2 = (Datum *) palloc(ncolumns2 * sizeof(Datum));
	nulls2 = (bool *) palloc(ncolumns2 * sizeof(bool));
	heap_deform_tuple(&tuple2, tupdesc2, values2, nulls2);

	/*
	 * Scan corresponding columns, allowing for dropped columns in different
	 * places in the two rows.	i1 and i2 are physical column indexes, j is
	 * the logical column index.
	 */
	i1 = i2 = j = 0;
	while (i1 < ncolumns1 || i2 < ncolumns2)
	{
		TypeCacheEntry *typentry;
		Oid			collation;
		FunctionCallInfoData locfcinfo;
		int32		cmpresult;

		/*
		 * Skip dropped columns
		 */
		if (i1 < ncolumns1 && tupdesc1->attrs[i1]->attisdropped)
		{
			i1++;
			continue;
		}
		if (i2 < ncolumns2 && tupdesc2->attrs[i2]->attisdropped)
		{
			i2++;
			continue;
		}
		if (i1 >= ncolumns1 || i2 >= ncolumns2)
			break;				/* we'll deal with mismatch below loop */

		/*
		 * Have two matching columns, they must be same type
		 */
		if (tupdesc1->attrs[i1]->atttypid !=
			tupdesc2->attrs[i2]->atttypid)
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
					 errmsg("cannot compare dissimilar column types %s and %s at record column %d",
							format_type_be(tupdesc1->attrs[i1]->atttypid),
							format_type_be(tupdesc2->attrs[i2]->atttypid),
							j + 1)));

		/*
		 * If they're not same collation, we don't complain here, but the
		 * comparison function might.
		 */
		collation = tupdesc1->attrs[i1]->attcollation;
		if (collation != tupdesc2->attrs[i2]->attcollation)
			collation = InvalidOid;

		/*
		 * Lookup the comparison function if not done already
		 */
		typentry = my_extra->columns[j].typentry;
		if (typentry == NULL ||
			typentry->type_id != tupdesc1->attrs[i1]->atttypid)
		{
			typentry = lookup_type_cache(tupdesc1->attrs[i1]->atttypid,
										 TYPECACHE_CMP_PROC_FINFO);
			if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
				ereport(ERROR,
						(errcode(ERRCODE_UNDEFINED_FUNCTION),
				errmsg("could not identify a comparison function for type %s",
					   format_type_be(typentry->type_id))));
			my_extra->columns[j].typentry = typentry;
		}

		/*
		 * We consider two NULLs equal; NULL > not-NULL.
		 */
		if (!nulls1[i1] || !nulls2[i2])
		{
			if (nulls1[i1])
			{
				/* arg1 is greater than arg2 */
				result = 1;
				break;
			}
			if (nulls2[i2])
			{
				/* arg1 is less than arg2 */
				result = -1;
				break;
			}

			/* Compare the pair of elements */
			InitFunctionCallInfoData(locfcinfo, &typentry->cmp_proc_finfo, 2,
									 collation, NULL, NULL);
			locfcinfo.arg[0] = values1[i1];
			locfcinfo.arg[1] = values2[i2];
			locfcinfo.argnull[0] = false;
			locfcinfo.argnull[1] = false;
			locfcinfo.isnull = false;
			cmpresult = DatumGetInt32(FunctionCallInvoke(&locfcinfo));

			if (cmpresult < 0)
			{
				/* arg1 is less than arg2 */
				result = -1;
				break;
			}
			else if (cmpresult > 0)
			{
				/* arg1 is greater than arg2 */
				result = 1;
				break;
			}
		}

		/* equal, so continue to next column */
		i1++, i2++, j++;
	}

	/*
	 * If we didn't break out of the loop early, check for column count
	 * mismatch.  (We do not report such mismatch if we found unequal column
	 * values; is that a feature or a bug?)
	 */
	if (result == 0)
	{
		if (i1 != ncolumns1 || i2 != ncolumns2)
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
					 errmsg("cannot compare record types with different numbers of columns")));
	}

	pfree(values1);
	pfree(nulls1);
	pfree(values2);
	pfree(nulls2);
	ReleaseTupleDesc(tupdesc1);
	ReleaseTupleDesc(tupdesc2);

	/* Avoid leaking memory when handed toasted input. */
	PG_FREE_IF_COPY(record1, 0);
	PG_FREE_IF_COPY(record2, 1);

	return result;
}
コード例 #30
0
void PersistentStore_ReplaceTuple(
	PersistentStoreData 		*storeData,

	PersistentStoreSharedData 	*storeSharedData,

	ItemPointer 			persistentTid,
				/* TID of the stored tuple. */

	HeapTuple				tuple,

	Datum					*newValues,
	
	bool					*replaces,

	bool					flushToXLog)
				/* When true, the XLOG record for this change will be flushed to disk. */

{
	Relation	persistentRel;
	bool 		*nulls;
	HeapTuple	replacementTuple = NULL;
	XLogRecPtr 	xlogUpdateEndLoc;
	
#ifdef USE_ASSERT_CHECKING
	if (storeSharedData == NULL ||
		!PersistentStoreSharedData_EyecatcherIsValid(storeSharedData))
		elog(ERROR, "Persistent store shared-memory not valid");
#endif
	
	if (Debug_persistent_store_print)
		elog(PersistentStore_DebugPrintLevel(), 
			 "PersistentStore_ReplaceTuple: Going to replace set of columns in tuple at TID %s ('%s', shared data %p)",
			 ItemPointerToString(persistentTid),
			 storeData->tableName,
			 storeSharedData);

	persistentRel = (*storeData->openRel)();

	/*
	 * In order to keep the tuples the exact same size to enable direct reuse of
	 * free tuples, we do not use NULLs.
	 */
	nulls = (bool*)palloc0(storeData->numAttributes * sizeof(bool));
		
	/*
	 * Modify the tuple.
	 */
	replacementTuple = heap_modify_tuple(tuple, persistentRel->rd_att, 
										 newValues, nulls, replaces);

	replacementTuple->t_self = *persistentTid;
		
	frozen_heap_inplace_update(persistentRel, replacementTuple);

	/*
	 * Return the XLOG location of the UPDATE tuple's XLOG record.
	 */
	xlogUpdateEndLoc = XLogLastInsertEndLoc();

	heap_freetuple(replacementTuple);
	pfree(nulls);

	if (Debug_persistent_store_print)
	{
		Datum 			*readValues;
		bool			*readNulls;
		HeapTupleData 	readTuple;
		Buffer			buffer;
		HeapTuple		readTupleCopy;
		
		elog(PersistentStore_DebugPrintLevel(), 
			 "PersistentStore_ReplaceTuple: Replaced set of columns in tuple at TID %s ('%s')",
			 ItemPointerToString(persistentTid),
			 storeData->tableName);
		
		readValues = (Datum*)palloc(storeData->numAttributes * sizeof(Datum));
		readNulls = (bool*)palloc(storeData->numAttributes * sizeof(bool));

		readTuple.t_self = *persistentTid;
		
		if (!heap_fetch(persistentRel, SnapshotAny,
						&readTuple, &buffer, false, NULL))
		{
			elog(ERROR, "Failed to fetch persistent tuple at %s ('%s')",
				 ItemPointerToString(&readTuple.t_self),
				 storeData->tableName);
		}
		
		
		readTupleCopy = heaptuple_copy_to(&readTuple, NULL, NULL);
		
		ReleaseBuffer(buffer);
		
		heap_deform_tuple(readTupleCopy, persistentRel->rd_att, readValues, readNulls);
		
		(*storeData->printTupleCallback)(
									PersistentStore_DebugPrintLevel(),
									"STORE REPLACED TUPLE",
									persistentTid,
									readValues);

		heap_freetuple(readTupleCopy);
		pfree(readValues);
		pfree(readNulls);
	}

	(*storeData->closeRel)(persistentRel);
	
	if (flushToXLog)
	{
		XLogFlush(xlogUpdateEndLoc);
		XLogRecPtr_Zero(&nowaitXLogEndLoc);
	}
	else
		nowaitXLogEndLoc = xlogUpdateEndLoc;
}