コード例 #1
0
ファイル: hypre_parcsr.cpp プロジェクト: jdahm/mfem
/*
  Function:  hypre_CSRMatrixElimCreate

  Prepare the Ae matrix: count nnz, initialize I, allocate J and data.
*/
void hypre_CSRMatrixElimCreate(hypre_CSRMatrix *A,
                               hypre_CSRMatrix *Ae,
                               HYPRE_Int nrows, HYPRE_Int *rows,
                               HYPRE_Int ncols, HYPRE_Int *cols,
                               HYPRE_Int *col_mark)
{
    HYPRE_Int  i, j, col;
    HYPRE_Int  A_beg, A_end;

    HYPRE_Int  *A_i     = hypre_CSRMatrixI(A);
    HYPRE_Int  *A_j     = hypre_CSRMatrixJ(A);
    HYPRE_Int   A_rows  = hypre_CSRMatrixNumRows(A);

    hypre_CSRMatrixI(Ae) = hypre_TAlloc(HYPRE_Int, A_rows+1);

    HYPRE_Int  *Ae_i    = hypre_CSRMatrixI(Ae);
    HYPRE_Int   nnz     = 0;

    for (i = 0; i < A_rows; i++)
    {
        Ae_i[i] = nnz;

        A_beg = A_i[i];
        A_end = A_i[i+1];

        if (hypre_BinarySearch(rows, i, nrows) >= 0)
        {
            /* full row */
            nnz += A_end - A_beg;

            if (col_mark)
            {
                for (j = A_beg; j < A_end; j++)
                {
                    col_mark[A_j[j]] = 1;
                }
            }
        }
        else
        {
            /* count columns */
            for (j = A_beg; j < A_end; j++)
            {
                col = A_j[j];
                if (hypre_BinarySearch(cols, col, ncols) >= 0)
                {
                    nnz++;
                    if (col_mark) {
                        col_mark[col] = 1;
                    }
                }
            }
        }
    }
    Ae_i[A_rows] = nnz;

    hypre_CSRMatrixJ(Ae) = hypre_TAlloc(HYPRE_Int, nnz);
    hypre_CSRMatrixData(Ae) = hypre_TAlloc(HYPRE_Real, nnz);
    hypre_CSRMatrixNumNonzeros(Ae) = nnz;
}
コード例 #2
0
ファイル: communicationT.c プロジェクト: tpatki/rapl-old-data
HYPRE_Int
hypre_MatTCommPkgCreate ( hypre_ParCSRMatrix *A)
{
   hypre_ParCSRCommPkg	*comm_pkg;
   
   MPI_Comm             comm = hypre_ParCSRMatrixComm(A);
/*   hypre_MPI_Datatype         *recv_mpi_types;
   hypre_MPI_Datatype         *send_mpi_types;
*/
   HYPRE_Int			num_sends;
   HYPRE_Int			*send_procs;
   HYPRE_Int			*send_map_starts;
   HYPRE_Int			*send_map_elmts;
   HYPRE_Int			num_recvs;
   HYPRE_Int			*recv_procs;
   HYPRE_Int			*recv_vec_starts;
   
   HYPRE_Int  *col_map_offd = hypre_ParCSRMatrixColMapOffd(A);
   HYPRE_Int  first_col_diag = hypre_ParCSRMatrixFirstColDiag(A);
   HYPRE_Int  *col_starts = hypre_ParCSRMatrixColStarts(A);

   HYPRE_Int	ierr = 0;
   HYPRE_Int	num_rows_diag = hypre_CSRMatrixNumRows(hypre_ParCSRMatrixDiag(A));
   HYPRE_Int	num_cols_diag = hypre_CSRMatrixNumCols(hypre_ParCSRMatrixDiag(A));
   HYPRE_Int	num_cols_offd = hypre_CSRMatrixNumCols(hypre_ParCSRMatrixOffd(A));
   HYPRE_Int * row_starts = hypre_ParCSRMatrixRowStarts(A);

   hypre_MatTCommPkgCreate_core (
      comm, col_map_offd, first_col_diag, col_starts,
      num_rows_diag, num_cols_diag, num_cols_offd, row_starts,
                                  hypre_ParCSRMatrixFirstColDiag(A),
                                  hypre_ParCSRMatrixColMapOffd(A),
                                  hypre_CSRMatrixI( hypre_ParCSRMatrixDiag(A) ),
                                  hypre_CSRMatrixJ( hypre_ParCSRMatrixDiag(A) ),
                                  hypre_CSRMatrixI( hypre_ParCSRMatrixOffd(A) ),
      hypre_CSRMatrixJ( hypre_ParCSRMatrixOffd(A) ),
      1,
      &num_recvs, &recv_procs, &recv_vec_starts,
      &num_sends, &send_procs, &send_map_starts,
      &send_map_elmts
      );

   comm_pkg = hypre_CTAlloc(hypre_ParCSRCommPkg, 1);

   hypre_ParCSRCommPkgComm(comm_pkg) = comm;

   hypre_ParCSRCommPkgNumRecvs(comm_pkg) = num_recvs;
   hypre_ParCSRCommPkgRecvProcs(comm_pkg) = recv_procs;
   hypre_ParCSRCommPkgRecvVecStarts(comm_pkg) = recv_vec_starts;
   hypre_ParCSRCommPkgNumSends(comm_pkg) = num_sends;
   hypre_ParCSRCommPkgSendProcs(comm_pkg) = send_procs;
   hypre_ParCSRCommPkgSendMapStarts(comm_pkg) = send_map_starts;
   hypre_ParCSRCommPkgSendMapElmts(comm_pkg) = send_map_elmts;

   hypre_ParCSRMatrixCommPkgT(A) = comm_pkg;

   return ierr;
}
コード例 #3
0
ファイル: hypre_parcsr.cpp プロジェクト: jdahm/mfem
/*
  Function:  hypre_CSRMatrixEliminateRowsCols

  Eliminate rows and columns of A, store eliminated values in Ae.
  If 'diag' is nonzero, the eliminated diagonal of A is set to identity.
  If 'col_remap' is not NULL it specifies renumbering of columns of Ae.
*/
void hypre_CSRMatrixEliminateRowsCols(hypre_CSRMatrix *A,
                                      hypre_CSRMatrix *Ae,
                                      HYPRE_Int nrows, HYPRE_Int *rows,
                                      HYPRE_Int ncols, HYPRE_Int *cols,
                                      int diag, HYPRE_Int* col_remap)
{
    HYPRE_Int  i, j, k, col;
    HYPRE_Int  A_beg, Ae_beg, A_end;
    HYPRE_Real a;

    HYPRE_Int  *A_i     = hypre_CSRMatrixI(A);
    HYPRE_Int  *A_j     = hypre_CSRMatrixJ(A);
    HYPRE_Real *A_data  = hypre_CSRMatrixData(A);
    HYPRE_Int   A_rows  = hypre_CSRMatrixNumRows(A);

    HYPRE_Int  *Ae_i    = hypre_CSRMatrixI(Ae);
    HYPRE_Int  *Ae_j    = hypre_CSRMatrixJ(Ae);
    HYPRE_Real *Ae_data = hypre_CSRMatrixData(Ae);

    for (i = 0; i < A_rows; i++)
    {
        A_beg = A_i[i];
        A_end = A_i[i+1];
        Ae_beg = Ae_i[i];

        if (hypre_BinarySearch(rows, i, nrows) >= 0)
        {
            /* eliminate row */
            for (j = A_beg, k = Ae_beg; j < A_end; j++, k++)
            {
                col = A_j[j];
                Ae_j[k] = col_remap ? col_remap[col] : col;
                a = (diag && col == i) ? 1.0 : 0.0;
                Ae_data[k] = A_data[j] - a;
                A_data[j] = a;
            }
        }
        else
        {
            /* eliminate columns */
            for (j = A_beg, k = Ae_beg; j < A_end; j++)
            {
                col = A_j[j];
                if (hypre_BinarySearch(cols, col, ncols) >= 0)
                {
                    Ae_j[k] = col_remap ? col_remap[col] : col;
                    Ae_data[k] = A_data[j];
                    A_data[j] = 0.0;
                    k++;
                }
            }
        }
    }
}
コード例 #4
0
ファイル: communicationT.c プロジェクト: tpatki/rapl-old-data
void RowsWithColumn_original
( HYPRE_Int * rowmin, HYPRE_Int * rowmax, HYPRE_Int column, hypre_ParCSRMatrix * A )
/* Finds rows of A which have a nonzero at the given (global) column number.
   Sets rowmin to the minimum (local) row number of such rows, and rowmax
   to the max.  If there are no such rows, will return rowmax<0<=rowmin */
{
   hypre_CSRMatrix * diag = hypre_ParCSRMatrixDiag(A);
   hypre_CSRMatrix * offd = hypre_ParCSRMatrixOffd(A);
   HYPRE_Int * mat_i, * mat_j;
   HYPRE_Int i, j, num_rows;
   HYPRE_Int firstColDiag;
   HYPRE_Int * colMapOffd;

   mat_i = hypre_CSRMatrixI(diag);
   mat_j = hypre_CSRMatrixJ(diag);
   num_rows = hypre_CSRMatrixNumRows(diag);
   firstColDiag = hypre_ParCSRMatrixFirstColDiag(A);
   *rowmin = num_rows;
   *rowmax = -1;

   for ( i=0; i<num_rows; ++i ) {
      /* global number: row = i + firstRowIndex;*/
      for ( j=mat_i[i]; j<mat_i[i+1]; ++j ) {
         if ( mat_j[j]+firstColDiag==column ) {
            /* row i (local row number) has column mat_j[j] (local column number) */
            *rowmin = i<*rowmin ? i : *rowmin;
            *rowmax = i>*rowmax ? i : *rowmax;
            break;
         }
      }
   }
   mat_i = hypre_CSRMatrixI(offd);
   mat_j = hypre_CSRMatrixJ(offd);
   num_rows = hypre_CSRMatrixNumRows(offd);
   colMapOffd = hypre_ParCSRMatrixColMapOffd(A);
   for ( i=0; i<num_rows; ++i ) {
      /* global number: row = i + firstRowIndex;*/
      for ( j=mat_i[i]; j<mat_i[i+1]; ++j ) {
         if ( colMapOffd[ mat_j[j] ]==column ) {
            /* row i (local row number) has column mat_j[j] (local column number) */
            *rowmin = i<*rowmin ? i : *rowmin;
            *rowmax = i>*rowmax ? i : *rowmax;
            break;
         }
      }
   }

/*      global col no.:  mat_j[j]+hypre_ParCSRMatrixFirstColDiag(A)
                      or hypre_ParCSRMatrixColMapOffd(A)[ mat_j[j] ]
        global row no.: i + hypre_ParCSRMatrixFirstRowIndex(A)
*/

}
コード例 #5
0
ファイル: par_cgc_coarsen.c プロジェクト: apc-llc/hypre
HYPRE_Int AmgCGCBoundaryFix (hypre_ParCSRMatrix *S,HYPRE_Int *CF_marker,HYPRE_Int *CF_marker_offd)
  /* Checks whether an interpolation is possible for a fine grid point with strong couplings.
   * Required after CGC coarsening
   * ========================================================================================
   * S : the strength matrix
   * CF_marker, CF_marker_offd : the coarse/fine markers
   * ========================================================================================*/
{
  HYPRE_Int mpirank,i,j,has_c_pt,ierr=0;
  hypre_CSRMatrix *S_diag = hypre_ParCSRMatrixDiag (S);
  hypre_CSRMatrix *S_offd = hypre_ParCSRMatrixOffd (S);
  HYPRE_Int *S_i = hypre_CSRMatrixI(S_diag);
  HYPRE_Int *S_j = hypre_CSRMatrixJ(S_diag);
  HYPRE_Int *S_offd_i = hypre_CSRMatrixI(S_offd);
  HYPRE_Int *S_offd_j = NULL;
  HYPRE_Int num_variables = hypre_CSRMatrixNumRows (S_diag);
  HYPRE_Int num_cols_offd = hypre_CSRMatrixNumCols (S_offd);
  HYPRE_Int added_cpts=0;
  MPI_Comm comm = hypre_ParCSRMatrixComm(S);

  hypre_MPI_Comm_rank (comm,&mpirank);
  if (num_cols_offd) {
      S_offd_j = hypre_CSRMatrixJ(S_offd);
  }
  
  for (i=0;i<num_variables;i++) {
    if (S_offd_i[i]==S_offd_i[i+1] || CF_marker[i] == C_PT) continue;
    has_c_pt=0;

    /* fine grid point with strong connections across the boundary */
    for (j=S_i[i];j<S_i[i+1];j++) 
      if (CF_marker[S_j[j]] == C_PT) {has_c_pt=1; break;}
    if (has_c_pt) continue;

    for (j=S_offd_i[i];j<S_offd_i[i+1];j++) 
      if (CF_marker_offd[S_offd_j[j]] == C_PT) {has_c_pt=1; break;}
    if (has_c_pt) continue;

    /* all points i is strongly coupled to are fine: make i C_PT */
    CF_marker[i] = C_PT;
#if 0
    hypre_printf ("Processor %d: added point %d in AmgCGCBoundaryFix\n",mpirank,i);
#endif
    added_cpts++;
  }
#if 0
  if (added_cpts)  hypre_printf ("Processor %d: added %d points in AmgCGCBoundaryFix\n",mpirank,added_cpts);
  fflush(stdout);
#endif
  return(ierr);
}
コード例 #6
0
ファイル: inx_part_of_u_interp.c プロジェクト: apc-llc/hypre
HYPRE_Int
hypre_CreateDomain
(HYPRE_Int *CF_marker, hypre_CSRMatrix *A, HYPRE_Int num_coarse,
HYPRE_Int *dof_func, HYPRE_Int **coarse_dof_ptr,
HYPRE_Int **domain_i_ptr, HYPRE_Int **domain_j_ptr)

{
   HYPRE_Int *A_i = hypre_CSRMatrixI(A);    
   HYPRE_Int *A_j = hypre_CSRMatrixJ(A);    
   HYPRE_Int num_vars = hypre_CSRMatrixNumRows(A);
   HYPRE_Int i, j, cnt, domain, j_indx;
   HYPRE_Int *domain_i;
   HYPRE_Int *domain_j;
   HYPRE_Int *coarse_dof;
   HYPRE_Int num_pts = 0;

   domain_i = hypre_CTAlloc(HYPRE_Int, num_coarse+1);
   coarse_dof = hypre_CTAlloc(HYPRE_Int, num_coarse);

   cnt = 0;
   for (i=0; i < num_vars; i++)
   {
      if (CF_marker[i] > 0)
      {
         num_pts += A_i[i+1]-A_i[i];
         coarse_dof[cnt++] = dof_func[i];
      }
   }
   domain_j = hypre_CTAlloc(HYPRE_Int, num_pts);

   cnt = 0;
   domain = 0;
   domain_i[0] = 0;
   for (i=0; i < num_vars; i++)
   {
       if (CF_marker[i] > 0)
       {
          domain_j[cnt++] = i;
          for (j=A_i[i]; j < A_i[i+1]; j++)
	  {
	    j_indx = A_j[j];
	    if (CF_marker[j_indx]<1)
	    {
	       domain_j[cnt++] = j_indx;
            }
          }
          domain++;
          domain_i[domain] = cnt;
       }         
   } 

   *domain_i_ptr = domain_i;
   *domain_j_ptr = domain_j;
   *coarse_dof_ptr = coarse_dof;

   return 0;
}
コード例 #7
0
ファイル: par_csr_matop_marked.c プロジェクト: LLNL/COGENT
 /* coarse (marked >=0) rows of P copied from C Both matrices have the same sizes. */
void hypre_ParCSRMatrixCopy_C( hypre_ParCSRMatrix * P,
                               hypre_ParCSRMatrix * C, HYPRE_Int * CF_marker )
{
   hypre_CSRMatrix *C_diag = hypre_ParCSRMatrixDiag(C);
   hypre_CSRMatrix *C_offd = hypre_ParCSRMatrixOffd(C);
   hypre_CSRMatrix *P_diag = hypre_ParCSRMatrixDiag(P);
   hypre_CSRMatrix *P_offd = hypre_ParCSRMatrixOffd(P);

   double          *C_diag_data = hypre_CSRMatrixData(C_diag);
   HYPRE_Int             *C_diag_i = hypre_CSRMatrixI(C_diag);
   double          *C_offd_data = hypre_CSRMatrixData(C_offd);
   HYPRE_Int             *C_offd_i = hypre_CSRMatrixI(C_offd);
   double          *P_diag_data = hypre_CSRMatrixData(P_diag);
   double          *P_offd_data = hypre_CSRMatrixData(P_offd);
   HYPRE_Int	num_rows_diag_C = hypre_CSRMatrixNumRows(C_diag);
   HYPRE_Int	num_rows_offd_C = hypre_CSRMatrixNumRows(C_offd);
   HYPRE_Int	num_cols_offd_C = hypre_CSRMatrixNumCols(C_offd);

   HYPRE_Int i1, m;

   for ( i1= 0; i1 < num_rows_diag_C; i1++ )
   {
      if ( CF_marker[i1] >= 0 )  /* Coarse rows only */
      {
         for ( m=C_diag_i[i1]; m<C_diag_i[i1+1]; ++m )
         {
            P_diag_data[m] = C_diag_data[m];
         }
      }
   }
   if ( num_cols_offd_C )
      for ( i1= 0; i1 < num_rows_offd_C; i1++ )
      {
         if ( CF_marker[i1] >= 0 )  /* Coarse rows only */
         {
            for ( m=C_offd_i[i1]; m<C_offd_i[i1+1]; ++m )
            {
               P_offd_data[m] = C_offd_data[m];
            }
         }
      }

}
コード例 #8
0
ファイル: par_csr_matop_marked.c プロジェクト: LLNL/COGENT
  /* fine (marked <0 ) rows of Pnew set to 0 */
void  hypre_ParCSRMatrixZero_F( hypre_ParCSRMatrix * P, HYPRE_Int * CF_marker )
{
   hypre_CSRMatrix *P_diag = hypre_ParCSRMatrixDiag(P);
   hypre_CSRMatrix *P_offd = hypre_ParCSRMatrixOffd(P);

   double          *P_diag_data = hypre_CSRMatrixData(P_diag);
   HYPRE_Int             *P_diag_i = hypre_CSRMatrixI(P_diag);
   double          *P_offd_data = hypre_CSRMatrixData(P_offd);
   HYPRE_Int             *P_offd_i = hypre_CSRMatrixI(P_offd);
   HYPRE_Int	num_rows_diag_P = hypre_CSRMatrixNumRows(P_diag);
   HYPRE_Int	num_rows_offd_P = hypre_CSRMatrixNumRows(P_offd);
   HYPRE_Int	num_cols_offd_P = hypre_CSRMatrixNumCols(P_offd);
   HYPRE_Int i1,  m;

   for ( i1= 0; i1 < num_rows_diag_P; i1++ )
   {
      if ( CF_marker[i1] < 0 )  /* Fine rows only */
      {
         for ( m=P_diag_i[i1]; m<P_diag_i[i1+1]; ++m )
         {
            P_diag_data[m] = 0;
         }
      }
   }
   if ( num_cols_offd_P )
      for ( i1= 0; i1 < num_rows_offd_P; i1++ )
      {
         if ( CF_marker[i1] < 0 )  /* Fine rows only */
         {
            for ( m=P_offd_i[i1]; m<P_offd_i[i1+1]; ++m )
            {
               P_offd_data[m] = 0;
            }
         }
      }

}
コード例 #9
0
ファイル: IJMatrix_petsc.c プロジェクト: tpatki/rapl-old-data
/******************************************************************************
 *
 * hypre_IJMatrixSetOffDiagRowSizesPETSc
 * sets offd_i inside the offd part of the ParCSRMatrix,
 * requires exact sizes for offd
 *
 *****************************************************************************/
HYPRE_Int
hypre_IJMatrixSetOffDiagRowSizesPETSc(hypre_IJMatrix *matrix,
			      	      HYPRE_Int	      *sizes)
{
   HYPRE_Int local_num_rows;
   HYPRE_Int i;
   hypre_ParCSRMatrix *par_matrix;
   hypre_CSRMatrix *offd;
   HYPRE_Int *offd_i;
   par_matrix = hypre_IJMatrixLocalStorage(matrix);
   if (!par_matrix)
      return -1;
   
   offd =  hypre_ParCSRMatrixOffd(par_matrix);
   offd_i =  hypre_CSRMatrixI(offd);
   local_num_rows = hypre_CSRMatrixNumRows(offd);
   if (!offd_i)
      offd_i = hypre_CTAlloc(HYPRE_Int, local_num_rows+1);
   for (i = 0; i < local_num_rows+1; i++)
      offd_i[i] = sizes[i];
   hypre_CSRMatrixI(offd) = offd_i;
   hypre_CSRMatrixNumNonzeros(offd) = offd_i[local_num_rows];
   return 0;
}
コード例 #10
0
ファイル: IJMatrix_petsc.c プロジェクト: tpatki/rapl-old-data
/******************************************************************************
 *
 * hypre_IJMatrixSetDiagRowSizesPETSc
 * sets diag_i inside the diag part of the ParCSRMatrix,
 * requires exact sizes for diag
 *
 *****************************************************************************/
HYPRE_Int
hypre_IJMatrixSetDiagRowSizesPETSc(hypre_IJMatrix *matrix,
			      	   HYPRE_Int	           *sizes)
{
   HYPRE_Int local_num_rows;
   HYPRE_Int i;
   hypre_ParCSRMatrix *par_matrix;
   hypre_CSRMatrix *diag;
   HYPRE_Int *diag_i;
   par_matrix = hypre_IJMatrixLocalStorage(matrix);
   if (!par_matrix)
      return -1;
   
   diag =  hypre_ParCSRMatrixDiag(par_matrix);
   diag_i =  hypre_CSRMatrixI(diag);
   local_num_rows = hypre_CSRMatrixNumRows(diag);
   if (!diag_i)
      diag_i = hypre_CTAlloc(HYPRE_Int, local_num_rows+1);
   for (i = 0; i < local_num_rows+1; i++)
      diag_i[i] = sizes[i];
   hypre_CSRMatrixI(diag) = diag_i;
   hypre_CSRMatrixNumNonzeros(diag) = diag_i[local_num_rows];
   return 0;
}
コード例 #11
0
ファイル: hypre_parcsr.cpp プロジェクト: jdahm/mfem
/*
  Function:  hypre_CSRMatrixEliminateOffdRowsAXB

  Eliminate (zero) the given list of rows of A.
*/
void hypre_CSRMatrixEliminateOffdRowsAXB(hypre_CSRMatrix *A,
        HYPRE_Int  nrows_to_eliminate,
        HYPRE_Int *rows_to_eliminate)
{
    HYPRE_Int  *Ai    = hypre_CSRMatrixI(A);
    HYPRE_Real *Adata = hypre_CSRMatrixData(A);

    HYPRE_Int i, j;
    HYPRE_Int irow, ibeg, iend;

    for (i = 0; i < nrows_to_eliminate; i++)
    {
        irow = rows_to_eliminate[i];
        ibeg = Ai[irow];
        iend = Ai[irow+1];
        for (j = ibeg; j < iend; j++)
        {
            Adata[j] = 0.0;
        }
    }
}
コード例 #12
0
HYPRE_Int 
HYPRE_ParCSRDiagScale( HYPRE_Solver solver,
                       HYPRE_ParCSRMatrix HA,
                       HYPRE_ParVector Hy,
                       HYPRE_ParVector Hx      )
{
   hypre_ParCSRMatrix *A = (hypre_ParCSRMatrix *) HA;
   hypre_ParVector    *y = (hypre_ParVector *) Hy;
   hypre_ParVector    *x = (hypre_ParVector *) Hx;
   double *x_data = hypre_VectorData(hypre_ParVectorLocalVector(x));
   double *y_data = hypre_VectorData(hypre_ParVectorLocalVector(y));
   double *A_data = hypre_CSRMatrixData(hypre_ParCSRMatrixDiag(A));
   HYPRE_Int *A_i = hypre_CSRMatrixI(hypre_ParCSRMatrixDiag(A));
   HYPRE_Int local_size = hypre_VectorSize(hypre_ParVectorLocalVector(x));
   HYPRE_Int i, ierr = 0;

   for (i=0; i < local_size; i++)
   {
	x_data[i] = y_data[i]/A_data[A_i[i]];
   } 
 
   return ierr;
}
コード例 #13
0
HYPRE_ParCSRMatrix
GenerateRotate7pt( MPI_Comm comm,
                   HYPRE_Int      nx,
                   HYPRE_Int      ny,
                   HYPRE_Int      P,
                   HYPRE_Int      Q,
                   HYPRE_Int      p,
                   HYPRE_Int      q,
                   HYPRE_Real   alpha,
                   HYPRE_Real   eps )
{
    hypre_ParCSRMatrix *A;
    hypre_CSRMatrix *diag;
    hypre_CSRMatrix *offd;

    HYPRE_Int    *diag_i;
    HYPRE_Int    *diag_j;
    HYPRE_Real *diag_data;

    HYPRE_Int    *offd_i;
    HYPRE_Int    *offd_j;
    HYPRE_Real *offd_data;

    HYPRE_Real *value;
    HYPRE_Real ac, bc, cc, s, c, pi, x;
    HYPRE_Int *global_part;
    HYPRE_Int ix, iy;
    HYPRE_Int cnt, o_cnt;
    HYPRE_Int local_num_rows;
    HYPRE_Int *col_map_offd;
    HYPRE_Int *work;
    HYPRE_Int row_index;
    HYPRE_Int i,j;

    HYPRE_Int nx_local, ny_local;
    HYPRE_Int nx_size, ny_size;
    HYPRE_Int num_cols_offd;
    HYPRE_Int grid_size;

    HYPRE_Int *nx_part;
    HYPRE_Int *ny_part;

    HYPRE_Int num_procs, my_id;
    HYPRE_Int P_busy, Q_busy;

    hypre_MPI_Comm_size(comm,&num_procs);
    hypre_MPI_Comm_rank(comm,&my_id);

    grid_size = nx*ny;

    value = hypre_CTAlloc(HYPRE_Real,4);
    pi = 4.0*atan(1.0);
    x = pi*alpha/180.0;
    s = sin(x);
    c = cos(x);
    ac = -(c*c + eps*s*s);
    bc = 2.0*(1.0 - eps)*s*c;
    cc = -(s*s + eps*c*c);
    value[0] = -2*(2*ac+bc+2*cc);
    value[1] = 2*ac+bc;
    value[2] = bc+2*cc;
    value[3] = -bc;

    hypre_GeneratePartitioning(nx,P,&nx_part);
    hypre_GeneratePartitioning(ny,Q,&ny_part);

    global_part = hypre_CTAlloc(HYPRE_Int,P*Q+1);

    global_part[0] = 0;
    cnt = 1;
    for (iy = 0; iy < Q; iy++)
    {
        ny_size = ny_part[iy+1]-ny_part[iy];
        for (ix = 0; ix < P; ix++)
        {
            nx_size = nx_part[ix+1] - nx_part[ix];
            global_part[cnt] = global_part[cnt-1];
            global_part[cnt++] += nx_size*ny_size;
        }
    }

    nx_local = nx_part[p+1] - nx_part[p];
    ny_local = ny_part[q+1] - ny_part[q];

    my_id = q*P + p;
    num_procs = P*Q;

    local_num_rows = nx_local*ny_local;
    diag_i = hypre_CTAlloc(HYPRE_Int, local_num_rows+1);
    offd_i = hypre_CTAlloc(HYPRE_Int, local_num_rows+1);

    P_busy = hypre_min(nx,P);
    Q_busy = hypre_min(ny,Q);

    num_cols_offd = 0;
    if (p) num_cols_offd += ny_local;
    if (p < P_busy-1) num_cols_offd += ny_local;
    if (q) num_cols_offd += nx_local;
    if (q < Q_busy-1) num_cols_offd += nx_local;
    if (p && q) num_cols_offd++;
    if (p && q < Q_busy-1 ) num_cols_offd++;
    if (p < P_busy-1 && q ) num_cols_offd++;
    if (p < P_busy-1 && q < Q_busy-1 ) num_cols_offd++;

    if (!local_num_rows) num_cols_offd = 0;

    col_map_offd = hypre_CTAlloc(HYPRE_Int, num_cols_offd);

    cnt = 0;
    o_cnt = 0;
    diag_i[0] = 0;
    offd_i[0] = 0;
    for (iy = ny_part[q];  iy < ny_part[q+1]; iy++)
    {
        for (ix = nx_part[p]; ix < nx_part[p+1]; ix++)
        {
            cnt++;
            o_cnt++;
            diag_i[cnt] = diag_i[cnt-1];
            offd_i[o_cnt] = offd_i[o_cnt-1];
            diag_i[cnt]++;
            if (iy > ny_part[q])
            {
                diag_i[cnt]++;
                if (ix > nx_part[p])
                {
                    diag_i[cnt]++;
                }
                else
                {
                    if (ix)
                        offd_i[o_cnt]++;
                }
            }
            else
            {
                if (iy)
                {
                    offd_i[o_cnt]++;
                    if (ix > nx_part[p])
                    {
                        offd_i[o_cnt]++;
                    }
                    else if (ix)
                    {
                        offd_i[o_cnt]++;
                    }
                }
            }
            if (ix > nx_part[p])
                diag_i[cnt]++;
            else
            {
                if (ix)
                {
                    offd_i[o_cnt]++;
                }
            }
            if (ix+1 < nx_part[p+1])
                diag_i[cnt]++;
            else
            {
                if (ix+1 < nx)
                {
                    offd_i[o_cnt]++;
                }
            }
            if (iy+1 < ny_part[q+1])
            {
                diag_i[cnt]++;
                if (ix < nx_part[p+1]-1)
                {
                    diag_i[cnt]++;
                }
                else
                {
                    if (ix+1 < nx)
                        offd_i[o_cnt]++;
                }
            }
            else
            {
                if (iy+1 < ny)
                {
                    offd_i[o_cnt]++;
                    if (ix < nx_part[p+1]-1)
                    {
                        offd_i[o_cnt]++;
                    }
                    else if (ix < nx-1)
                    {
                        offd_i[o_cnt]++;
                    }
                }
            }
        }
    }

    diag_j = hypre_CTAlloc(HYPRE_Int, diag_i[local_num_rows]);
    diag_data = hypre_CTAlloc(HYPRE_Real, diag_i[local_num_rows]);

    if (num_procs > 1)
    {
        offd_j = hypre_CTAlloc(HYPRE_Int, offd_i[local_num_rows]);
        offd_data = hypre_CTAlloc(HYPRE_Real, offd_i[local_num_rows]);
    }

    row_index = 0;
    cnt = 0;
    o_cnt = 0;
    for (iy = ny_part[q];  iy < ny_part[q+1]; iy++)
    {
        for (ix = nx_part[p]; ix < nx_part[p+1]; ix++)
        {
            diag_j[cnt] = row_index;
            diag_data[cnt++] = value[0];
            if (iy > ny_part[q])
            {
                if (ix > nx_part[p])
                {
                    diag_j[cnt] = row_index-nx_local-1 ;
                    diag_data[cnt++] = value[3];
                }
                else
                {
                    if (ix)
                    {
                        offd_j[o_cnt] = hypre_map2(ix-1,iy-1,p-1,q,P,Q,
                                                   nx_part,ny_part,global_part);
                        offd_data[o_cnt++] = value[3];
                    }
                }
                diag_j[cnt] = row_index-nx_local;
                diag_data[cnt++] = value[2];
            }
            else
            {
                if (iy)
                {
                    if (ix > nx_part[p])
                    {
                        offd_j[o_cnt] = hypre_map2(ix-1,iy-1,p,q-1,P,Q,
                                                   nx_part,ny_part,global_part);
                        offd_data[o_cnt++] = value[3];
                    }
                    else if (ix)
                    {
                        offd_j[o_cnt] = hypre_map2(ix-1,iy-1,p-1,q-1,P,Q,
                                                   nx_part,ny_part,global_part);
                        offd_data[o_cnt++] = value[3];
                    }
                    offd_j[o_cnt] = hypre_map2(ix,iy-1,p,q-1,P,Q,
                                               nx_part,ny_part,global_part);
                    offd_data[o_cnt++] = value[2];
                }
            }
            if (ix > nx_part[p])
            {
                diag_j[cnt] = row_index-1;
                diag_data[cnt++] = value[1];
            }
            else
            {
                if (ix)
                {
                    offd_j[o_cnt] = hypre_map2(ix-1,iy,p-1,q,P,Q,
                                               nx_part,ny_part,global_part);
                    offd_data[o_cnt++] = value[1];
                }
            }
            if (ix+1 < nx_part[p+1])
            {
                diag_j[cnt] = row_index+1;
                diag_data[cnt++] = value[1];
            }
            else
            {
                if (ix+1 < nx)
                {
                    offd_j[o_cnt] = hypre_map2(ix+1,iy,p+1,q,P,Q,
                                               nx_part,ny_part,global_part);
                    offd_data[o_cnt++] = value[1];
                }
            }
            if (iy+1 < ny_part[q+1])
            {
                diag_j[cnt] = row_index+nx_local;
                diag_data[cnt++] = value[2];
                if (ix < nx_part[p+1]-1)
                {
                    diag_j[cnt] = row_index+nx_local+1 ;
                    diag_data[cnt++] = value[3];
                }
                else
                {
                    if (ix+1 < nx)
                    {
                        offd_j[o_cnt] = hypre_map2(ix+1,iy+1,p+1,q,P,Q,
                                                   nx_part,ny_part,global_part);
                        offd_data[o_cnt++] = value[3];
                    }
                }
            }
            else
            {
                if (iy+1 < ny)
                {
                    offd_j[o_cnt] = hypre_map2(ix,iy+1,p,q+1,P,Q,
                                               nx_part,ny_part,global_part);
                    offd_data[o_cnt++] = value[2];
                    if (ix < nx_part[p+1]-1)
                    {
                        offd_j[o_cnt] = hypre_map2(ix+1,iy+1,p,q+1,P,Q,
                                                   nx_part,ny_part,global_part);
                        offd_data[o_cnt++] = value[3];
                    }
                    else if (ix < nx-1)
                    {
                        offd_j[o_cnt] = hypre_map2(ix+1,iy+1,p+1,q+1,P,Q,
                                                   nx_part,ny_part,global_part);
                        offd_data[o_cnt++] = value[3];
                    }
                }
            }
            row_index++;
        }
    }

    if (num_procs > 1)
    {
        work = hypre_CTAlloc(HYPRE_Int,o_cnt);

        for (i=0; i < o_cnt; i++)
            work[i] = offd_j[i];

        qsort0(work, 0, o_cnt-1);

        col_map_offd[0] = work[0];
        cnt = 0;
        for (i=0; i < o_cnt; i++)
        {
            if (work[i] > col_map_offd[cnt])
            {
                cnt++;
                col_map_offd[cnt] = work[i];
            }
        }

        for (i=0; i < o_cnt; i++)
        {
            for (j=0; j < num_cols_offd; j++)
            {
                if (offd_j[i] == col_map_offd[j])
                {
                    offd_j[i] = j;
                    break;
                }
            }
        }

        hypre_TFree(work);
    }

    A = hypre_ParCSRMatrixCreate(comm, grid_size, grid_size,
                                 global_part, global_part, num_cols_offd,
                                 diag_i[local_num_rows],
                                 offd_i[local_num_rows]);

    hypre_ParCSRMatrixColMapOffd(A) = col_map_offd;

    diag = hypre_ParCSRMatrixDiag(A);
    hypre_CSRMatrixI(diag) = diag_i;
    hypre_CSRMatrixJ(diag) = diag_j;
    hypre_CSRMatrixData(diag) = diag_data;

    offd = hypre_ParCSRMatrixOffd(A);
    hypre_CSRMatrixI(offd) = offd_i;
    if (num_cols_offd)
    {
        hypre_CSRMatrixJ(offd) = offd_j;
        hypre_CSRMatrixData(offd) = offd_data;
    }

    hypre_TFree(nx_part);
    hypre_TFree(ny_part);
    hypre_TFree(value);

    return (HYPRE_ParCSRMatrix) A;
}
コード例 #14
0
ファイル: par_csr_matop_marked.c プロジェクト: LLNL/COGENT
void hypre_ParMatScaleDiagInv_F(
   hypre_ParCSRMatrix * C, hypre_ParCSRMatrix * A, double weight, HYPRE_Int * CF_marker )
   /* hypre_ParMatScaleDiagInv scales certain rows of its first
    * argument by premultiplying with a submatrix of the inverse of
    * the diagonal of its second argument; and _also_ multiplying by the scalar
    * third argument.
    * The marker array determines rows are changed and which diagonal elements
    * are used.
    */
{
   /*
     If A=(Aij),C=(Cik), i&j in Fine+Coarse, k in Coarse, we want
        new Cik = (1/aii)*Cik, for Fine i only, all k.
     Unlike a matmul, this computation is purely local, only the diag
     blocks are involved.
   */

   hypre_CSRMatrix *A_diag = hypre_ParCSRMatrixDiag(A);
   hypre_CSRMatrix *C_diag = hypre_ParCSRMatrixDiag(C);
   hypre_CSRMatrix *C_offd = hypre_ParCSRMatrixOffd(C);

   double          *A_diag_data = hypre_CSRMatrixData(A_diag);
   HYPRE_Int             *A_diag_i = hypre_CSRMatrixI(A_diag);
   HYPRE_Int             *A_diag_j = hypre_CSRMatrixJ(A_diag);
   double          *C_diag_data = hypre_CSRMatrixData(C_diag);
   double          *C_offd_data = hypre_CSRMatrixData(C_offd);
   HYPRE_Int             *C_diag_i = hypre_CSRMatrixI(C_diag);
   HYPRE_Int             *C_offd_i = hypre_CSRMatrixI(C_offd);


   HYPRE_Int	num_rows_diag_C = hypre_CSRMatrixNumRows(C_diag);
   HYPRE_Int	num_cols_offd_C = hypre_CSRMatrixNumCols(C_offd);

   HYPRE_Int              i1, i2;
   HYPRE_Int              jj2, jj3;
   double           a_entry;

   /*-----------------------------------------------------------------------
    *  Loop over C_diag rows.
    *-----------------------------------------------------------------------*/
    
   for (i1 = 0; i1 < num_rows_diag_C; i1++)
   {
      
      if ( CF_marker[i1] < 0 )  /* Fine data only */
      {

         /*-----------------------------------------------------------------
          *  Loop over A_diag data
          *-----------------------------------------------------------------*/

         for (jj2 = A_diag_i[i1]; jj2 < A_diag_i[i1+1]; jj2++)
         {
            i2 = A_diag_j[jj2];
            if ( i1==i2 )  /* diagonal of A only */
            {
               a_entry = A_diag_data[jj2] * weight;
            
               /*-----------------------------------------------------------
                *  Loop over entries in current row of C_diag.
                *-----------------------------------------------------------*/

               for (jj3 = C_diag_i[i2]; jj3 < C_diag_i[i2+1]; jj3++)
               {
                  C_diag_data[jj3] = C_diag_data[jj3] / a_entry;
                  
               }
               /*-----------------------------------------------------------
                *  Loop over entries in current row of C_offd.
                *-----------------------------------------------------------*/

               if ( num_cols_offd_C )
               {
                  for (jj3 = C_offd_i[i2]; jj3 < C_offd_i[i2+1]; jj3++)
                  {
                     C_offd_data[jj3] = C_offd_data[jj3] / a_entry;
                  }
               }
            }
         }
      }
   }

}
コード例 #15
0
ファイル: par_csr_matop_marked.c プロジェクト: LLNL/COGENT
hypre_ParCSRMatrix * hypre_ParMatMinus_F(
   hypre_ParCSRMatrix * P, hypre_ParCSRMatrix * C, HYPRE_Int * CF_marker )
/* hypre_ParMatMinus_F subtracts selected rows of its second argument
   from selected rows of its first argument.  The marker array
   determines which rows are affected - those for which CF_marker<0.
   The result is returned as a new matrix.
*/
{
   /*
     If P=(Pik),C=(Cik), i in Fine+Coarse, k in Coarse, we want
        new Pik = Pik - Cik, for Fine i only, all k.
     This computation is purely local.
   */
   /* This is _not_ a general-purpose matrix subtraction function.
      This is written for an interpolation problem where it is known that C(i,k)
      exists whenever P(i,k) does (because C=A*P where A has nonzero diagonal elements).
   */

   hypre_ParCSRMatrix *Pnew;
   hypre_CSRMatrix *P_diag = hypre_ParCSRMatrixDiag(P);
   hypre_CSRMatrix *P_offd = hypre_ParCSRMatrixOffd(P);
   hypre_CSRMatrix *C_diag = hypre_ParCSRMatrixDiag(C);
   hypre_CSRMatrix *C_offd = hypre_ParCSRMatrixOffd(C);
   hypre_CSRMatrix *Pnew_diag;
   hypre_CSRMatrix *Pnew_offd;

   double          *P_diag_data = hypre_CSRMatrixData(P_diag);
   HYPRE_Int             *P_diag_i = hypre_CSRMatrixI(P_diag);
   HYPRE_Int             *P_diag_j = hypre_CSRMatrixJ(P_diag);
   double          *P_offd_data = hypre_CSRMatrixData(P_offd);
   HYPRE_Int             *P_offd_i = hypre_CSRMatrixI(P_offd);
   HYPRE_Int             *P_offd_j = hypre_CSRMatrixJ(P_offd);
   HYPRE_Int             *P_col_map_offd = hypre_ParCSRMatrixColMapOffd( P );
   double          *C_diag_data = hypre_CSRMatrixData(C_diag);
   HYPRE_Int             *C_diag_i = hypre_CSRMatrixI(C_diag);
   HYPRE_Int             *C_diag_j = hypre_CSRMatrixJ(C_diag);
   double          *C_offd_data = hypre_CSRMatrixData(C_offd);
   HYPRE_Int             *C_offd_i = hypre_CSRMatrixI(C_offd);
   HYPRE_Int             *C_offd_j = hypre_CSRMatrixJ(C_offd);
   HYPRE_Int             *C_col_map_offd = hypre_ParCSRMatrixColMapOffd( C );
   HYPRE_Int             *Pnew_diag_i;
   HYPRE_Int             *Pnew_diag_j;
   double          *Pnew_diag_data;
   HYPRE_Int             *Pnew_offd_i;
   HYPRE_Int             *Pnew_offd_j;
   double          *Pnew_offd_data;
   HYPRE_Int             *Pnew_j2m;
   HYPRE_Int             *Pnew_col_map_offd;

   HYPRE_Int	num_rows_diag_C = hypre_CSRMatrixNumRows(C_diag);
   /* HYPRE_Int	num_rows_offd_C = hypre_CSRMatrixNumRows(C_offd); */
   HYPRE_Int	num_cols_offd_C = hypre_CSRMatrixNumCols(C_offd);
   HYPRE_Int	num_cols_offd_P = hypre_CSRMatrixNumCols(P_offd);
   HYPRE_Int  num_cols_offd_Pnew, num_rows_offd_Pnew;
   
   HYPRE_Int              i1, jmin, jmax, jrange, jrangem1;
   HYPRE_Int              j, m, mc, mp, jc, jp, jP, jC, jg, jCg, jPg;
   double           dc, dp;

/*   Pnew = hypre_ParCSRMatrixCompleteClone( C );*/

   Pnew = hypre_ParCSRMatrixUnion( C, P );
;
   hypre_ParCSRMatrixZero_F( Pnew, CF_marker );  /* fine rows of Pnew set to 0 */
   hypre_ParCSRMatrixCopy_C( Pnew, C, CF_marker ); /* coarse rows of Pnew copied from C (or P) */
   /* ...Zero_F may not be needed depending on how Pnew is made */
   Pnew_diag = hypre_ParCSRMatrixDiag(Pnew);
   Pnew_offd = hypre_ParCSRMatrixOffd(Pnew);
   Pnew_diag_i = hypre_CSRMatrixI(Pnew_diag);
   Pnew_diag_j = hypre_CSRMatrixJ(Pnew_diag);
   Pnew_offd_i = hypre_CSRMatrixI(Pnew_offd);
   Pnew_offd_j = hypre_CSRMatrixJ(Pnew_offd);
   Pnew_diag_data = hypre_CSRMatrixData(Pnew_diag);
   Pnew_offd_data = hypre_CSRMatrixData(Pnew_offd);
   Pnew_col_map_offd = hypre_ParCSRMatrixColMapOffd( Pnew );
   num_rows_offd_Pnew = hypre_CSRMatrixNumRows(Pnew_offd);
   num_cols_offd_Pnew = hypre_CSRMatrixNumCols(Pnew_offd);


   /* Find the j-ranges, needed to allocate a "reverse lookup" array. */
   /* This is the max j - min j over P and Pnew (which here is a copy of C).
      Only the diag block is considered. */
   /* For scalability reasons (jrange can get big) this won't work for the offd block.
      Also, indexing is more complicated in the offd block (c.f. col_map_offd).
      It's not clear, though whether the "quadratic" algorithm I'm using for the offd
      block is really any slower than the more complicated "linear" algorithm here. */
   jrange = 0;
   jrangem1=-1;
   for ( i1 = 0; i1 < num_rows_diag_C; i1++ )
   {
      if ( CF_marker[i1]<0 && hypre_CSRMatrixNumNonzeros(Pnew_diag)>0 )  /* only Fine rows matter */
      {
         jmin = Pnew_diag_j[ Pnew_diag_i[i1] ];
         jmax = Pnew_diag_j[ Pnew_diag_i[i1+1]-1 ];
         jrangem1 = jmax-jmin;
         jrange = hypre_max(jrange,jrangem1+1);
         /* If columns (of a given row) were in increasing order, the above would be sufficient.
            If not, the following would be necessary (and sufficient) */
         jmin = Pnew_diag_j[ Pnew_diag_i[i1] ];
         jmax = Pnew_diag_j[ Pnew_diag_i[i1] ];
         for ( m=Pnew_diag_i[i1]+1; m<Pnew_diag_i[i1+1]; ++m )
         {
            j = Pnew_diag_j[m];
            jmin = hypre_min( jmin, j );
            jmax = hypre_max( jmax, j );
         }
         for ( m=P_diag_i[i1]; m<P_diag_i[i1+1]; ++m )
         {
            j = P_diag_j[m];
            jmin = hypre_min( jmin, j );
            jmax = hypre_max( jmax, j );
         }
         jrangem1 = jmax-jmin;
         jrange = hypre_max(jrange,jrangem1+1);
      }
   }


   /*-----------------------------------------------------------------------
    *  Loop over Pnew_diag rows.  Construct a temporary reverse array:
    *  If j is a column number, Pnew_j2m[j] is the array index for j, i.e.
    *  Pnew_diag_j[ Pnew_j2m[j] ] = j
    *-----------------------------------------------------------------------*/

   Pnew_j2m = hypre_CTAlloc( HYPRE_Int, jrange );

   for ( i1 = 0; i1 < num_rows_diag_C; i1++ )
   {
      if ( CF_marker[i1]<0 && hypre_CSRMatrixNumNonzeros(Pnew_diag)>0 )  /* Fine data only */
      {
         /* just needed for an assertion below... */
         for ( j=0; j<jrange; ++j ) Pnew_j2m[j] = -1;
         jmin = Pnew_diag_j[ Pnew_diag_i[i1] ];
            /* If columns (of a given row) were in increasing order, the above line would be sufficient.
               If not, the following loop would have to be added (or store the jmin computed above )*/
         for ( m=Pnew_diag_i[i1]+1; m<Pnew_diag_i[i1+1]; ++m )
         {
            j = Pnew_diag_j[m];
            jmin = hypre_min( jmin, j );
         }
         for ( m=P_diag_i[i1]; m<P_diag_i[i1+1]; ++m )
         {
            j = P_diag_j[m];
            jmin = hypre_min( jmin, j );
         }
         for ( m = Pnew_diag_i[i1]; m<Pnew_diag_i[i1+1]; ++m )
         {
            j = Pnew_diag_j[m];
            hypre_assert( j-jmin>=0 );
            hypre_assert( j-jmin<jrange );
            Pnew_j2m[ j-jmin ] = m;
         }

         /*-----------------------------------------------------------------------
          *  Loop over C_diag data for the current row.
          *  Subtract each C data entry from the corresponding Pnew entry.
          *-----------------------------------------------------------------------*/

         for ( mc=C_diag_i[i1]; mc<C_diag_i[i1+1]; ++mc )
         {
            jc = C_diag_j[mc];
            dc = C_diag_data[mc];
            m = Pnew_j2m[jc-jmin];
            hypre_assert( m>=0 );
            Pnew_diag_data[m] -= dc;
         }

         /*-----------------------------------------------------------------------
          *  Loop over P_diag data for the current row.
          *  Add each P data entry from the corresponding Pnew entry.
          *-----------------------------------------------------------------------*/

         for ( mp=P_diag_i[i1]; mp<P_diag_i[i1+1]; ++mp )
         {
            jp = P_diag_j[mp];
            dp = P_diag_data[mp];
            m = Pnew_j2m[jp-jmin];
            hypre_assert( m>=0 );
            Pnew_diag_data[m] += dp;
         }
      }
   }

         /*-----------------------------------------------------------------------
          * Repeat for the offd block.
          *-----------------------------------------------------------------------*/

   for ( i1 = 0; i1 < num_rows_offd_Pnew; i1++ )
   {
      if ( CF_marker[i1]<0 && hypre_CSRMatrixNumNonzeros(Pnew_offd)>0 )  /* Fine data only */
      {
         if ( num_cols_offd_Pnew )
         {
            /*  This is a simple quadratic algorithm.  If necessary I may try
               to implement the ideas used on the diag block later. */
            for ( m = Pnew_offd_i[i1]; m<Pnew_offd_i[i1+1]; ++m )
            {
               j = Pnew_offd_j[m];
               jg = Pnew_col_map_offd[j];
               Pnew_offd_data[m] = 0;
               if ( num_cols_offd_C )
                  for ( mc=C_offd_i[i1]; mc<C_offd_i[i1+1]; ++mc )
                  {
                     jC = C_offd_j[mc];
                     jCg = C_col_map_offd[jC];
                     if ( jCg==jg ) Pnew_offd_data[m] -= C_offd_data[mc];
                  }
               if ( num_cols_offd_P )
                  for ( mp=P_offd_i[i1]; mp<P_offd_i[i1+1]; ++mp )
                  {
                     jP = P_offd_j[mp];
                     jPg = P_col_map_offd[jP];
                     if ( jPg==jg ) Pnew_offd_data[m] += P_offd_data[mp];
                  }
            }
         }
      }
   }


   hypre_TFree(Pnew_j2m);

   return Pnew;
}
コード例 #16
0
ファイル: par_csr_matop_marked.c プロジェクト: LLNL/COGENT
/* Delete any matrix entry C(i,j) for which the corresponding entry P(i,j) doesn't exist -
   but only for "fine" rows C(i)<0
   This is done as a purely local computation - C and P must have the same data distribution
   (among processors).
*/
void hypre_ParCSRMatrixDropEntries( hypre_ParCSRMatrix * C,
                                    hypre_ParCSRMatrix * P, HYPRE_Int * CF_marker )
{
   hypre_CSRMatrix *C_diag = hypre_ParCSRMatrixDiag(C);
   hypre_CSRMatrix *C_offd = hypre_ParCSRMatrixOffd(C);
   double          *C_diag_data = hypre_CSRMatrixData(C_diag);
   HYPRE_Int             *C_diag_i = hypre_CSRMatrixI(C_diag);
   HYPRE_Int             *C_diag_j = hypre_CSRMatrixJ(C_diag);
   double          *C_offd_data = hypre_CSRMatrixData(C_offd);
   HYPRE_Int             *C_offd_i = hypre_CSRMatrixI(C_offd);
   HYPRE_Int             *C_offd_j = hypre_CSRMatrixJ(C_offd);
   hypre_CSRMatrix *P_diag = hypre_ParCSRMatrixDiag(P);
   hypre_CSRMatrix *P_offd = hypre_ParCSRMatrixOffd(P);
   HYPRE_Int             *P_diag_i = hypre_CSRMatrixI(P_diag);
   HYPRE_Int             *P_diag_j = hypre_CSRMatrixJ(P_diag);
   HYPRE_Int             *P_offd_i = hypre_CSRMatrixI(P_offd);
   HYPRE_Int             *P_offd_j = hypre_CSRMatrixJ(P_offd);
   HYPRE_Int             *new_C_diag_i;
   HYPRE_Int             *new_C_offd_i;
   HYPRE_Int	num_rows_diag_C = hypre_CSRMatrixNumRows(C_diag);
   HYPRE_Int	num_rows_offd_C = hypre_CSRMatrixNumCols(C_offd);
   HYPRE_Int num_nonzeros_diag = hypre_CSRMatrixNumNonzeros(C_diag);
   HYPRE_Int num_nonzeros_offd = hypre_CSRMatrixNumNonzeros(C_offd);
   double vmax = 0.0;
   double vmin = 0.0;
   double v, old_sum, new_sum, scale;
   HYPRE_Int i1, m, m1d, m1o, jC, mP, keep;

   /* Repack the i,j,and data arrays of C so as to discard those elements for which
      there is no corresponding element in P.
      Elements of Coarse rows (CF_marker>=0) are always kept.
      The arrays are not re-allocated, so there will generally be unused space
      at the ends of the arrays. */
   new_C_diag_i = hypre_CTAlloc( HYPRE_Int, num_rows_diag_C+1 );
   new_C_offd_i = hypre_CTAlloc( HYPRE_Int, num_rows_offd_C+1 );
   m1d = C_diag_i[0];
   m1o = C_offd_i[0];
   for ( i1 = 0; i1 < num_rows_diag_C; i1++ )
   {
      old_sum = 0;
      new_sum = 0;
      for ( m=C_diag_i[i1]; m<C_diag_i[i1+1]; ++m )
      {
         v = C_diag_data[m];
         jC = C_diag_j[m];
         old_sum += v;
         /* Do we know anything about the order of P_diag_j?  It would be better
            not to search through it all here.  If we know nothing, some ordering or
            index scheme will be needed for efficiency (worth doing iff this function
            gets called at all ) (may2006: this function is no longer called) */
         keep=0;
         for ( mP=P_diag_i[i1]; mP<P_diag_i[i1+1]; ++mP )
         {
            if ( jC==P_diag_j[m] )
            {
               keep=1;
               break;
            }
         }
         if ( CF_marker[i1]>=0 || keep==1 )
         {  /* keep v in C */
            new_sum += v;
            C_diag_j[m1d] = C_diag_j[m];
            C_diag_data[m1d] = C_diag_data[m];
            ++m1d;
         }
         else
         {  /* discard v */
            --num_nonzeros_diag;
         }
      }
      for ( m=C_offd_i[i1]; m<C_offd_i[i1+1]; ++m )
      {
         v = C_offd_data[m];
         jC = C_diag_j[m];
         old_sum += v;
         keep=0;
         for ( mP=P_offd_i[i1]; mP<P_offd_i[i1+1]; ++mP )
         {
            if ( jC==P_offd_j[m] )
            {
               keep=1;
               break;
            }
         }
         if ( CF_marker[i1]>=0 || v>=vmax || v<=vmin )
         {  /* keep v in C */
            new_sum += v;
            C_offd_j[m1o] = C_offd_j[m];
            C_offd_data[m1o] = C_offd_data[m];
            ++m1o;
         }
         else
         {  /* discard v */
            --num_nonzeros_offd;
         }
      }

      new_C_diag_i[i1+1] = m1d;
      if ( i1<num_rows_offd_C ) new_C_offd_i[i1+1] = m1o;

      /* rescale to keep row sum the same */
      if (new_sum!=0) scale = old_sum/new_sum; else scale = 1.0;
      for ( m=new_C_diag_i[i1]; m<new_C_diag_i[i1+1]; ++m )
         C_diag_data[m] *= scale;
      if ( i1<num_rows_offd_C ) /* this test fails when there is no offd block */
         for ( m=new_C_offd_i[i1]; m<new_C_offd_i[i1+1]; ++m )
            C_offd_data[m] *= scale;

   }

   for ( i1 = 1; i1 <= num_rows_diag_C; i1++ )
   {
      C_diag_i[i1] = new_C_diag_i[i1];
      if ( i1<num_rows_offd_C ) C_offd_i[i1] = new_C_offd_i[i1];
   }
   hypre_TFree( new_C_diag_i );
   if ( num_rows_offd_C>0 ) hypre_TFree( new_C_offd_i );

   hypre_CSRMatrixNumNonzeros(C_diag) = num_nonzeros_diag;
   hypre_CSRMatrixNumNonzeros(C_offd) = num_nonzeros_offd;
   /*  SetNumNonzeros, SetDNumNonzeros are global, need hypre_MPI_Allreduce.
       I suspect, but don't know, that other parts of hypre do not assume that
       the correct values have been set.
     hypre_ParCSRMatrixSetNumNonzeros( C );
     hypre_ParCSRMatrixSetDNumNonzeros( C );*/
   hypre_ParCSRMatrixNumNonzeros( C ) = 0;
   hypre_ParCSRMatrixDNumNonzeros( C ) = 0.0;

}
コード例 #17
0
ファイル: par_csr_matop_marked.c プロジェクト: LLNL/COGENT
hypre_ParCSRMatrix * hypre_ParMatmul_FC(
   hypre_ParCSRMatrix * A, hypre_ParCSRMatrix * P, HYPRE_Int * CF_marker,
   HYPRE_Int * dof_func, HYPRE_Int * dof_func_offd )
/* hypre_parMatmul_FC creates and returns the "Fine"-designated rows of the
   matrix product A*P.  A's size is (nC+nF)*(nC+nF), P's size is (nC+nF)*nC
   where nC is the number of coarse rows/columns, nF the number of fine
   rows/columns.  The size of C=A*P is (nC+nF)*nC, even though not all rows
   of C are actually computed.  If we were to construct a matrix consisting
   only of the computed rows of C, its size would be nF*nC.
   "Fine" is defined solely by the marker array, and for example could be
   a proper subset of the fine points of a multigrid hierarchy.
*/
{
   /* To compute a submatrix of C containing only the computed data, i.e.
      only "Fine" rows, we would have to do a lot of computational work,
      with a lot of communication.  The communication is because such a
      matrix would need global information that depends on which rows are
      "Fine".
   */

   MPI_Comm 	   comm = hypre_ParCSRMatrixComm(A);

   hypre_CSRMatrix *A_diag = hypre_ParCSRMatrixDiag(A);
   
   double          *A_diag_data = hypre_CSRMatrixData(A_diag);
   HYPRE_Int             *A_diag_i = hypre_CSRMatrixI(A_diag);
   HYPRE_Int             *A_diag_j = hypre_CSRMatrixJ(A_diag);

   hypre_CSRMatrix *A_offd = hypre_ParCSRMatrixOffd(A);
   
   double          *A_offd_data = hypre_CSRMatrixData(A_offd);
   HYPRE_Int             *A_offd_i = hypre_CSRMatrixI(A_offd);
   HYPRE_Int             *A_offd_j = hypre_CSRMatrixJ(A_offd);

   HYPRE_Int *row_starts_A = hypre_ParCSRMatrixRowStarts(A);
   HYPRE_Int	num_rows_diag_A = hypre_CSRMatrixNumRows(A_diag);
   HYPRE_Int	num_cols_diag_A = hypre_CSRMatrixNumCols(A_diag);
   HYPRE_Int	num_cols_offd_A = hypre_CSRMatrixNumCols(A_offd);
   
   hypre_CSRMatrix *P_diag = hypre_ParCSRMatrixDiag(P);
   
   double          *P_diag_data = hypre_CSRMatrixData(P_diag);
   HYPRE_Int             *P_diag_i = hypre_CSRMatrixI(P_diag);
   HYPRE_Int             *P_diag_j = hypre_CSRMatrixJ(P_diag);

   hypre_CSRMatrix *P_offd = hypre_ParCSRMatrixOffd(P);
   HYPRE_Int		   *col_map_offd_P = hypre_ParCSRMatrixColMapOffd(P);
   
   double          *P_offd_data = hypre_CSRMatrixData(P_offd);
   HYPRE_Int             *P_offd_i = hypre_CSRMatrixI(P_offd);
   HYPRE_Int             *P_offd_j = hypre_CSRMatrixJ(P_offd);

   HYPRE_Int	first_col_diag_P = hypre_ParCSRMatrixFirstColDiag(P);
   HYPRE_Int	last_col_diag_P;
   HYPRE_Int *col_starts_P = hypre_ParCSRMatrixColStarts(P);
   HYPRE_Int	num_rows_diag_P = hypre_CSRMatrixNumRows(P_diag);
   HYPRE_Int	num_cols_diag_P = hypre_CSRMatrixNumCols(P_diag);
   HYPRE_Int	num_cols_offd_P = hypre_CSRMatrixNumCols(P_offd);

   hypre_ParCSRMatrix *C;
   HYPRE_Int		      *col_map_offd_C;
   HYPRE_Int		      *map_P_to_C;

   hypre_CSRMatrix *C_diag;

   double          *C_diag_data;
   HYPRE_Int             *C_diag_i;
   HYPRE_Int             *C_diag_j;

   hypre_CSRMatrix *C_offd;

   double          *C_offd_data=NULL;
   HYPRE_Int             *C_offd_i=NULL;
   HYPRE_Int             *C_offd_j=NULL;

   HYPRE_Int              C_diag_size;
   HYPRE_Int              C_offd_size;
   HYPRE_Int		    num_cols_offd_C = 0;
   
   hypre_CSRMatrix *Ps_ext;
   
   double          *Ps_ext_data;
   HYPRE_Int             *Ps_ext_i;
   HYPRE_Int             *Ps_ext_j;

   double          *P_ext_diag_data;
   HYPRE_Int             *P_ext_diag_i;
   HYPRE_Int             *P_ext_diag_j;
   HYPRE_Int              P_ext_diag_size;

   double          *P_ext_offd_data;
   HYPRE_Int             *P_ext_offd_i;
   HYPRE_Int             *P_ext_offd_j;
   HYPRE_Int              P_ext_offd_size;

   HYPRE_Int		   *P_marker;
   HYPRE_Int		   *temp;

   HYPRE_Int              i, j;
   HYPRE_Int              i1, i2, i3;
   HYPRE_Int              jj2, jj3;
   
   HYPRE_Int              jj_count_diag, jj_count_offd;
   HYPRE_Int              jj_row_begin_diag, jj_row_begin_offd;
   HYPRE_Int              start_indexing = 0; /* start indexing for C_data at 0 */
   HYPRE_Int		    n_rows_A_global, n_cols_A_global;
   HYPRE_Int		    n_rows_P_global, n_cols_P_global;
   HYPRE_Int              allsquare = 0;
   HYPRE_Int              cnt, cnt_offd, cnt_diag;
   HYPRE_Int 		    num_procs;
   HYPRE_Int 		    value;

   double           a_entry;
   double           a_b_product;
   
   n_rows_A_global = hypre_ParCSRMatrixGlobalNumRows(A);
   n_cols_A_global = hypre_ParCSRMatrixGlobalNumCols(A);
   n_rows_P_global = hypre_ParCSRMatrixGlobalNumRows(P);
   n_cols_P_global = hypre_ParCSRMatrixGlobalNumCols(P);

   if (n_cols_A_global != n_rows_P_global || num_cols_diag_A != num_rows_diag_P)
   {
	hypre_printf(" Error! Incompatible matrix dimensions!\n");
	return NULL;
   }
   /* if (num_rows_A==num_cols_P) allsquare = 1; */

   /*-----------------------------------------------------------------------
    *  Extract P_ext, i.e. portion of P that is stored on neighbor procs
    *  and needed locally for matrix matrix product 
    *-----------------------------------------------------------------------*/

   hypre_MPI_Comm_size(comm, &num_procs);

   if (num_procs > 1)
   {
       /*---------------------------------------------------------------------
    	* If there exists no CommPkg for A, a CommPkg is generated using
    	* equally load balanced partitionings within 
	* hypre_ParCSRMatrixExtractBExt
    	*--------------------------------------------------------------------*/
   	Ps_ext = hypre_ParCSRMatrixExtractBExt(P,A,1);
   	Ps_ext_data = hypre_CSRMatrixData(Ps_ext);
   	Ps_ext_i    = hypre_CSRMatrixI(Ps_ext);
   	Ps_ext_j    = hypre_CSRMatrixJ(Ps_ext);
   }
   P_ext_diag_i = hypre_CTAlloc(HYPRE_Int, num_cols_offd_A+1);
   P_ext_offd_i = hypre_CTAlloc(HYPRE_Int, num_cols_offd_A+1);
   P_ext_diag_size = 0;
   P_ext_offd_size = 0;
   last_col_diag_P = first_col_diag_P + num_cols_diag_P -1;

   for (i=0; i < num_cols_offd_A; i++)
   {
      for (j=Ps_ext_i[i]; j < Ps_ext_i[i+1]; j++)
         if (Ps_ext_j[j] < first_col_diag_P || Ps_ext_j[j] > last_col_diag_P)
            P_ext_offd_size++;
         else
            P_ext_diag_size++;
      P_ext_diag_i[i+1] = P_ext_diag_size;
      P_ext_offd_i[i+1] = P_ext_offd_size;
   }

   if (P_ext_diag_size)
   {
      P_ext_diag_j = hypre_CTAlloc(HYPRE_Int, P_ext_diag_size);
      P_ext_diag_data = hypre_CTAlloc(double, P_ext_diag_size);
   }
   if (P_ext_offd_size)
   {
      P_ext_offd_j = hypre_CTAlloc(HYPRE_Int, P_ext_offd_size);
      P_ext_offd_data = hypre_CTAlloc(double, P_ext_offd_size);
   }

   cnt_offd = 0;
   cnt_diag = 0;
   for (i=0; i < num_cols_offd_A; i++)
   {
      for (j=Ps_ext_i[i]; j < Ps_ext_i[i+1]; j++)
         if (Ps_ext_j[j] < first_col_diag_P || Ps_ext_j[j] > last_col_diag_P)
         {
            P_ext_offd_j[cnt_offd] = Ps_ext_j[j];
            P_ext_offd_data[cnt_offd++] = Ps_ext_data[j];
         }
         else
         {
            P_ext_diag_j[cnt_diag] = Ps_ext_j[j] - first_col_diag_P;
            P_ext_diag_data[cnt_diag++] = Ps_ext_data[j];
         }
   }

   if (num_procs > 1)
   {
      hypre_CSRMatrixDestroy(Ps_ext);
      Ps_ext = NULL;
   }

   cnt = 0;
   if (P_ext_offd_size || num_cols_offd_P)
   {
      temp = hypre_CTAlloc(HYPRE_Int, P_ext_offd_size+num_cols_offd_P);
      for (i=0; i < P_ext_offd_size; i++)
         temp[i] = P_ext_offd_j[i];
      cnt = P_ext_offd_size;
      for (i=0; i < num_cols_offd_P; i++)
         temp[cnt++] = col_map_offd_P[i];
   }
   if (cnt)
   {
      qsort0(temp, 0, cnt-1);

      num_cols_offd_C = 1;
      value = temp[0];
      for (i=1; i < cnt; i++)
      {
         if (temp[i] > value)
         {
            value = temp[i];
            temp[num_cols_offd_C++] = value;
         }
      }
   }

   if (num_cols_offd_C)
        col_map_offd_C = hypre_CTAlloc(HYPRE_Int,num_cols_offd_C);

   for (i=0; i < num_cols_offd_C; i++)
      col_map_offd_C[i] = temp[i];

   if (P_ext_offd_size || num_cols_offd_P)
      hypre_TFree(temp);

   for (i=0 ; i < P_ext_offd_size; i++)
      P_ext_offd_j[i] = hypre_BinarySearch(col_map_offd_C,
                                           P_ext_offd_j[i],
                                           num_cols_offd_C);
   if (num_cols_offd_P)
   {
      map_P_to_C = hypre_CTAlloc(HYPRE_Int,num_cols_offd_P);

      cnt = 0;
      for (i=0; i < num_cols_offd_C; i++)
         if (col_map_offd_C[i] == col_map_offd_P[cnt])
         {
            map_P_to_C[cnt++] = i;
            if (cnt == num_cols_offd_P) break;
         }
   }

   /*-----------------------------------------------------------------------
   *  Allocate marker array.
    *-----------------------------------------------------------------------*/

   P_marker = hypre_CTAlloc(HYPRE_Int, num_cols_diag_P+num_cols_offd_C);

   /*-----------------------------------------------------------------------
    *  Initialize some stuff.
    *-----------------------------------------------------------------------*/

   for (i1 = 0; i1 < num_cols_diag_P+num_cols_offd_C; i1++)
   {      
      P_marker[i1] = -1;
   }


/* no changes for the marked version above this point */
   /* This function call is the first pass: */
   hypre_ParMatmul_RowSizes_Marked(
      &C_diag_i, &C_offd_i, &P_marker,
      A_diag_i, A_diag_j, A_offd_i, A_offd_j,
      P_diag_i, P_diag_j, P_offd_i, P_offd_j,
      P_ext_diag_i, P_ext_diag_j, P_ext_offd_i, P_ext_offd_j,
      map_P_to_C,
      &C_diag_size, &C_offd_size,
      num_rows_diag_A, num_cols_offd_A, allsquare,
      num_cols_diag_P, num_cols_offd_P,
      num_cols_offd_C, CF_marker, dof_func, dof_func_offd
      );

   /* The above call of hypre_ParMatmul_RowSizes_Marked computed
      two scalars: C_diag_size, C_offd_size,
      and two arrays: C_diag_i, C_offd_i
      ( P_marker is also computed, but only used internally )
   */

   /*-----------------------------------------------------------------------
    *  Allocate C_diag_data and C_diag_j arrays.
    *  Allocate C_offd_data and C_offd_j arrays.
    *-----------------------------------------------------------------------*/
 
   last_col_diag_P = first_col_diag_P + num_cols_diag_P - 1;
   C_diag_data = hypre_CTAlloc(double, C_diag_size);
   C_diag_j    = hypre_CTAlloc(HYPRE_Int, C_diag_size);
   if (C_offd_size)
   { 
   	C_offd_data = hypre_CTAlloc(double, C_offd_size);
   	C_offd_j    = hypre_CTAlloc(HYPRE_Int, C_offd_size);
   } 


   /*-----------------------------------------------------------------------
    *  Second Pass: Fill in C_diag_data and C_diag_j.
    *  Second Pass: Fill in C_offd_data and C_offd_j.
    *-----------------------------------------------------------------------*/

   /*-----------------------------------------------------------------------
    *  Initialize some stuff.
    *-----------------------------------------------------------------------*/

   jj_count_diag = start_indexing;
   jj_count_offd = start_indexing;
   for (i1 = 0; i1 < num_cols_diag_P+num_cols_offd_C; i1++)
   {      
      P_marker[i1] = -1;
   }
   
   /*-----------------------------------------------------------------------
    *  Loop over interior c-points.
    *-----------------------------------------------------------------------*/
    
   for (i1 = 0; i1 < num_rows_diag_A; i1++)
   {

      if ( CF_marker[i1] < 0 )  /* i1 is a fine row */
         /* ... This and the coarse row code are the only parts between first pass
            and near the end where
            hypre_ParMatmul_FC is different from the regular hypre_ParMatmul */
      {

         /*--------------------------------------------------------------------
          *  Create diagonal entry, C_{i1,i1} 
          *--------------------------------------------------------------------*/

         jj_row_begin_diag = jj_count_diag;
         jj_row_begin_offd = jj_count_offd;

         /*-----------------------------------------------------------------
          *  Loop over entries in row i1 of A_offd.
          *-----------------------------------------------------------------*/
         
	 if (num_cols_offd_A)
	 {
            for (jj2 = A_offd_i[i1]; jj2 < A_offd_i[i1+1]; jj2++)
            {
               i2 = A_offd_j[jj2];
               if( dof_func==NULL || dof_func[i1] == dof_func_offd[i2] )
               {  /* interpolate only like "functions" */
                  a_entry = A_offd_data[jj2];
            
                  /*-----------------------------------------------------------
                   *  Loop over entries in row i2 of P_ext.
                   *-----------------------------------------------------------*/

                  for (jj3 = P_ext_offd_i[i2]; jj3 < P_ext_offd_i[i2+1]; jj3++)
                  {
                     i3 = num_cols_diag_P+P_ext_offd_j[jj3];
                     a_b_product = a_entry * P_ext_offd_data[jj3];
                  
                     /*--------------------------------------------------------
                      *  Check P_marker to see that C_{i1,i3} has not already
                      *  been accounted for. If it has not, create a new entry.
                      *  If it has, add new contribution.
                      *--------------------------------------------------------*/
                     if (P_marker[i3] < jj_row_begin_offd)
                     {
                        P_marker[i3] = jj_count_offd;
                        C_offd_data[jj_count_offd] = a_b_product;
                        C_offd_j[jj_count_offd] = i3-num_cols_diag_P;
                        jj_count_offd++;
                     }
                     else
                        C_offd_data[P_marker[i3]] += a_b_product;
                  }
                  for (jj3 = P_ext_diag_i[i2]; jj3 < P_ext_diag_i[i2+1]; jj3++)
                  {
                     i3 = P_ext_diag_j[jj3];
                     a_b_product = a_entry * P_ext_diag_data[jj3];

                     if (P_marker[i3] < jj_row_begin_diag)
                     {
                        P_marker[i3] = jj_count_diag;
                        C_diag_data[jj_count_diag] = a_b_product;
                        C_diag_j[jj_count_diag] = i3;
                        jj_count_diag++;
                     }
                     else
                        C_diag_data[P_marker[i3]] += a_b_product;
                  }
               }
               else
               {  /* Interpolation mat should be 0 where i1 and i2 correspond to
                     different "functions".  As we haven't created an entry for
                     C(i1,i2), nothing needs to be done. */
               }

            }
         }

         /*-----------------------------------------------------------------
          *  Loop over entries in row i1 of A_diag.
          *-----------------------------------------------------------------*/

         for (jj2 = A_diag_i[i1]; jj2 < A_diag_i[i1+1]; jj2++)
         {
            i2 = A_diag_j[jj2];
            if( dof_func==NULL || dof_func[i1] == dof_func[i2] )
            {  /* interpolate only like "functions" */
               a_entry = A_diag_data[jj2];
            
               /*-----------------------------------------------------------
                *  Loop over entries in row i2 of P_diag.
                *-----------------------------------------------------------*/

               for (jj3 = P_diag_i[i2]; jj3 < P_diag_i[i2+1]; jj3++)
               {
                  i3 = P_diag_j[jj3];
                  a_b_product = a_entry * P_diag_data[jj3];
                  
                  /*--------------------------------------------------------
                   *  Check P_marker to see that C_{i1,i3} has not already
                   *  been accounted for. If it has not, create a new entry.
                   *  If it has, add new contribution.
                   *--------------------------------------------------------*/

                  if (P_marker[i3] < jj_row_begin_diag)
                  {
                     P_marker[i3] = jj_count_diag;
                     C_diag_data[jj_count_diag] = a_b_product;
                     C_diag_j[jj_count_diag] = i3;
                     jj_count_diag++;
                  }
                  else
                  {
                     C_diag_data[P_marker[i3]] += a_b_product;
                  }
               }
               if (num_cols_offd_P)
	       {
                  for (jj3 = P_offd_i[i2]; jj3 < P_offd_i[i2+1]; jj3++)
                  {
                     i3 = num_cols_diag_P+map_P_to_C[P_offd_j[jj3]];
                     a_b_product = a_entry * P_offd_data[jj3];
                  
                     /*--------------------------------------------------------
                      *  Check P_marker to see that C_{i1,i3} has not already
                      *  been accounted for. If it has not, create a new entry.
                      *  If it has, add new contribution.
                      *--------------------------------------------------------*/

                     if (P_marker[i3] < jj_row_begin_offd)
                     {
                        P_marker[i3] = jj_count_offd;
                        C_offd_data[jj_count_offd] = a_b_product;
                        C_offd_j[jj_count_offd] = i3-num_cols_diag_P;
                        jj_count_offd++;
                     }
                     else
                     {
                        C_offd_data[P_marker[i3]] += a_b_product;
                     }
                  }
               }
            }
            else
            {  /* Interpolation mat should be 0 where i1 and i2 correspond to
                  different "functions".  As we haven't created an entry for
                  C(i1,i2), nothing needs to be done. */
            }
         }
      }
      else  /* i1 is a coarse row.*/
         /* Copy P coarse-row values to C.  This is useful if C is meant to
            become a replacement for P */
      {
	 if (num_cols_offd_P)
	 {
            for (jj2 = P_offd_i[i1]; jj2 < P_offd_i[i1+1]; jj2++)
            {
               C_offd_j[jj_count_offd] = P_offd_j[jj_count_offd];
               C_offd_data[jj_count_offd] = P_offd_data[jj_count_offd];
               ++jj_count_offd;
            }
         }
         for (jj2 = P_diag_i[i1]; jj2 < P_diag_i[i1+1]; jj2++)
         {
            C_diag_j[jj_count_diag] = P_diag_j[jj2];
            C_diag_data[jj_count_diag] = P_diag_data[jj2];
            ++jj_count_diag;
         }
      }
   }

   C = hypre_ParCSRMatrixCreate(
      comm, n_rows_A_global, n_cols_P_global,
      row_starts_A, col_starts_P, num_cols_offd_C, C_diag_size, C_offd_size );

   /* Note that C does not own the partitionings */
   hypre_ParCSRMatrixSetRowStartsOwner(C,0);
   hypre_ParCSRMatrixSetColStartsOwner(C,0);

   C_diag = hypre_ParCSRMatrixDiag(C);
   hypre_CSRMatrixData(C_diag) = C_diag_data; 
   hypre_CSRMatrixI(C_diag) = C_diag_i; 
   hypre_CSRMatrixJ(C_diag) = C_diag_j; 

   C_offd = hypre_ParCSRMatrixOffd(C);
   hypre_CSRMatrixI(C_offd) = C_offd_i; 
   hypre_ParCSRMatrixOffd(C) = C_offd;

   if (num_cols_offd_C)
   {
      hypre_CSRMatrixData(C_offd) = C_offd_data; 
      hypre_CSRMatrixJ(C_offd) = C_offd_j; 
      hypre_ParCSRMatrixColMapOffd(C) = col_map_offd_C;

   }

   /*-----------------------------------------------------------------------
    *  Free various arrays
    *-----------------------------------------------------------------------*/

   hypre_TFree(P_marker);   
   hypre_TFree(P_ext_diag_i);
   if (P_ext_diag_size)
   {
      hypre_TFree(P_ext_diag_j);
      hypre_TFree(P_ext_diag_data);
   }
   hypre_TFree(P_ext_offd_i);
   if (P_ext_offd_size)
   {
      hypre_TFree(P_ext_offd_j);
      hypre_TFree(P_ext_offd_data);
   }
   if (num_cols_offd_P) hypre_TFree(map_P_to_C);

   return C;
   
}
コード例 #18
0
ファイル: csr_matvec.c プロジェクト: 5432935/crossbridge
int
hypre_CSRMatrixMatvec( double           alpha,
              hypre_CSRMatrix *A,
              hypre_Vector    *x,
              double           beta,
              hypre_Vector    *y     )
{
   double     *A_data   = hypre_CSRMatrixData(A);
   int        *A_i      = hypre_CSRMatrixI(A);
   int        *A_j      = hypre_CSRMatrixJ(A);
   int         num_rows = hypre_CSRMatrixNumRows(A);
   int         num_cols = hypre_CSRMatrixNumCols(A);

   int        *A_rownnz = hypre_CSRMatrixRownnz(A);
   int         num_rownnz = hypre_CSRMatrixNumRownnz(A);

   double     *x_data = hypre_VectorData(x);
   double     *y_data = hypre_VectorData(y);
   int         x_size = hypre_VectorSize(x);
   int         y_size = hypre_VectorSize(y);
   int         num_vectors = hypre_VectorNumVectors(x);
   int         idxstride_y = hypre_VectorIndexStride(y);
   int         vecstride_y = hypre_VectorVectorStride(y);
   int         idxstride_x = hypre_VectorIndexStride(x);
   int         vecstride_x = hypre_VectorVectorStride(x);

   double      temp, tempx;

   int         i, j, jj;

   int         m;

   double     xpar=0.7;

   int         ierr = 0;


   /*---------------------------------------------------------------------
    *  Check for size compatibility.  Matvec returns ierr = 1 if
    *  length of X doesn't equal the number of columns of A,
    *  ierr = 2 if the length of Y doesn't equal the number of rows
    *  of A, and ierr = 3 if both are true.
    *
    *  Because temporary vectors are often used in Matvec, none of 
    *  these conditions terminates processing, and the ierr flag
    *  is informational only.
    *--------------------------------------------------------------------*/
 
    hypre_assert( num_vectors == hypre_VectorNumVectors(y) );

    if (num_cols != x_size)
              ierr = 1;

    if (num_rows != y_size)
              ierr = 2;

    if (num_cols != x_size && num_rows != y_size)
              ierr = 3;

   /*-----------------------------------------------------------------------
    * Do (alpha == 0.0) computation - RDF: USE MACHINE EPS
    *-----------------------------------------------------------------------*/

    if (alpha == 0.0)
    {
       for (i = 0; i < num_rows*num_vectors; i++)
          y_data[i] *= beta;

       return ierr;
    }

   /*-----------------------------------------------------------------------
    * y = (beta/alpha)*y
    *-----------------------------------------------------------------------*/
   
   temp = beta / alpha;

   if (temp != 1.0)
   {
      if (temp == 0.0)
      {
	 for (i = 0; i < num_rows*num_vectors; i++)
	    y_data[i] = 0.0;
      }
      else
      {
	 for (i = 0; i < num_rows*num_vectors; i++)
	    y_data[i] *= temp;
      }
   }

   /*-----------------------------------------------------------------
    * y += A*x
    *-----------------------------------------------------------------*/

/* use rownnz pointer to do the A*x multiplication  when num_rownnz is smaller than num_rows */

   if (num_rownnz < xpar*(num_rows))
   {
      for (i = 0; i < num_rownnz; i++)
      {
         m = A_rownnz[i];

         /*
          * for (jj = A_i[m]; jj < A_i[m+1]; jj++)
          * {
          *         j = A_j[jj];   
          *  y_data[m] += A_data[jj] * x_data[j];
          * } */
         if ( num_vectors==1 )
         {
            tempx = y_data[m];
            for (jj = A_i[m]; jj < A_i[m+1]; jj++) 
               tempx +=  A_data[jj] * x_data[A_j[jj]];
            y_data[m] = tempx;
         }
         else
            for ( j=0; j<num_vectors; ++j )
            {
               tempx = y_data[ j*vecstride_y + m*idxstride_y ];
               for (jj = A_i[m]; jj < A_i[m+1]; jj++) 
                  tempx +=  A_data[jj] * x_data[ j*vecstride_x + A_j[jj]*idxstride_x ];
               y_data[ j*vecstride_y + m*idxstride_y] = tempx;
            }
      }

   }
   else
   {
#pragma omp parallel for private(i,jj,temp) schedule(static)
      for (i = 0; i < num_rows; i++)
      {
         if ( num_vectors==1 )
         {
            temp = y_data[i];
            for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               temp += A_data[jj] * x_data[A_j[jj]];
            y_data[i] = temp;
         }
         else
            for ( j=0; j<num_vectors; ++j )
            {
               temp = y_data[ j*vecstride_y + i*idxstride_y ];
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  temp += A_data[jj] * x_data[ j*vecstride_x + A_j[jj]*idxstride_x ];
               }
               y_data[ j*vecstride_y + i*idxstride_y ] = temp;
            }
      }
   }


   /*-----------------------------------------------------------------
    * y = alpha*y
    *-----------------------------------------------------------------*/

   if (alpha != 1.0)
   {
      for (i = 0; i < num_rows*num_vectors; i++)
	 y_data[i] *= alpha;
   }

   return ierr;
}
コード例 #19
0
ファイル: csr_matvec.c プロジェクト: 5432935/crossbridge
int
hypre_CSRMatrixMatvec_FF( double           alpha,
              hypre_CSRMatrix *A,
              hypre_Vector    *x,
              double           beta,
              hypre_Vector    *y,
              int             *CF_marker_x,
              int             *CF_marker_y,
              int fpt )
{
   double     *A_data   = hypre_CSRMatrixData(A);
   int        *A_i      = hypre_CSRMatrixI(A);
   int        *A_j      = hypre_CSRMatrixJ(A);
   int         num_rows = hypre_CSRMatrixNumRows(A);
   int         num_cols = hypre_CSRMatrixNumCols(A);
                                                                                                              
   double     *x_data = hypre_VectorData(x);
   double     *y_data = hypre_VectorData(y);
   int         x_size = hypre_VectorSize(x);
   int         y_size = hypre_VectorSize(y);
                                                                                                              
   double      temp;
                                                                                                              
   int         i, jj;
                                                                                                              
   int         ierr = 0;
                                                                                                              
                                                                                                              
   /*---------------------------------------------------------------------
    *  Check for size compatibility.  Matvec returns ierr = 1 if
    *  length of X doesn't equal the number of columns of A,
    *  ierr = 2 if the length of Y doesn't equal the number of rows
    *  of A, and ierr = 3 if both are true.
    *
    *  Because temporary vectors are often used in Matvec, none of
    *  these conditions terminates processing, and the ierr flag
    *  is informational only.
    *--------------------------------------------------------------------*/
                                                                                                              
    if (num_cols != x_size)
              ierr = 1;
                                                                                                              
    if (num_rows != y_size)
              ierr = 2;
                                                                                                              
    if (num_cols != x_size && num_rows != y_size)
              ierr = 3;
                                                                                                              
   /*-----------------------------------------------------------------------
    * Do (alpha == 0.0) computation - RDF: USE MACHINE EPS
    *-----------------------------------------------------------------------*/
                                                                                                              
    if (alpha == 0.0)
    {

       for (i = 0; i < num_rows; i++)
          if (CF_marker_x[i] == fpt) y_data[i] *= beta;
                                                                                                              
       return ierr;
    }
                                                                                                              
   /*-----------------------------------------------------------------------
    * y = (beta/alpha)*y
    *-----------------------------------------------------------------------*/
                                                                                                              
   temp = beta / alpha;
                                                                                                              
   if (temp != 1.0)
   {
      if (temp == 0.0)
      {

         for (i = 0; i < num_rows; i++)
            if (CF_marker_x[i] == fpt) y_data[i] = 0.0;
      }
      else
      {

         for (i = 0; i < num_rows; i++)
            if (CF_marker_x[i] == fpt) y_data[i] *= temp;
      }
   }
                                                                                                              
   /*-----------------------------------------------------------------
    * y += A*x
    *-----------------------------------------------------------------*/
                                                                                                              

                                                                                                              
   for (i = 0; i < num_rows; i++)
   {
      if (CF_marker_x[i] == fpt)
      {
         temp = y_data[i];
         for (jj = A_i[i]; jj < A_i[i+1]; jj++)
            if (CF_marker_y[A_j[jj]] == fpt) temp += A_data[jj] * x_data[A_j[jj]];
         y_data[i] = temp;
      }
   }
                                                                                                              
                                                                                                              
   /*-----------------------------------------------------------------
    * y = alpha*y
    *-----------------------------------------------------------------*/
                                                                                                              
   if (alpha != 1.0)
   {

      for (i = 0; i < num_rows; i++)
         if (CF_marker_x[i] == fpt) y_data[i] *= alpha;
   }
                                                                                                              
   return ierr;
}
コード例 #20
0
/*
  Assume that we are given a fine and coarse topology and the
  coarse degrees of freedom (DOFs) have been chosen. Assume also,
  that the global interpolation matrix dof_DOF has a prescribed
  nonzero pattern. Then, the fine degrees of freedom can be split
  into 4 groups (here "i" stands for "interior"):

  NODEidof - dofs which are interpolated only from the DOF
             in one coarse vertex
  EDGEidof - dofs which are interpolated only from the DOFs
             in one coarse edge
  FACEidof - dofs which are interpolated only from the DOFs
             in one coarse face
  ELEMidof - dofs which are interpolated only from the DOFs
             in one coarse element

  The interpolation operator dof_DOF can be build in 4 steps, by
  consequently filling-in the rows corresponding to the above groups.
  The code below uses harmonic extension to extend the interpolation
  from one group to the next.
*/
HYPRE_Int hypre_ND1AMGeInterpolation (hypre_ParCSRMatrix       * Aee,
                                hypre_ParCSRMatrix       * ELEM_idof,
                                hypre_ParCSRMatrix       * FACE_idof,
                                hypre_ParCSRMatrix       * EDGE_idof,
                                hypre_ParCSRMatrix       * ELEM_FACE,
                                hypre_ParCSRMatrix       * ELEM_EDGE,
                                HYPRE_Int                  num_OffProcRows,
                                hypre_MaxwellOffProcRow ** OffProcRows,
                                hypre_IJMatrix           * IJ_dof_DOF)
{
   HYPRE_Int ierr = 0;

   HYPRE_Int  i, j, k;
   HYPRE_Int *offproc_rnums, *swap;

   hypre_ParCSRMatrix * dof_DOF = hypre_IJMatrixObject(IJ_dof_DOF);
   hypre_ParCSRMatrix * ELEM_DOF = ELEM_EDGE;
   hypre_ParCSRMatrix * ELEM_FACEidof;
   hypre_ParCSRMatrix * ELEM_EDGEidof;
   hypre_CSRMatrix *A, *P;
   HYPRE_Int numELEM = hypre_CSRMatrixNumRows(hypre_ParCSRMatrixDiag(ELEM_EDGE));

   HYPRE_Int getrow_ierr;
   HYPRE_Int three_dimensional_problem;

   MPI_Comm comm= hypre_ParCSRMatrixComm(Aee);
   HYPRE_Int      myproc;

   hypre_MPI_Comm_rank(comm, &myproc);

#if 0
   hypre_IJMatrix * ij_dof_DOF = hypre_CTAlloc(hypre_IJMatrix, 1);
   /* Convert dof_DOF to IJ matrix, so we can use AddToValues */
   hypre_IJMatrixComm(ij_dof_DOF) = hypre_ParCSRMatrixComm(dof_DOF);
   hypre_IJMatrixRowPartitioning(ij_dof_DOF) =
      hypre_ParCSRMatrixRowStarts(dof_DOF);
   hypre_IJMatrixColPartitioning(ij_dof_DOF) =
      hypre_ParCSRMatrixColStarts(dof_DOF);
   hypre_IJMatrixObject(ij_dof_DOF) = dof_DOF;
   hypre_IJMatrixAssembleFlag(ij_dof_DOF) = 1;
#endif

  /* sort the offproc rows to get quicker comparison for later */
   if (num_OffProcRows)
   {
      offproc_rnums= hypre_TAlloc(HYPRE_Int, num_OffProcRows);
      swap         = hypre_TAlloc(HYPRE_Int, num_OffProcRows);
      for (i= 0; i< num_OffProcRows; i++)
      {
         offproc_rnums[i]=(OffProcRows[i] -> row);
         swap[i]         = i;
      }
   }

   if (num_OffProcRows > 1)
   {
      hypre_qsort2i(offproc_rnums, swap, 0, num_OffProcRows-1);
   }

   if (FACE_idof == EDGE_idof)
      three_dimensional_problem = 0;
   else
      three_dimensional_problem = 1;

   /* ELEM_FACEidof = ELEM_FACE x FACE_idof */
   if (three_dimensional_problem)
      ELEM_FACEidof = hypre_ParMatmul(ELEM_FACE, FACE_idof);

   /* ELEM_EDGEidof = ELEM_EDGE x EDGE_idof */
   ELEM_EDGEidof = hypre_ParMatmul(ELEM_EDGE, EDGE_idof);

   /* Loop over local coarse elements */
   k = hypre_ParCSRMatrixFirstRowIndex(ELEM_EDGE);
   for (i = 0; i < numELEM; i++, k++)
   {
      HYPRE_Int size1, size2;
      HYPRE_Int *col_ind0, *col_ind1, *col_ind2;

      HYPRE_Int num_DOF, *DOF0, *DOF;
      HYPRE_Int num_idof, *idof0, *idof;
      HYPRE_Int num_bdof, *bdof;

      double *boolean_data;

      /* Determine the coarse DOFs */
      hypre_ParCSRMatrixGetRow (ELEM_DOF, k, &num_DOF, &DOF0, &boolean_data);
      DOF= hypre_TAlloc(HYPRE_Int, num_DOF);
      for (j= 0; j< num_DOF; j++)
      {
         DOF[j]= DOF0[j];
      }
      hypre_ParCSRMatrixRestoreRow (ELEM_DOF, k, &num_DOF, &DOF0, &boolean_data);

      qsort0(DOF,0,num_DOF-1);

      /* Find the fine dofs interior for the current coarse element */
      hypre_ParCSRMatrixGetRow (ELEM_idof, k, &num_idof, &idof0, &boolean_data);
      idof= hypre_TAlloc(HYPRE_Int, num_idof);
      for (j= 0; j< num_idof; j++)
      {
         idof[j]= idof0[j];
      }
      hypre_ParCSRMatrixRestoreRow (ELEM_idof, k, &num_idof, &idof0, &boolean_data);

      /* Sort the interior dofs according to their global number */
      qsort0(idof,0,num_idof-1);

      /* Find the fine dofs on the boundary of the current coarse element */
      if (three_dimensional_problem)
      {
         hypre_ParCSRMatrixGetRow (ELEM_FACEidof, k, &size1, &col_ind0, &boolean_data);
         col_ind1= hypre_TAlloc(HYPRE_Int, size1);
         for (j= 0; j< size1; j++)
         {
            col_ind1[j]= col_ind0[j];
         }
         hypre_ParCSRMatrixRestoreRow (ELEM_FACEidof, k, &size1, &col_ind0, &boolean_data);
      }
      else
         size1 = 0;

      hypre_ParCSRMatrixGetRow (ELEM_EDGEidof, k, &size2, &col_ind0, &boolean_data);
      col_ind2= hypre_TAlloc(HYPRE_Int, size2);
      for (j= 0; j< size2; j++)
      {
         col_ind2[j]= col_ind0[j];
      }
      hypre_ParCSRMatrixRestoreRow (ELEM_EDGEidof, k, &size2, &col_ind0, &boolean_data);

      /* Merge and sort the boundary dofs according to their global number */
      num_bdof = size1 + size2;
      bdof = hypre_CTAlloc(HYPRE_Int, num_bdof);
      if (three_dimensional_problem)
         memcpy(bdof, col_ind1, size1*sizeof(HYPRE_Int));
      memcpy(bdof+size1, col_ind2, size2*sizeof(HYPRE_Int));

      qsort0(bdof,0,num_bdof-1);

      /* A = extract_rows(Aee, idof) */
      A = hypre_CSRMatrixCreate (num_idof, num_idof + num_bdof,
                                 num_idof * (num_idof + num_bdof));
      hypre_CSRMatrixInitialize(A);
      {
         HYPRE_Int *I = hypre_CSRMatrixI(A);
         HYPRE_Int *J = hypre_CSRMatrixJ(A);
         double *data = hypre_CSRMatrixData(A);

         HYPRE_Int *tmp_J;
         double *tmp_data;

         I[0] = 0;
         for (j = 0; j < num_idof; j++)
         {
            getrow_ierr= hypre_ParCSRMatrixGetRow (Aee, idof[j], &I[j+1], &tmp_J, &tmp_data);
            if (getrow_ierr <0)
               hypre_printf("getrow Aee off proc[%d] = \n",myproc);
            memcpy(J, tmp_J, I[j+1]*sizeof(HYPRE_Int));
            memcpy(data, tmp_data, I[j+1]*sizeof(double));
            J+= I[j+1];
            data+= I[j+1];
            hypre_ParCSRMatrixRestoreRow (Aee, idof[j], &I[j+1], &tmp_J, &tmp_data);
            I[j+1] += I[j];
         }
      }

      /* P = extract_rows(dof_DOF, idof+bdof) */
      P = hypre_CSRMatrixCreate (num_idof + num_bdof, num_DOF,
                                 (num_idof + num_bdof) * num_DOF);
      hypre_CSRMatrixInitialize(P);
      {
         HYPRE_Int *I = hypre_CSRMatrixI(P);
         HYPRE_Int *J = hypre_CSRMatrixJ(P);
         double *data = hypre_CSRMatrixData(P);
         HYPRE_Int     m;

         HYPRE_Int *tmp_J;
         double *tmp_data;
     
         I[0] = 0;
         for (j = 0; j < num_idof; j++)
         {
            getrow_ierr= hypre_ParCSRMatrixGetRow (dof_DOF, idof[j], &I[j+1], &tmp_J, &tmp_data);
            if (getrow_ierr >= 0)
            {
               memcpy(J, tmp_J, I[j+1]*sizeof(HYPRE_Int));
               memcpy(data, tmp_data, I[j+1]*sizeof(double));
               J+= I[j+1];
               data+= I[j+1];
               hypre_ParCSRMatrixRestoreRow (dof_DOF, idof[j], &I[j+1], &tmp_J, &tmp_data);
               I[j+1] += I[j];
            }
            else    /* row offproc */
            {
               hypre_ParCSRMatrixRestoreRow (dof_DOF, idof[j], &I[j+1], &tmp_J, &tmp_data);
              /* search for OffProcRows */
               m= 0;
               while (m < num_OffProcRows)
               {
                  if (offproc_rnums[m] == idof[j])
                  { 
                     break;
                  }
                  else
                  {
                     m++;
                  }
               }
               I[j+1]= (OffProcRows[swap[m]] -> ncols);
               tmp_J = (OffProcRows[swap[m]] -> cols);
               tmp_data= (OffProcRows[swap[m]] -> data);
               memcpy(J, tmp_J, I[j+1]*sizeof(HYPRE_Int));
               memcpy(data, tmp_data, I[j+1]*sizeof(double));
               J+= I[j+1];
               data+= I[j+1];
               I[j+1] += I[j];
            }

         }
         for ( ; j < num_idof + num_bdof; j++)
         {
            getrow_ierr= hypre_ParCSRMatrixGetRow (dof_DOF, bdof[j-num_idof], &I[j+1], &tmp_J, &tmp_data);
            if (getrow_ierr >= 0)
            {
               memcpy(J, tmp_J, I[j+1]*sizeof(HYPRE_Int));
               memcpy(data, tmp_data, I[j+1]*sizeof(double));
               J+= I[j+1];
               data+= I[j+1];
               hypre_ParCSRMatrixRestoreRow (dof_DOF, bdof[j-num_idof], &I[j+1], &tmp_J, &tmp_data);
               I[j+1] += I[j];
            }
            else    /* row offproc */
            {
               hypre_ParCSRMatrixRestoreRow (dof_DOF, bdof[j-num_idof], &I[j+1], &tmp_J, &tmp_data);
              /* search for OffProcRows */
               m= 0;
               while (m < num_OffProcRows)
               {
                  if (offproc_rnums[m] == bdof[j-num_idof])
                  {
                     break;
                  }
                  else
                  {
                     m++;
                  }
               }
               if (m>= num_OffProcRows)hypre_printf("here the mistake\n");
               I[j+1]= (OffProcRows[swap[m]] -> ncols);
               tmp_J = (OffProcRows[swap[m]] -> cols);
               tmp_data= (OffProcRows[swap[m]] -> data);
               memcpy(J, tmp_J, I[j+1]*sizeof(HYPRE_Int));
               memcpy(data, tmp_data, I[j+1]*sizeof(double));
               J+= I[j+1];
               data+= I[j+1];
               I[j+1] += I[j];
            }
         }
      }

      /* Pi = Aii^{-1} Aib Pb */
      hypre_HarmonicExtension (A, P, num_DOF, DOF,
                               num_idof, idof, num_bdof, bdof);

      /* Insert Pi in dof_DOF */
      {
         HYPRE_Int * ncols = hypre_CTAlloc(HYPRE_Int, num_idof);

         for (j = 0; j < num_idof; j++)
            ncols[j] = num_DOF;

         hypre_IJMatrixAddToValuesParCSR (IJ_dof_DOF,
                                          num_idof, ncols, idof,
                                          hypre_CSRMatrixJ(P),
                                          hypre_CSRMatrixData(P));

         hypre_TFree(ncols);
      }

      hypre_TFree(DOF);
      hypre_TFree(idof);
      if (three_dimensional_problem)
      {
         hypre_TFree(col_ind1);
      }
      hypre_TFree(col_ind2);
      hypre_TFree(bdof);

      hypre_CSRMatrixDestroy(A);
      hypre_CSRMatrixDestroy(P);
   }

#if 0
   hypre_TFree(ij_dof_DOF);
#endif

   if (three_dimensional_problem)
      hypre_ParCSRMatrixDestroy(ELEM_FACEidof);
   hypre_ParCSRMatrixDestroy(ELEM_EDGEidof);

   if (num_OffProcRows)
   {
      hypre_TFree(offproc_rnums);
      hypre_TFree(swap);
   }

   return ierr;
}
コード例 #21
0
ファイル: par_amg_solveT.c プロジェクト: Chang-Liu-0520/hypre
HYPRE_Int  hypre_BoomerAMGRelaxT( hypre_ParCSRMatrix *A,
                        hypre_ParVector    *f,
                        HYPRE_Int                *cf_marker,
                        HYPRE_Int                 relax_type,
                        HYPRE_Int                 relax_points,
                        HYPRE_Real          relax_weight,
                        hypre_ParVector    *u,
                        hypre_ParVector    *Vtemp )
{
   hypre_CSRMatrix *A_diag = hypre_ParCSRMatrixDiag(A);
   HYPRE_Real     *A_diag_data  = hypre_CSRMatrixData(A_diag);
   HYPRE_Int            *A_diag_i     = hypre_CSRMatrixI(A_diag);

   HYPRE_Int             n_global= hypre_ParCSRMatrixGlobalNumRows(A);
   HYPRE_Int             n       = hypre_CSRMatrixNumRows(A_diag);
   HYPRE_Int	      	   first_index = hypre_ParVectorFirstIndex(u);
   
   hypre_Vector   *u_local = hypre_ParVectorLocalVector(u);
   HYPRE_Real     *u_data  = hypre_VectorData(u_local);

   hypre_Vector   *Vtemp_local = hypre_ParVectorLocalVector(Vtemp);
   HYPRE_Real     *Vtemp_data = hypre_VectorData(Vtemp_local);

   hypre_CSRMatrix *A_CSR;
   HYPRE_Int		   *A_CSR_i;   
   HYPRE_Int		   *A_CSR_j;
   HYPRE_Real	   *A_CSR_data;
   
   hypre_Vector    *f_vector;
   HYPRE_Real	   *f_vector_data;

   HYPRE_Int             i;
   HYPRE_Int             jj;
   HYPRE_Int             column;
   HYPRE_Int             relax_error = 0;

   HYPRE_Real     *A_mat;
   HYPRE_Real     *b_vec;

   HYPRE_Real      zero = 0.0;
  
   /*-----------------------------------------------------------------------
    * Switch statement to direct control based on relax_type:
    *     relax_type = 7 -> Jacobi (uses ParMatvec)
    *     relax_type = 9 -> Direct Solve
    *-----------------------------------------------------------------------*/
   
   switch (relax_type)
   {            

      case 7: /* Jacobi (uses ParMatvec) */
      {
 
         /*-----------------------------------------------------------------
          * Copy f into temporary vector.
          *-----------------------------------------------------------------*/
        
         hypre_ParVectorCopy(f,Vtemp); 
 
         /*-----------------------------------------------------------------
          * Perform MatvecT Vtemp=f-A^Tu
          *-----------------------------------------------------------------*/
 
            hypre_ParCSRMatrixMatvecT(-1.0,A, u, 1.0, Vtemp);
            for (i = 0; i < n; i++)
            {
 
               /*-----------------------------------------------------------
                * If diagonal is nonzero, relax point i; otherwise, skip it.
                *-----------------------------------------------------------*/
           
               if (A_diag_data[A_diag_i[i]] != zero)
               {
                  u_data[i] += relax_weight * Vtemp_data[i] 
				/ A_diag_data[A_diag_i[i]];
               }
            }
      }
      break;
      
      
      case 9: /* Direct solve: use gaussian elimination */
      {

         /*-----------------------------------------------------------------
          *  Generate CSR matrix from ParCSRMatrix A
          *-----------------------------------------------------------------*/

	 if (n)
	 {
	    A_CSR = hypre_ParCSRMatrixToCSRMatrixAll(A);
	    f_vector = hypre_ParVectorToVectorAll(f);
 	    A_CSR_i = hypre_CSRMatrixI(A_CSR);
 	    A_CSR_j = hypre_CSRMatrixJ(A_CSR);
 	    A_CSR_data = hypre_CSRMatrixData(A_CSR);
   	    f_vector_data = hypre_VectorData(f_vector);

            A_mat = hypre_CTAlloc(HYPRE_Real, n_global*n_global);
            b_vec = hypre_CTAlloc(HYPRE_Real, n_global);    

            /*---------------------------------------------------------------
             *  Load transpose of CSR matrix into A_mat.
             *---------------------------------------------------------------*/

            for (i = 0; i < n_global; i++)
            {
               for (jj = A_CSR_i[i]; jj < A_CSR_i[i+1]; jj++)
               {
                  column = A_CSR_j[jj];
                  A_mat[column*n_global+i] = A_CSR_data[jj];
               }
               b_vec[i] = f_vector_data[i];
            }

            relax_error = gselim(A_mat,b_vec,n_global);

            for (i = 0; i < n; i++)
            {
               u_data[i] = b_vec[first_index+i];
            }

	    hypre_TFree(A_mat); 
            hypre_TFree(b_vec);
            hypre_CSRMatrixDestroy(A_CSR);
            A_CSR = NULL;
            hypre_SeqVectorDestroy(f_vector);
            f_vector = NULL;
         
         }
      }
      break;   
   }

   return(relax_error); 
}
コード例 #22
0
ファイル: gen_redcs_mat.c プロジェクト: tpatki/rapl-old-data
HYPRE_Int hypre_seqAMGSetup( hypre_ParAMGData *amg_data,
                      HYPRE_Int p_level,
                      HYPRE_Int coarse_threshold)


{

   /* Par Data Structure variables */
   hypre_ParCSRMatrix **Par_A_array = hypre_ParAMGDataAArray(amg_data);

   MPI_Comm 	      comm = hypre_ParCSRMatrixComm(Par_A_array[0]); 
   MPI_Comm 	      new_comm, seq_comm;

   hypre_ParCSRMatrix   *A_seq = NULL;
   hypre_CSRMatrix  *A_seq_diag;
   hypre_CSRMatrix  *A_seq_offd;
   hypre_ParVector   *F_seq = NULL;
   hypre_ParVector   *U_seq = NULL;

   hypre_ParCSRMatrix *A;

   HYPRE_Int               **dof_func_array;   
   HYPRE_Int                num_procs, my_id;

   HYPRE_Int                not_finished_coarsening;
   HYPRE_Int                level;

   HYPRE_Solver  coarse_solver;

   /* misc */
   dof_func_array = hypre_ParAMGDataDofFuncArray(amg_data);

   /*MPI Stuff */
   hypre_MPI_Comm_size(comm, &num_procs);   
   hypre_MPI_Comm_rank(comm,&my_id);
  
   /*initial */
   level = p_level;
   
   not_finished_coarsening = 1;
  
   /* convert A at this level to sequential */
   A = Par_A_array[level];

   {
      double *A_seq_data = NULL;
      HYPRE_Int *A_seq_i = NULL;
      HYPRE_Int *A_seq_offd_i = NULL;
      HYPRE_Int *A_seq_j = NULL;

      double *A_tmp_data = NULL;
      HYPRE_Int *A_tmp_i = NULL;
      HYPRE_Int *A_tmp_j = NULL;

      HYPRE_Int *info, *displs, *displs2;
      HYPRE_Int i, j, size, num_nonzeros, total_nnz, cnt;
  
      hypre_CSRMatrix *A_diag = hypre_ParCSRMatrixDiag(A);
      hypre_CSRMatrix *A_offd = hypre_ParCSRMatrixOffd(A);
      HYPRE_Int *col_map_offd = hypre_ParCSRMatrixColMapOffd(A);
      HYPRE_Int *A_diag_i = hypre_CSRMatrixI(A_diag);
      HYPRE_Int *A_offd_i = hypre_CSRMatrixI(A_offd);
      HYPRE_Int *A_diag_j = hypre_CSRMatrixJ(A_diag);
      HYPRE_Int *A_offd_j = hypre_CSRMatrixJ(A_offd);
      double *A_diag_data = hypre_CSRMatrixData(A_diag);
      double *A_offd_data = hypre_CSRMatrixData(A_offd);
      HYPRE_Int num_rows = hypre_CSRMatrixNumRows(A_diag);
      HYPRE_Int first_row_index = hypre_ParCSRMatrixFirstRowIndex(A);

      hypre_MPI_Group orig_group, new_group; 
      HYPRE_Int *ranks, new_num_procs, *row_starts;

      info = hypre_CTAlloc(HYPRE_Int, num_procs);

      hypre_MPI_Allgather(&num_rows, 1, HYPRE_MPI_INT, info, 1, HYPRE_MPI_INT, comm);

      ranks = hypre_CTAlloc(HYPRE_Int, num_procs);

      new_num_procs = 0;
      for (i=0; i < num_procs; i++)
         if (info[i]) 
         {
            ranks[new_num_procs] = i;
            info[new_num_procs++] = info[i];
         }

      MPI_Comm_group(comm, &orig_group);
      hypre_MPI_Group_incl(orig_group, new_num_procs, ranks, &new_group);
      MPI_Comm_create(comm, new_group, &new_comm);
      hypre_MPI_Group_free(&new_group);
      hypre_MPI_Group_free(&orig_group);

      if (num_rows)
      {
         /* alloc space in seq data structure only for participating procs*/
         HYPRE_BoomerAMGCreate(&coarse_solver);
         HYPRE_BoomerAMGSetMaxRowSum(coarse_solver,
		hypre_ParAMGDataMaxRowSum(amg_data)); 
         HYPRE_BoomerAMGSetStrongThreshold(coarse_solver,
		hypre_ParAMGDataStrongThreshold(amg_data)); 
         HYPRE_BoomerAMGSetCoarsenType(coarse_solver,
		hypre_ParAMGDataCoarsenType(amg_data)); 
         HYPRE_BoomerAMGSetInterpType(coarse_solver,
		hypre_ParAMGDataInterpType(amg_data)); 
         HYPRE_BoomerAMGSetTruncFactor(coarse_solver, 
		hypre_ParAMGDataTruncFactor(amg_data)); 
         HYPRE_BoomerAMGSetPMaxElmts(coarse_solver, 
		hypre_ParAMGDataPMaxElmts(amg_data)); 
	 if (hypre_ParAMGDataUserRelaxType(amg_data) > -1) 
            HYPRE_BoomerAMGSetRelaxType(coarse_solver, 
		hypre_ParAMGDataUserRelaxType(amg_data)); 
         HYPRE_BoomerAMGSetRelaxOrder(coarse_solver, 
		hypre_ParAMGDataRelaxOrder(amg_data)); 
         HYPRE_BoomerAMGSetRelaxWt(coarse_solver, 
		hypre_ParAMGDataUserRelaxWeight(amg_data)); 
	 if (hypre_ParAMGDataUserNumSweeps(amg_data) > -1) 
            HYPRE_BoomerAMGSetNumSweeps(coarse_solver, 
		hypre_ParAMGDataUserNumSweeps(amg_data)); 
         HYPRE_BoomerAMGSetNumFunctions(coarse_solver, 
		hypre_ParAMGDataNumFunctions(amg_data)); 
         HYPRE_BoomerAMGSetMaxIter(coarse_solver, 1); 
         HYPRE_BoomerAMGSetTol(coarse_solver, 0); 

         /* Create CSR Matrix, will be Diag part of new matrix */
         A_tmp_i = hypre_CTAlloc(HYPRE_Int, num_rows+1);

         A_tmp_i[0] = 0;
         for (i=1; i < num_rows+1; i++)
            A_tmp_i[i] = A_diag_i[i]-A_diag_i[i-1]+A_offd_i[i]-A_offd_i[i-1];

         num_nonzeros = A_offd_i[num_rows]+A_diag_i[num_rows];

         A_tmp_j = hypre_CTAlloc(HYPRE_Int, num_nonzeros);
         A_tmp_data = hypre_CTAlloc(double, num_nonzeros);

         cnt = 0;
         for (i=0; i < num_rows; i++)
         {
            for (j=A_diag_i[i]; j < A_diag_i[i+1]; j++)
	    {
	       A_tmp_j[cnt] = A_diag_j[j]+first_row_index;
	       A_tmp_data[cnt++] = A_diag_data[j];
	    }
            for (j=A_offd_i[i]; j < A_offd_i[i+1]; j++)
	    {
	       A_tmp_j[cnt] = col_map_offd[A_offd_j[j]];
	       A_tmp_data[cnt++] = A_offd_data[j];
	    }
         }

         displs = hypre_CTAlloc(HYPRE_Int, new_num_procs+1);
         displs[0] = 0;
         for (i=1; i < new_num_procs+1; i++)
            displs[i] = displs[i-1]+info[i-1];
         size = displs[new_num_procs];
  
         A_seq_i = hypre_CTAlloc(HYPRE_Int, size+1);
         A_seq_offd_i = hypre_CTAlloc(HYPRE_Int, size+1);

         hypre_MPI_Allgatherv ( &A_tmp_i[1], num_rows, HYPRE_MPI_INT, &A_seq_i[1], info, 
			displs, HYPRE_MPI_INT, new_comm );

         displs2 = hypre_CTAlloc(HYPRE_Int, new_num_procs+1);

         A_seq_i[0] = 0;
         displs2[0] = 0;
         for (j=1; j < displs[1]; j++)
            A_seq_i[j] = A_seq_i[j]+A_seq_i[j-1];
         for (i=1; i < new_num_procs; i++)
         {
            for (j=displs[i]; j < displs[i+1]; j++)
            {
               A_seq_i[j] = A_seq_i[j]+A_seq_i[j-1];
            }
         }
         A_seq_i[size] = A_seq_i[size]+A_seq_i[size-1];
         displs2[new_num_procs] = A_seq_i[size];
         for (i=1; i < new_num_procs+1; i++)
         {
            displs2[i] = A_seq_i[displs[i]];
            info[i-1] = displs2[i] - displs2[i-1];
         }

         total_nnz = displs2[new_num_procs];
         A_seq_j = hypre_CTAlloc(HYPRE_Int, total_nnz);
         A_seq_data = hypre_CTAlloc(double, total_nnz);

         hypre_MPI_Allgatherv ( A_tmp_j, num_nonzeros, HYPRE_MPI_INT,
                       A_seq_j, info, displs2,
                       HYPRE_MPI_INT, new_comm );

         hypre_MPI_Allgatherv ( A_tmp_data, num_nonzeros, hypre_MPI_DOUBLE,
                       A_seq_data, info, displs2,
                       hypre_MPI_DOUBLE, new_comm );

         hypre_TFree(displs);
         hypre_TFree(displs2);
         hypre_TFree(A_tmp_i);
         hypre_TFree(A_tmp_j);
         hypre_TFree(A_tmp_data);
   
         row_starts = hypre_CTAlloc(HYPRE_Int,2);
         row_starts[0] = 0; 
         row_starts[1] = size;
 
         /* Create 1 proc communicator */
         seq_comm = hypre_MPI_COMM_SELF;

         A_seq = hypre_ParCSRMatrixCreate(seq_comm,size,size,
					  row_starts, row_starts,
						0,total_nnz,0); 

         A_seq_diag = hypre_ParCSRMatrixDiag(A_seq);
         A_seq_offd = hypre_ParCSRMatrixOffd(A_seq);

         hypre_CSRMatrixData(A_seq_diag) = A_seq_data;
         hypre_CSRMatrixI(A_seq_diag) = A_seq_i;
         hypre_CSRMatrixJ(A_seq_diag) = A_seq_j;
         hypre_CSRMatrixI(A_seq_offd) = A_seq_offd_i;

         F_seq = hypre_ParVectorCreate(seq_comm, size, row_starts);
         U_seq = hypre_ParVectorCreate(seq_comm, size, row_starts);
         hypre_ParVectorOwnsPartitioning(F_seq) = 0;
         hypre_ParVectorOwnsPartitioning(U_seq) = 0;
         hypre_ParVectorInitialize(F_seq);
         hypre_ParVectorInitialize(U_seq);

         hypre_BoomerAMGSetup(coarse_solver,A_seq,F_seq,U_seq);

         hypre_ParAMGDataCoarseSolver(amg_data) = coarse_solver;
         hypre_ParAMGDataACoarse(amg_data) = A_seq;
         hypre_ParAMGDataFCoarse(amg_data) = F_seq;
         hypre_ParAMGDataUCoarse(amg_data) = U_seq;
         hypre_ParAMGDataNewComm(amg_data) = new_comm;
      }
      hypre_TFree(info);
      hypre_TFree(ranks);
   }
 
   return 0;
   
   
}
コード例 #23
0
ファイル: par_nodal_systems.c プロジェクト: LLNL/COGENT
HYPRE_Int
hypre_BoomerAMGCreateScalarCFS(hypre_ParCSRMatrix    *SN,
                       HYPRE_Int                   *CFN_marker,
                       HYPRE_Int                   *col_offd_SN_to_AN,
                       HYPRE_Int                    num_functions,
                       HYPRE_Int                    nodal,
                       HYPRE_Int                    data,
                       HYPRE_Int                  **dof_func_ptr,
                       HYPRE_Int                  **CF_marker_ptr,
                       HYPRE_Int                  **col_offd_S_to_A_ptr,
                       hypre_ParCSRMatrix   **S_ptr)
{
   MPI_Comm	       comm = hypre_ParCSRMatrixComm(SN);
   hypre_ParCSRMatrix *S;
   hypre_CSRMatrix    *S_diag;
   HYPRE_Int		      *S_diag_i;
   HYPRE_Int		      *S_diag_j;
   double	      *S_diag_data;
   hypre_CSRMatrix    *S_offd;
   HYPRE_Int		      *S_offd_i;
   HYPRE_Int		      *S_offd_j;
   double	      *S_offd_data;
   HYPRE_Int		      *row_starts_S;
   HYPRE_Int		      *col_starts_S;
   HYPRE_Int		      *row_starts_SN = hypre_ParCSRMatrixRowStarts(SN);
   HYPRE_Int		      *col_starts_SN = hypre_ParCSRMatrixColStarts(SN);
   hypre_CSRMatrix    *SN_diag = hypre_ParCSRMatrixDiag(SN);
   HYPRE_Int		      *SN_diag_i = hypre_CSRMatrixI(SN_diag);
   HYPRE_Int		      *SN_diag_j = hypre_CSRMatrixJ(SN_diag);
   double	      *SN_diag_data;
   hypre_CSRMatrix    *SN_offd = hypre_ParCSRMatrixOffd(SN);
   HYPRE_Int		      *SN_offd_i = hypre_CSRMatrixI(SN_offd);
   HYPRE_Int		      *SN_offd_j = hypre_CSRMatrixJ(SN_offd);
   double	      *SN_offd_data;
   HYPRE_Int		      *CF_marker;
   HYPRE_Int		      *col_map_offd_SN = hypre_ParCSRMatrixColMapOffd(SN);
   HYPRE_Int		      *col_map_offd_S;
   HYPRE_Int		      *dof_func;
   HYPRE_Int		       num_nodes = hypre_CSRMatrixNumRows(SN_diag);
   HYPRE_Int		       num_variables;
   hypre_ParCSRCommPkg *comm_pkg = hypre_ParCSRMatrixCommPkg(SN);
   HYPRE_Int		       num_sends;
   HYPRE_Int		       num_recvs;
   HYPRE_Int		      *send_procs;
   HYPRE_Int		      *send_map_starts;
   HYPRE_Int		      *send_map_elmts;
   HYPRE_Int		      *recv_procs;
   HYPRE_Int		      *recv_vec_starts;
   hypre_ParCSRCommPkg *comm_pkg_S;
   HYPRE_Int		      *send_procs_S;
   HYPRE_Int		      *send_map_starts_S;
   HYPRE_Int		      *send_map_elmts_S;
   HYPRE_Int		      *recv_procs_S;
   HYPRE_Int		      *recv_vec_starts_S;
   HYPRE_Int		      *col_offd_S_to_A = NULL;
   
   HYPRE_Int		       num_coarse_nodes;
   HYPRE_Int		       i,j,k,k1,jj,cnt;
   HYPRE_Int		       row, start, end;
   HYPRE_Int		       num_procs;
   HYPRE_Int		       num_cols_offd_SN = hypre_CSRMatrixNumCols(SN_offd);
   HYPRE_Int		       num_cols_offd_S;
   HYPRE_Int		       SN_num_nonzeros_diag;
   HYPRE_Int		       SN_num_nonzeros_offd;
   HYPRE_Int		       S_num_nonzeros_diag;
   HYPRE_Int		       S_num_nonzeros_offd;
   HYPRE_Int		       global_num_vars;
   HYPRE_Int		       global_num_cols;
   HYPRE_Int		       global_num_nodes;
   HYPRE_Int		       ierr = 0;
 
   hypre_MPI_Comm_size(comm, &num_procs);
 
   num_variables = num_functions*num_nodes;
   CF_marker = hypre_CTAlloc(HYPRE_Int, num_variables);

   if (nodal < 0)
   {
      cnt = 0;
      num_coarse_nodes = 0;
      for (i=0; i < num_nodes; i++)
      {
	 if (CFN_marker[i] == 1) num_coarse_nodes++;
         for (j=0; j < num_functions; j++)
	    CF_marker[cnt++] = CFN_marker[i];
      }

      dof_func = hypre_CTAlloc(HYPRE_Int,num_coarse_nodes*num_functions);
      cnt = 0;
      for (i=0; i < num_nodes; i++)
      {
	 if (CFN_marker[i] == 1)
	 {
	    for (k=0; k < num_functions; k++)
	       dof_func[cnt++] = k;
	 }
      }
      *dof_func_ptr = dof_func;
   }
   else
   {
      cnt = 0;
      for (i=0; i < num_nodes; i++)
         for (j=0; j < num_functions; j++)
	    CF_marker[cnt++] = CFN_marker[i];
   }

   *CF_marker_ptr = CF_marker;


#ifdef HYPRE_NO_GLOBAL_PARTITION
   row_starts_S = hypre_CTAlloc(HYPRE_Int,2);
   for (i=0; i < 2; i++)
      row_starts_S[i] = num_functions*row_starts_SN[i];

   if (row_starts_SN != col_starts_SN)
   {
      col_starts_S = hypre_CTAlloc(HYPRE_Int,2);
      for (i=0; i < 2; i++)
         col_starts_S[i] = num_functions*col_starts_SN[i];
   }
   else
   {
      col_starts_S = row_starts_S;
   }
#else
   row_starts_S = hypre_CTAlloc(HYPRE_Int,num_procs+1);
   for (i=0; i < num_procs+1; i++)
      row_starts_S[i] = num_functions*row_starts_SN[i];

   if (row_starts_SN != col_starts_SN)
   {
      col_starts_S = hypre_CTAlloc(HYPRE_Int,num_procs+1);
      for (i=0; i < num_procs+1; i++)
         col_starts_S[i] = num_functions*col_starts_SN[i];
   }
   else
   {
      col_starts_S = row_starts_S;
   }
#endif


   SN_num_nonzeros_diag = SN_diag_i[num_nodes];
   SN_num_nonzeros_offd = SN_offd_i[num_nodes];
 
   global_num_nodes = hypre_ParCSRMatrixGlobalNumRows(SN);
   global_num_cols = hypre_ParCSRMatrixGlobalNumCols(SN)*num_functions;
 
   global_num_vars = global_num_nodes*num_functions;
   S_num_nonzeros_diag = num_functions*SN_num_nonzeros_diag;
   S_num_nonzeros_offd = num_functions*SN_num_nonzeros_offd;
   num_cols_offd_S = num_functions*num_cols_offd_SN;
   S = hypre_ParCSRMatrixCreate(comm, global_num_vars, global_num_cols,
		row_starts_S, col_starts_S, num_cols_offd_S,
		S_num_nonzeros_diag, S_num_nonzeros_offd);

   S_diag = hypre_ParCSRMatrixDiag(S);
   S_offd = hypre_ParCSRMatrixOffd(S);
   S_diag_i = hypre_CTAlloc(HYPRE_Int, num_variables+1);
   S_offd_i = hypre_CTAlloc(HYPRE_Int, num_variables+1);
   S_diag_j = hypre_CTAlloc(HYPRE_Int, S_num_nonzeros_diag);
   hypre_CSRMatrixI(S_diag) = S_diag_i;
   hypre_CSRMatrixJ(S_diag) = S_diag_j;
   if (data) 
   {
      SN_diag_data = hypre_CSRMatrixData(SN_diag);
      S_diag_data = hypre_CTAlloc(double, S_num_nonzeros_diag);
      hypre_CSRMatrixData(S_diag) = S_diag_data;
      if (num_cols_offd_S)
      {
         SN_offd_data = hypre_CSRMatrixData(SN_offd);
         S_offd_data = hypre_CTAlloc(double, S_num_nonzeros_offd);
         hypre_CSRMatrixData(S_offd) = S_offd_data;
      }

   }
   hypre_CSRMatrixI(S_offd) = S_offd_i;

   if (comm_pkg)
   {
      comm_pkg_S = hypre_CTAlloc(hypre_ParCSRCommPkg,1);
      hypre_ParCSRCommPkgComm(comm_pkg_S) = comm;
      num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
      hypre_ParCSRCommPkgNumSends(comm_pkg_S) = num_sends;
      num_recvs = hypre_ParCSRCommPkgNumRecvs(comm_pkg);
      hypre_ParCSRCommPkgNumRecvs(comm_pkg_S) = num_recvs;
      send_procs = hypre_ParCSRCommPkgSendProcs(comm_pkg);
      send_map_starts = hypre_ParCSRCommPkgSendMapStarts(comm_pkg);
      send_map_elmts = hypre_ParCSRCommPkgSendMapElmts(comm_pkg);
      recv_procs = hypre_ParCSRCommPkgRecvProcs(comm_pkg);
      recv_vec_starts = hypre_ParCSRCommPkgRecvVecStarts(comm_pkg);
      send_procs_S = NULL;
      send_map_elmts_S = NULL;
      if (num_sends) 
      {
         send_procs_S = hypre_CTAlloc(HYPRE_Int,num_sends);
         send_map_elmts_S = hypre_CTAlloc(HYPRE_Int,
		num_functions*send_map_starts[num_sends]);
      }
      send_map_starts_S = hypre_CTAlloc(HYPRE_Int,num_sends+1);
      recv_vec_starts_S = hypre_CTAlloc(HYPRE_Int,num_recvs+1);
      recv_procs_S = NULL;
      if (num_recvs) recv_procs_S = hypre_CTAlloc(HYPRE_Int,num_recvs);
      send_map_starts_S[0] = 0;
      for (i=0; i < num_sends; i++)
      {
         send_procs_S[i] = send_procs[i];
         send_map_starts_S[i+1] = num_functions*send_map_starts[i+1];
      }
      recv_vec_starts_S[0] = 0;
      for (i=0; i < num_recvs; i++)
      {
         recv_procs_S[i] = recv_procs[i];
         recv_vec_starts_S[i+1] = num_functions*recv_vec_starts[i+1];
      }

      cnt = 0;
      for (i=0; i < send_map_starts[num_sends]; i++)
      {
	 k1 = num_functions*send_map_elmts[i];
         for (j=0; j < num_functions; j++)
         {
	    send_map_elmts_S[cnt++] = k1+j;
         }
      }
      hypre_ParCSRCommPkgSendProcs(comm_pkg_S) = send_procs_S;
      hypre_ParCSRCommPkgSendMapStarts(comm_pkg_S) = send_map_starts_S;
      hypre_ParCSRCommPkgSendMapElmts(comm_pkg_S) = send_map_elmts_S;
      hypre_ParCSRCommPkgRecvProcs(comm_pkg_S) = recv_procs_S;
      hypre_ParCSRCommPkgRecvVecStarts(comm_pkg_S) = recv_vec_starts_S;
      hypre_ParCSRMatrixCommPkg(S) = comm_pkg_S;
   }

   if (num_cols_offd_S)
   {
      S_offd_j = hypre_CTAlloc(HYPRE_Int, S_num_nonzeros_offd);
      hypre_CSRMatrixJ(S_offd) = S_offd_j;

      col_map_offd_S = hypre_CTAlloc(HYPRE_Int, num_cols_offd_S);

      cnt = 0;
      for (i=0; i < num_cols_offd_SN; i++)
      {
         k1 = col_map_offd_SN[i]*num_functions;
         for (j=0; j < num_functions; j++)
            col_map_offd_S[cnt++] = k1+j;
      }
      hypre_ParCSRMatrixColMapOffd(S) = col_map_offd_S;
   }
   
   if (col_offd_SN_to_AN)
   {
      col_offd_S_to_A = hypre_CTAlloc(HYPRE_Int, num_cols_offd_S);

      cnt = 0;
      for (i=0; i < num_cols_offd_SN; i++)
      {
         k1 = col_offd_SN_to_AN[i]*num_functions;
         for (j=0; j < num_functions; j++)
            col_offd_S_to_A[cnt++] = k1+j;
      }
      *col_offd_S_to_A_ptr = col_offd_S_to_A;
   }
   


   cnt = 0;
   row = 0;
   for (i=0; i < num_nodes; i++)
   {
      row++;
      start = cnt;
      for (j=SN_diag_i[i]; j < SN_diag_i[i+1]; j++)
      {
         jj = SN_diag_j[j];
	 if (data) S_diag_data[cnt] = SN_diag_data[j];
	 S_diag_j[cnt++] = jj*num_functions;
      }
      end = cnt;
      S_diag_i[row] = cnt;
      for (k1=1; k1 < num_functions; k1++)
      {
         row++;
	 for (k=start; k < end; k++)
	 {
	    if (data) S_diag_data[cnt] = S_diag_data[k];
	    S_diag_j[cnt++] = S_diag_j[k]+k1;
	 }
         S_diag_i[row] = cnt;
      }
   } 

   cnt = 0;
   row = 0;
   for (i=0; i < num_nodes; i++)
   {
      row++;
      start = cnt;
      for (j=SN_offd_i[i]; j < SN_offd_i[i+1]; j++)
      {
         jj = SN_offd_j[j];
	 if (data) S_offd_data[cnt] = SN_offd_data[j];
	 S_offd_j[cnt++] = jj*num_functions;
      }
      end = cnt;
      S_offd_i[row] = cnt;
      for (k1=1; k1 < num_functions; k1++)
      {
         row++;
	 for (k=start; k < end; k++)
	 {
	    if (data) S_offd_data[cnt] = S_offd_data[k];
	    S_offd_j[cnt++] = S_offd_j[k]+k1;
	 }
         S_offd_i[row] = cnt;
      }
   } 

   *S_ptr = S; 

   return (ierr);
}
コード例 #24
0
ファイル: driver_matvec.c プロジェクト: LLNL/COGENT
HYPRE_Int main( HYPRE_Int   argc, char *argv[] )
{
   hypre_ParCSRMatrix      *par_matrix, *g_matrix, **submatrices;
   hypre_CSRMatrix         *A_diag, *A_offd;
   hypre_CSRBlockMatrix    *diag;
   hypre_CSRBlockMatrix    *offd;
   hypre_ParCSRBlockMatrix *par_blk_matrix, *par_blk_matrixT, *rap_matrix;
   hypre_Vector        *x_local;
   hypre_Vector        *y_local;
   hypre_ParVector     *x;
   hypre_ParVector     *y;
   HYPRE_Solver        gmres_solver, precon;
   HYPRE_Int                 *diag_i, *diag_j, *offd_i, *offd_j;
   HYPRE_Int                 *diag_i2, *diag_j2, *offd_i2, *offd_j2;
   double              *diag_d, *diag_d2, *offd_d, *offd_d2;
   HYPRE_Int		       mypid, local_size, nprocs;
   HYPRE_Int		       global_num_rows, global_num_cols, num_cols_offd;
   HYPRE_Int		       num_nonzeros_diag, num_nonzeros_offd, *colMap;
   HYPRE_Int 		       ii, jj, kk, row, col, nnz, *indices, *colMap2;
   double 	       *data, ddata, *y_data;
   HYPRE_Int 		       *row_starts, *col_starts, *rstarts, *cstarts;
   HYPRE_Int 		       *row_starts2, *col_starts2;
   HYPRE_Int                 block_size=2, bnnz=4, *index_set;
   FILE                *fp;

   /* --------------------------------------------- */
   /* Initialize MPI                                */
   /* --------------------------------------------- */

   hypre_MPI_Init(&argc, &argv);
   hypre_MPI_Comm_rank(hypre_MPI_COMM_WORLD, &mypid);
   hypre_MPI_Comm_size(hypre_MPI_COMM_WORLD, &nprocs);

   /* build and fetch matrix */
   MyBuildParLaplacian9pt((HYPRE_ParCSRMatrix *) &par_matrix);
   global_num_rows = hypre_ParCSRMatrixGlobalNumRows(par_matrix);
   global_num_cols = hypre_ParCSRMatrixGlobalNumCols(par_matrix);
   row_starts = hypre_ParCSRMatrixRowStarts(par_matrix);
   col_starts = hypre_ParCSRMatrixColStarts(par_matrix);
   A_diag = hypre_ParCSRMatrixDiag(par_matrix);
   A_offd = hypre_ParCSRMatrixOffd(par_matrix);
   num_cols_offd     = hypre_CSRMatrixNumCols(A_offd);
   num_nonzeros_diag = hypre_CSRMatrixNumNonzeros(A_diag);
   num_nonzeros_offd = hypre_CSRMatrixNumNonzeros(A_offd);

   /* --------------------------------------------- */
   /* build vector and apply matvec                 */
   /* --------------------------------------------- */

   x = hypre_ParVectorCreate(hypre_MPI_COMM_WORLD,global_num_cols,col_starts);
   hypre_ParVectorSetPartitioningOwner(x,0);
   hypre_ParVectorInitialize(x);
   x_local = hypre_ParVectorLocalVector(x);
   data    = hypre_VectorData(x_local);
   local_size = col_starts[mypid+1] - col_starts[mypid];
   for (ii = 0; ii < local_size; ii++) data[ii] = 1.0;
   y = hypre_ParVectorCreate(hypre_MPI_COMM_WORLD,global_num_rows,row_starts);
   hypre_ParVectorSetPartitioningOwner(y,0);
   hypre_ParVectorInitialize(y);
   hypre_ParCSRMatrixMatvec (1.0, par_matrix, x, 0.0, y);
   ddata = hypre_ParVectorInnerProd(y, y);
   if (mypid == 0) hypre_printf("y inner product = %e\n", ddata);
   hypre_ParVectorDestroy(x);
   hypre_ParVectorDestroy(y);

   /* --------------------------------------------- */
   /* build block matrix                            */
   /* --------------------------------------------- */

   rstarts = hypre_CTAlloc(HYPRE_Int, nprocs+1);
   for (ii = 0; ii <= nprocs; ii++) rstarts[ii] = row_starts[ii];
   cstarts = hypre_CTAlloc(HYPRE_Int, nprocs+1);
   for (ii = 0; ii <= nprocs; ii++) cstarts[ii] = col_starts[ii];

   par_blk_matrix = hypre_ParCSRBlockMatrixCreate(hypre_MPI_COMM_WORLD,block_size,
                          global_num_rows, global_num_cols, rstarts,
                          cstarts, num_cols_offd, num_nonzeros_diag,
                          num_nonzeros_offd);
   colMap  = hypre_ParCSRMatrixColMapOffd(par_matrix);
   if (num_cols_offd > 0) colMap2 = hypre_CTAlloc(HYPRE_Int, num_cols_offd);
   else                   colMap2 = NULL;
   for (ii = 0; ii < num_cols_offd; ii++) colMap2[ii] = colMap[ii];
   hypre_ParCSRBlockMatrixColMapOffd(par_blk_matrix) = colMap2;
   diag_i = hypre_CSRMatrixI(hypre_ParCSRMatrixDiag(par_matrix));
   diag_j = hypre_CSRMatrixJ(hypre_ParCSRMatrixDiag(par_matrix));
   diag_d = hypre_CSRMatrixData(hypre_ParCSRMatrixDiag(par_matrix));
   diag = hypre_ParCSRBlockMatrixDiag(par_blk_matrix);
   diag_i2 = hypre_CTAlloc(HYPRE_Int, local_size+1);
   diag_j2 = hypre_CTAlloc(HYPRE_Int, num_nonzeros_diag);
   diag_d2 = hypre_CTAlloc(double, num_nonzeros_diag*bnnz);
   for (ii = 0; ii <= local_size; ii++) diag_i2[ii] = diag_i[ii];
   for (ii = 0; ii < num_nonzeros_diag; ii++) diag_j2[ii] = diag_j[ii];
   hypre_CSRBlockMatrixI(diag) = diag_i2;
   hypre_CSRBlockMatrixJ(diag) = diag_j2;
   for (ii = 0; ii < num_nonzeros_diag; ii++)
   {
      for (jj = 0; jj < block_size; jj++)
         for (kk = 0; kk < block_size; kk++)
         {
            if (jj <= kk)
               diag_d2[ii*bnnz+jj*block_size+kk] = diag_d[ii];
            else
               diag_d2[ii*bnnz+jj*block_size+kk] = 0.0;
         }
   }
   hypre_CSRBlockMatrixData(diag) = diag_d2;

   offd_i = hypre_CSRMatrixI(hypre_ParCSRMatrixOffd(par_matrix));
   offd_j = hypre_CSRMatrixJ(hypre_ParCSRMatrixOffd(par_matrix));
   offd_d = hypre_CSRMatrixData(hypre_ParCSRMatrixOffd(par_matrix));
   offd   = hypre_ParCSRBlockMatrixOffd(par_blk_matrix);
   offd_i2 = hypre_CTAlloc(HYPRE_Int, local_size+1);
   for (ii = 0; ii <= local_size; ii++) offd_i2[ii] = offd_i[ii];
   hypre_CSRBlockMatrixI(offd) = offd_i2;
   if (num_cols_offd)
   {
      offd_j2 = hypre_CTAlloc(HYPRE_Int, num_nonzeros_offd);
      for (ii = 0; ii < num_nonzeros_offd; ii++) offd_j2[ii] = offd_j[ii];
      hypre_CSRBlockMatrixJ(offd) = offd_j2;
      offd_d2 = hypre_CTAlloc(double, num_nonzeros_offd*bnnz);
      for (ii = 0; ii < num_nonzeros_offd; ii++)
      {
         for (jj = 0; jj < block_size; jj++)
            for (kk = 0; kk < block_size; kk++)
            {
               if (jj <= kk)
                  offd_d2[ii*bnnz+jj*block_size+kk] = offd_d[ii];
               else
                  offd_d2[ii*bnnz+jj*block_size+kk] = 0.0;
            }
      }
      hypre_CSRBlockMatrixData(offd) = offd_d2;
   }
   else
   {
コード例 #25
0
int HYPRE_ParCSR_SuperLUSetup(HYPRE_Solver solver, HYPRE_ParCSRMatrix A_csr,
                              HYPRE_ParVector b, HYPRE_ParVector x )
{
#ifdef HAVE_SUPERLU
   int    startRow, endRow, nrows, *partition, *AdiagI, *AdiagJ, nnz;
   int    irow, colNum, index, *cscI, *cscJ, jcol, *colLengs;
   int    *etree, permcSpec, lwork, panelSize, relax, info;
   double *AdiagA, *cscA, diagPivotThresh, dropTol;
   char              refact[1];
   hypre_CSRMatrix   *Adiag;
   HYPRE_SuperLU     *sluPtr;
   SuperMatrix       sluAmat, auxAmat;
   superlu_options_t slu_options;
   SuperLUStat_t     slu_stat;

   /* ---------------------------------------------------------------- */
   /* get matrix information                                           */
   /* ---------------------------------------------------------------- */

   sluPtr = (HYPRE_SuperLU *) solver;
   assert ( sluPtr != NULL );
   HYPRE_ParCSRMatrixGetRowPartitioning( A_csr, &partition );
   startRow = partition[0];
   endRow   = partition[1] - 1;
   nrows    = endRow - startRow + 1;
   free( partition );
   if ( startRow != 0 )
   {
      printf("HYPRE_ParCSR_SuperLUSetup ERROR - start row != 0.\n");
      return -1;
   }

   /* ---------------------------------------------------------------- */
   /* get hypre matrix                                                 */
   /* ---------------------------------------------------------------- */

   Adiag  = hypre_ParCSRMatrixDiag((hypre_ParCSRMatrix *) A_csr);
   AdiagI = hypre_CSRMatrixI(Adiag);
   AdiagJ = hypre_CSRMatrixJ(Adiag);
   AdiagA = hypre_CSRMatrixData(Adiag);
   nnz    = AdiagI[nrows];

   /* ---------------------------------------------------------------- */
   /* convert the csr matrix into csc matrix                           */
   /* ---------------------------------------------------------------- */

   colLengs = (int *) malloc(nrows * sizeof(int));
   for ( irow = 0; irow < nrows; irow++ ) colLengs[irow] = 0;
   for ( irow = 0; irow < nrows; irow++ )
      for ( jcol = AdiagI[irow]; jcol < AdiagI[irow+1]; jcol++ )
         colLengs[AdiagJ[jcol]]++;
   cscJ = (int *)    malloc( (nrows+1) * sizeof(int) );
   cscI = (int *)    malloc( nnz * sizeof(int) );
   cscA = (double *) malloc( nnz * sizeof(double) );
   cscJ[0] = 0;
   nnz = 0;
   for ( jcol = 1; jcol <= nrows; jcol++ )
   {
      nnz += colLengs[jcol-1];
      cscJ[jcol] = nnz;
   }
   for ( irow = 0; irow < nrows; irow++ )
   {
      for ( jcol = AdiagI[irow]; jcol < AdiagI[irow+1]; jcol++ )
      {
         colNum = AdiagJ[jcol];
         index  = cscJ[colNum]++;
         cscI[index] = irow;
         cscA[index] = AdiagA[jcol];
      }
   }
   cscJ[0] = 0;
   nnz = 0;
   for ( jcol = 1; jcol <= nrows; jcol++ )
   {
      nnz += colLengs[jcol-1];
      cscJ[jcol] = nnz;
   }
   free(colLengs);

   /* ---------------------------------------------------------------- */
   /* create SuperMatrix                                                */
   /* ---------------------------------------------------------------- */
                                                                                
   dCreate_CompCol_Matrix(&sluAmat,nrows,nrows,cscJ[nrows],cscA,cscI,
                          cscJ, SLU_NC, SLU_D, SLU_GE);
   etree   = (int *) malloc(nrows * sizeof(int));
   sluPtr->permC_  = (int *) malloc(nrows * sizeof(int));
   sluPtr->permR_  = (int *) malloc(nrows * sizeof(int));
   permcSpec = 0;
   get_perm_c(permcSpec, &sluAmat, sluPtr->permC_);
   slu_options.Fact = DOFACT;
   slu_options.SymmetricMode = NO;
   sp_preorder(&slu_options, &sluAmat, sluPtr->permC_, etree, &auxAmat);
   diagPivotThresh = 1.0;
   dropTol = 0.0;
   panelSize = sp_ienv(1);
   relax = sp_ienv(2);
   StatInit(&slu_stat);
   lwork = 0;
   slu_options.ColPerm = MY_PERMC;
   slu_options.DiagPivotThresh = diagPivotThresh;

   dgstrf(&slu_options, &auxAmat, dropTol, relax, panelSize,
          etree, NULL, lwork, sluPtr->permC_, sluPtr->permR_,
          &(sluPtr->SLU_Lmat), &(sluPtr->SLU_Umat), &slu_stat, &info);
   Destroy_CompCol_Permuted(&auxAmat);
   Destroy_CompCol_Matrix(&sluAmat);
   free(etree);
   sluPtr->factorized_ = 1;
   StatFree(&slu_stat);
   return 0;
#else
   printf("HYPRE_ParCSR_SuperLUSetup ERROR - SuperLU not enabled.\n");
   *solver = (HYPRE_Solver) NULL;
   return -1;
#endif
}
コード例 #26
0
ファイル: par_stats.c プロジェクト: Kyushick/sight
int
hypre_BoomerAMGSetupStats( void               *amg_vdata,
                        hypre_ParCSRMatrix *A         )
{
   MPI_Comm 	      comm = hypre_ParCSRMatrixComm(A);   

   hypre_ParAMGData *amg_data = (hypre_ParAMGData*)amg_vdata;

   /*hypre_SeqAMGData *seq_data = hypre_ParAMGDataSeqData(amg_data);*/

   /* Data Structure variables */

   hypre_ParCSRMatrix **A_array;
   hypre_ParCSRMatrix **P_array;

   hypre_CSRMatrix *A_diag;
   double          *A_diag_data;
   int             *A_diag_i;

   hypre_CSRMatrix *A_offd;   
   double          *A_offd_data;
   int             *A_offd_i;

   hypre_CSRMatrix *P_diag;
   double          *P_diag_data;
   int             *P_diag_i;

   hypre_CSRMatrix *P_offd;   
   double          *P_offd_data;
   int             *P_offd_i;


   int	    numrows;

   HYPRE_BigInt	    *row_starts;

 
   int      num_levels; 
   int      coarsen_type;
   int      interp_type;
   int      measure_type;
   double   global_nonzeros;

   double  *send_buff;
   double  *gather_buff;
 
   /* Local variables */

   int       level;
   int       j;
   HYPRE_BigInt fine_size;
 
   int       min_entries;
   int       max_entries;

   int       num_procs,my_id, num_threads;


   double    min_rowsum;
   double    max_rowsum;
   double    sparse;


   int       i;
   

   HYPRE_BigInt coarse_size;
   int       entries;

   double    avg_entries;
   double    rowsum;

   double    min_weight;
   double    max_weight;

   int       global_min_e;
   int       global_max_e;
   double    global_min_rsum;
   double    global_max_rsum;
   double    global_min_wt;
   double    global_max_wt;

   double  *num_coeffs;
   double  *num_variables;
   double   total_variables; 
   double   operat_cmplxty;
   double   grid_cmplxty;

   /* amg solve params */
   int      max_iter;
   int      cycle_type;    
   int     *num_grid_sweeps;  
   int     *grid_relax_type;   
   int      relax_order;
   int    **grid_relax_points; 
   double  *relax_weight;
   double  *omega;
   double   tol;


   int one = 1;
   int minus_one = -1;
   int zero = 0;
   int smooth_type;
   int smooth_num_levels;
   int agg_num_levels;
   /*int seq_cg = 0;*/
   
   /*if (seq_data)
      seq_cg = 1;*/


   MPI_Comm_size(comm, &num_procs);   
   MPI_Comm_rank(comm,&my_id);
   num_threads = hypre_NumThreads();

   if (my_id == 0)
      printf("\nNumber of MPI processes: %d , Number of OpenMP threads: %d\n", num_procs, num_threads);
   A_array = hypre_ParAMGDataAArray(amg_data);
   P_array = hypre_ParAMGDataPArray(amg_data);
   num_levels = hypre_ParAMGDataNumLevels(amg_data);
   coarsen_type = hypre_ParAMGDataCoarsenType(amg_data);
   interp_type = hypre_ParAMGDataInterpType(amg_data);
   measure_type = hypre_ParAMGDataMeasureType(amg_data);
   smooth_type = hypre_ParAMGDataSmoothType(amg_data);
   smooth_num_levels = hypre_ParAMGDataSmoothNumLevels(amg_data);
   agg_num_levels = hypre_ParAMGDataAggNumLevels(amg_data);


   /*----------------------------------------------------------
    * Get the amg_data data
    *----------------------------------------------------------*/

   num_levels = hypre_ParAMGDataNumLevels(amg_data);
   max_iter   = hypre_ParAMGDataMaxIter(amg_data);
   cycle_type = hypre_ParAMGDataCycleType(amg_data);    
   num_grid_sweeps = hypre_ParAMGDataNumGridSweeps(amg_data);  
   grid_relax_type = hypre_ParAMGDataGridRelaxType(amg_data);
   grid_relax_points = hypre_ParAMGDataGridRelaxPoints(amg_data);
   relax_weight = hypre_ParAMGDataRelaxWeight(amg_data); 
   relax_order = hypre_ParAMGDataRelaxOrder(amg_data); 
   omega = hypre_ParAMGDataOmega(amg_data); 
   tol = hypre_ParAMGDataTol(amg_data);

   /*block_mode = hypre_ParAMGDataBlockMode(amg_data);*/

   send_buff     = hypre_CTAlloc(double, 6);
#ifdef HYPRE_NO_GLOBAL_PARTITION
   gather_buff = hypre_CTAlloc(double,6);    
#else
   gather_buff = hypre_CTAlloc(double,6*num_procs);    
#endif

   if (my_id==0)
   {
      printf("\nBoomerAMG SETUP PARAMETERS:\n\n");
      printf(" Max levels = %d\n",hypre_ParAMGDataMaxLevels(amg_data));
      printf(" Num levels = %d\n\n",num_levels);
      printf(" Strength Threshold = %f\n", 
                         hypre_ParAMGDataStrongThreshold(amg_data));
      printf(" Interpolation Truncation Factor = %f\n", 
                         hypre_ParAMGDataTruncFactor(amg_data));
      printf(" Maximum Row Sum Threshold for Dependency Weakening = %f\n\n", 
                         hypre_ParAMGDataMaxRowSum(amg_data));

      if (coarsen_type == 0)
      {
	printf(" Coarsening Type = Cleary-Luby-Jones-Plassman\n");
      }
      else if (abs(coarsen_type) == 1) 
      {
	printf(" Coarsening Type = Ruge\n");
      }
      else if (abs(coarsen_type) == 2) 
      {
	printf(" Coarsening Type = Ruge2B\n");
      }
      else if (abs(coarsen_type) == 3) 
      {
	printf(" Coarsening Type = Ruge3\n");
      }
      else if (abs(coarsen_type) == 4) 
      {
	printf(" Coarsening Type = Ruge 3c \n");
      }
      else if (abs(coarsen_type) == 5) 
      {
	printf(" Coarsening Type = Ruge relax special points \n");
      }
      else if (abs(coarsen_type) == 6) 
      {
	printf(" Coarsening Type = Falgout-CLJP \n");
      }
      else if (abs(coarsen_type) == 8) 
      {
	printf(" Coarsening Type = PMIS \n");
      }
      else if (abs(coarsen_type) == 10) 
      {
	printf(" Coarsening Type = HMIS \n");
      }
      else if (abs(coarsen_type) == 11) 
      {
	printf(" Coarsening Type = Ruge 1st pass only \n");
      }
      else if (abs(coarsen_type) == 9) 
      {
	printf(" Coarsening Type = PMIS fixed random \n");
      }
      else if (abs(coarsen_type) == 7) 
      {
	printf(" Coarsening Type = CLJP, fixed random \n");
      }
      if (coarsen_type > 0) 
      {
	printf(" Hybrid Coarsening (switch to CLJP when coarsening slows)\n");
      }
      

      if (coarsen_type)
      	printf(" measures are determined %s\n\n", 
                  (measure_type ? "globally" : "locally"));

      if (agg_num_levels)
	printf(" no. of levels of aggressive coarsening: %d\n\n", agg_num_levels);

#ifdef HYPRE_NO_GLOBAL_PARTITION
      printf( "\n No global partition option chosen.\n\n");
#endif

      if (interp_type == 0)
      {
	printf(" Interpolation = modified classical interpolation\n");
      }
      else if (interp_type == 1) 
      {
	printf(" Interpolation = LS interpolation \n");
      }
      else if (interp_type == 2) 
      {
	printf(" Interpolation = modified classical interpolation for hyperbolic PDEs\n");
      }
      else if (interp_type == 3) 
      {
	printf(" Interpolation = direct interpolation with separation of weights\n");
      }
      else if (interp_type == 4) 
      {
	printf(" Interpolation = multipass interpolation\n");
      }
      else if (interp_type == 5) 
      {
	printf(" Interpolation = multipass interpolation with separation of weights\n");
      }
      else if (interp_type == 6) 
      {
	printf(" Interpolation = extended+i interpolation\n");
      }
      else if (interp_type == 7) 
      {
	printf(" Interpolation = extended+i interpolation (only when needed)\n");
      }
      else if (interp_type == 8) 
      {
	printf(" Interpolation = standard interpolation\n");
      }
      else if (interp_type == 9) 
      {
	printf(" Interpolation = standard interpolation with separation of weights\n");
      }
      else if (interp_type == 12) 
      {
	printf(" FF interpolation \n");
      }
      else if (interp_type == 13) 
      {
	printf(" FF1 interpolation \n");
      }

      {
         printf( "\nOperator Matrix Information:\n\n");
      }
#if HYPRE_LONG_LONG
      printf("                  nonzero         entries p");
      printf("er row        row sums\n");
      printf("lev        rows   entries  sparse  min  max   ");
      printf("avg       min         max\n");
      printf("=======================================");
      printf("==================================\n");
#else      
      printf("            nonzero         entries p");
      printf("er row        row sums\n");
      printf("lev   rows  entries  sparse  min  max   ");
      printf("avg       min         max\n");
      printf("=======================================");
      printf("============================\n");
#endif
   }
  
   /*-----------------------------------------------------
    *  Enter Statistics Loop
    *-----------------------------------------------------*/

   num_coeffs = hypre_CTAlloc(double,num_levels);

   num_variables = hypre_CTAlloc(double,num_levels);

   for (level = 0; level < num_levels; level++)
   { 

      {
         A_diag = hypre_ParCSRMatrixDiag(A_array[level]);
         A_diag_data = hypre_CSRMatrixData(A_diag);
         A_diag_i = hypre_CSRMatrixI(A_diag);
         
         A_offd = hypre_ParCSRMatrixOffd(A_array[level]);   
         A_offd_data = hypre_CSRMatrixData(A_offd);
         A_offd_i = hypre_CSRMatrixI(A_offd);
         
         row_starts = hypre_ParCSRMatrixRowStarts(A_array[level]);
         
         fine_size = hypre_ParCSRMatrixGlobalNumRows(A_array[level]);
         global_nonzeros = hypre_ParCSRMatrixDNumNonzeros(A_array[level]);
         num_coeffs[level] = global_nonzeros;
         num_variables[level] = (double) fine_size;
         
         sparse = global_nonzeros /((double) fine_size * (double) fine_size);

         min_entries = 0;
         max_entries = 0;
         min_rowsum = 0.0;
         max_rowsum = 0.0;
         
         if (hypre_CSRMatrixNumRows(A_diag))
         {
            min_entries = (A_diag_i[1]-A_diag_i[0])+(A_offd_i[1]-A_offd_i[0]);
            for (j = A_diag_i[0]; j < A_diag_i[1]; j++)
               min_rowsum += A_diag_data[j];
            for (j = A_offd_i[0]; j < A_offd_i[1]; j++)
               min_rowsum += A_offd_data[j];
            
            max_rowsum = min_rowsum;
            
            for (j = 0; j < hypre_CSRMatrixNumRows(A_diag); j++)
            {
               entries = (A_diag_i[j+1]-A_diag_i[j])+(A_offd_i[j+1]-A_offd_i[j]);
               min_entries = hypre_min(entries, min_entries);
               max_entries = hypre_max(entries, max_entries);
               
               rowsum = 0.0;
               for (i = A_diag_i[j]; i < A_diag_i[j+1]; i++)
                  rowsum += A_diag_data[i];
               
               for (i = A_offd_i[j]; i < A_offd_i[j+1]; i++)
                  rowsum += A_offd_data[i];
               
               min_rowsum = hypre_min(rowsum, min_rowsum);
               max_rowsum = hypre_max(rowsum, max_rowsum);
            }
         }
         avg_entries = global_nonzeros / ((double) fine_size);
      }
      
#ifdef HYPRE_NO_GLOBAL_PARTITION       

       numrows = (int)(row_starts[1]-row_starts[0]);
       if (!numrows) /* if we don't have any rows, then don't have this count toward
                         min row sum or min num entries */
       {
          min_entries = 1000000;
          min_rowsum =  1.0e7;
       }
       
       send_buff[0] = - (double) min_entries;
       send_buff[1] = (double) max_entries;
       send_buff[2] = - min_rowsum;
       send_buff[3] = max_rowsum;

       MPI_Reduce(send_buff, gather_buff, 4, MPI_DOUBLE, MPI_MAX, 0, comm);
       
       if (my_id ==0)
       {
          global_min_e = - gather_buff[0];
          global_max_e = gather_buff[1];
          global_min_rsum = - gather_buff[2];
          global_max_rsum = gather_buff[3];
#ifdef HYPRE_LONG_LONG
          printf( "%2d %12lld %8.0f  %0.3f  %4d %4d",
                  level, fine_size, global_nonzeros, sparse, global_min_e, 
                  global_max_e);
#else          
          printf( "%2d %7d %8.0f  %0.3f  %4d %4d",
                  level, fine_size, global_nonzeros, sparse, global_min_e, 
                  global_max_e);
#endif          
          printf("  %4.1f  %10.3e  %10.3e\n", avg_entries,
                 global_min_rsum, global_max_rsum);
       }
       
#else

       send_buff[0] = (double) min_entries;
       send_buff[1] = (double) max_entries;
       send_buff[2] = min_rowsum;
       send_buff[3] = max_rowsum;
       
       MPI_Gather(send_buff,4,MPI_DOUBLE,gather_buff,4,MPI_DOUBLE,0,comm);

       if (my_id == 0)
       {
          global_min_e = 1000000;
          global_max_e = 0;
          global_min_rsum = 1.0e7;
          global_max_rsum = 0.0;
          for (j = 0; j < num_procs; j++)
          {
             numrows = row_starts[j+1]-row_starts[j];
             if (numrows)
             {
                global_min_e = hypre_min(global_min_e, (int) gather_buff[j*4]);
                global_min_rsum = hypre_min(global_min_rsum, gather_buff[j*4 +2]);
             }
             global_max_e = hypre_max(global_max_e, (int) gather_buff[j*4 +1]);
             global_max_rsum = hypre_max(global_max_rsum, gather_buff[j*4 +3]);
          }

#ifdef HYPRE_LONG_LONG
          printf( "%2d %12lld %8.0f  %0.3f  %4d %4d",
                  level, fine_size, global_nonzeros, sparse, global_min_e, 
                  global_max_e);
#else          
          printf( "%2d %7d %8.0f  %0.3f  %4d %4d",
                  level, fine_size, global_nonzeros, sparse, global_min_e, 
                  global_max_e);
#endif          
          printf("  %4.1f  %10.3e  %10.3e\n", avg_entries,
                 global_min_rsum, global_max_rsum);
       }

#endif

        
   }

       
   if (my_id == 0)
   {
      {
         printf( "\n\nInterpolation Matrix Information:\n\n");
      }
#if HYPRE_LONG_LONG
      printf("                             entries/row    min     max");
      printf("         row sums\n");
      printf("lev        rows x cols          min max  ");
      printf("   weight   weight     min       max \n");
      printf("=======================================");
      printf("======================================\n");
#else      
      printf("                 entries/row    min     max");
      printf("         row sums\n");
      printf("lev  rows cols    min max  ");
      printf("   weight   weight     min       max \n");
      printf("=======================================");
      printf("==========================\n");
#endif
   }
  
   /*-----------------------------------------------------
    *  Enter Statistics Loop
    *-----------------------------------------------------*/


   for (level = 0; level < num_levels-1; level++)
   {
    
      {
         P_diag = hypre_ParCSRMatrixDiag(P_array[level]);
         P_diag_data = hypre_CSRMatrixData(P_diag);
         P_diag_i = hypre_CSRMatrixI(P_diag);
         
         P_offd = hypre_ParCSRMatrixOffd(P_array[level]);   
         P_offd_data = hypre_CSRMatrixData(P_offd);
         P_offd_i = hypre_CSRMatrixI(P_offd);
         
         row_starts = hypre_ParCSRMatrixRowStarts(P_array[level]);
         
         fine_size = hypre_ParCSRMatrixGlobalNumRows(P_array[level]);
         coarse_size = hypre_ParCSRMatrixGlobalNumCols(P_array[level]);
         global_nonzeros = hypre_ParCSRMatrixNumNonzeros(P_array[level]);
         
         min_weight = 1.0;
         max_weight = 0.0;
         max_rowsum = 0.0;
         min_rowsum = 0.0;
         min_entries = 0;
         max_entries = 0;
         
         if (hypre_CSRMatrixNumRows(P_diag))
         {
            if (hypre_CSRMatrixNumCols(P_diag)) min_weight = P_diag_data[0];
            for (j = P_diag_i[0]; j < P_diag_i[1]; j++)
            {
               min_weight = hypre_min(min_weight, P_diag_data[j]);
               if (P_diag_data[j] != 1.0)
                  max_weight = hypre_max(max_weight, P_diag_data[j]);
               min_rowsum += P_diag_data[j];
            }
            for (j = P_offd_i[0]; j < P_offd_i[1]; j++)
            {        
               min_weight = hypre_min(min_weight, P_offd_data[j]); 
               if (P_offd_data[j] != 1.0)
                  max_weight = hypre_max(max_weight, P_offd_data[j]);     
               min_rowsum += P_offd_data[j];
            }
            
            max_rowsum = min_rowsum;
            
            min_entries = (P_diag_i[1]-P_diag_i[0])+(P_offd_i[1]-P_offd_i[0]); 
            max_entries = 0;
            
            for (j = 0; j < hypre_CSRMatrixNumRows(P_diag); j++)
            {
               entries = (P_diag_i[j+1]-P_diag_i[j])+(P_offd_i[j+1]-P_offd_i[j]);
               min_entries = hypre_min(entries, min_entries);
               max_entries = hypre_max(entries, max_entries);
               
               rowsum = 0.0;
               for (i = P_diag_i[j]; i < P_diag_i[j+1]; i++)
               {
                  min_weight = hypre_min(min_weight, P_diag_data[i]);
                  if (P_diag_data[i] != 1.0)
                     max_weight = hypre_max(max_weight, P_diag_data[i]);
                  rowsum += P_diag_data[i];
               }
               
               for (i = P_offd_i[j]; i < P_offd_i[j+1]; i++)
               {
                  min_weight = hypre_min(min_weight, P_offd_data[i]);
                  if (P_offd_data[i] != 1.0) 
                     max_weight = hypre_max(max_weight, P_offd_data[i]);
                  rowsum += P_offd_data[i];
               }
               
               min_rowsum = hypre_min(rowsum, min_rowsum);
               max_rowsum = hypre_max(rowsum, max_rowsum);
            }
         
         }
         avg_entries = ((double) global_nonzeros) / ((double) fine_size);
      }

#ifdef HYPRE_NO_GLOBAL_PARTITION

      numrows = (int)(row_starts[1]-row_starts[0]);
      if (!numrows) /* if we don't have any rows, then don't have this count toward
                       min row sum or min num entries */
      {
         min_entries = 1000000;
         min_rowsum =  1.0e7;
         min_weight = 1.0e7;
       }
       
      send_buff[0] = - (double) min_entries;
      send_buff[1] = (double) max_entries;
      send_buff[2] = - min_rowsum;
      send_buff[3] = max_rowsum;
      send_buff[4] = - min_weight;
      send_buff[5] = max_weight;

      MPI_Reduce(send_buff, gather_buff, 6, MPI_DOUBLE, MPI_MAX, 0, comm);

      if (my_id == 0)
      {
         global_min_e = - gather_buff[0];
         global_max_e = gather_buff[1];
         global_min_rsum = -gather_buff[2];
         global_max_rsum = gather_buff[3];
         global_min_wt = -gather_buff[4];
         global_max_wt = gather_buff[5];

#ifdef HYPRE_LONG_LONG
          printf( "%2d %12lld x %-12lld %3d %3d",
                 level, fine_size, coarse_size,  global_min_e, global_max_e);
#else          
          printf( "%2d %5d x %-5d %3d %3d",
                 level, fine_size, coarse_size,  global_min_e, global_max_e);
#endif          
         printf("  %10.3e %9.3e %9.3e %9.3e\n",
                global_min_wt, global_max_wt, 
                global_min_rsum, global_max_rsum);
      }


#else
      
      send_buff[0] = (double) min_entries;
      send_buff[1] = (double) max_entries;
      send_buff[2] = min_rowsum;
      send_buff[3] = max_rowsum;
      send_buff[4] = min_weight;
      send_buff[5] = max_weight;
      
      MPI_Gather(send_buff,6,MPI_DOUBLE,gather_buff,6,MPI_DOUBLE,0,comm);
      
      if (my_id == 0)
      {
         global_min_e = 1000000;
         global_max_e = 0;
         global_min_rsum = 1.0e7;
         global_max_rsum = 0.0;
         global_min_wt = 1.0e7;
         global_max_wt = 0.0;
         
         for (j = 0; j < num_procs; j++)
         {
            numrows = row_starts[j+1] - row_starts[j];
            if (numrows)
            {
               global_min_e = hypre_min(global_min_e, (int) gather_buff[j*6]);
               global_min_rsum = hypre_min(global_min_rsum, gather_buff[j*6+2]);
               global_min_wt = hypre_min(global_min_wt, gather_buff[j*6+4]);
            }
            global_max_e = hypre_max(global_max_e, (int) gather_buff[j*6+1]);
            global_max_rsum = hypre_max(global_max_rsum, gather_buff[j*6+3]);
            global_max_wt = hypre_max(global_max_wt, gather_buff[j*6+5]);
         }
         
#ifdef HYPRE_LONG_LONG
         printf( "%2d %12lld x %-12lld %3d %3d",
                 level, fine_size, coarse_size,  global_min_e, global_max_e);
#else          
         printf( "%2d %5d x %-5d %3d %3d",
                 level, fine_size, coarse_size,  global_min_e, global_max_e);
#endif          
         printf("  %10.3e %9.3e %9.3e %9.3e\n",
                global_min_wt, global_max_wt, 
                global_min_rsum, global_max_rsum);
      }

#endif

   }


   total_variables = 0;
   operat_cmplxty = 0;
   for (j=0;j<hypre_ParAMGDataNumLevels(amg_data);j++)
   {
      operat_cmplxty +=  num_coeffs[j] / num_coeffs[0];
      total_variables += num_variables[j];
   }
   if (num_variables[0] != 0)
      grid_cmplxty = total_variables / num_variables[0];
 
   if (my_id == 0 )
   {
      printf("\n\n     Complexity:    grid = %f\n",grid_cmplxty);
      printf("                operator = %f\n",operat_cmplxty);
   }

   if (my_id == 0) printf("\n\n");

   if (my_id == 0)
   { 
      printf("\n\nBoomerAMG SOLVER PARAMETERS:\n\n");
      printf( "  Maximum number of cycles:         %d \n",max_iter);
      printf( "  Stopping Tolerance:               %e \n",tol); 
      printf( "  Cycle type (1 = V, 2 = W, etc.):  %d\n\n", cycle_type);
      printf( "  Relaxation Parameters:\n");
      printf( "   Visiting Grid:                     down   up  coarse\n");
      printf( "            Number of partial sweeps: %4d   %2d  %4d \n",
              num_grid_sweeps[1],
              num_grid_sweeps[2],num_grid_sweeps[3]);
      printf( "   Type 0=Jac, 3=hGS, 6=hSGS, 9=GE:   %4d   %2d  %4d \n",
              grid_relax_type[1],
              grid_relax_type[2],grid_relax_type[3]);
#if 1 /* TO DO: may not want this to print if CG in the coarse grid */
      printf( "   Point types, partial sweeps (1=C, -1=F):\n");
      if (grid_relax_points)
      {
         printf( "                  Pre-CG relaxation (down):");
         for (j = 0; j < num_grid_sweeps[1]; j++)
              printf("  %2d", grid_relax_points[1][j]);
         printf( "\n");
         printf( "                   Post-CG relaxation (up):");
         for (j = 0; j < num_grid_sweeps[2]; j++)
              printf("  %2d", grid_relax_points[2][j]);
         printf( "\n");
         printf( "                             Coarsest grid:");
         for (j = 0; j < num_grid_sweeps[3]; j++)
              printf("  %2d", grid_relax_points[3][j]);
         printf( "\n\n");
      }
      else if (relax_order == 1)
      {
         printf( "                  Pre-CG relaxation (down):");
         for (j = 0; j < num_grid_sweeps[1]; j++)
              printf("  %2d  %2d", one, minus_one);
         printf( "\n");
         printf( "                   Post-CG relaxation (up):");
         for (j = 0; j < num_grid_sweeps[2]; j++)
              printf("  %2d  %2d", minus_one, one);
         printf( "\n");
         printf( "                             Coarsest grid:");
         for (j = 0; j < num_grid_sweeps[3]; j++)
              printf("  %2d", zero);
         printf( "\n\n");
      }
      else 
      {
         printf( "                  Pre-CG relaxation (down):");
         for (j = 0; j < num_grid_sweeps[1]; j++)
              printf("  %2d", zero);
         printf( "\n");
         printf( "                   Post-CG relaxation (up):");
         for (j = 0; j < num_grid_sweeps[2]; j++)
              printf("  %2d", zero);
         printf( "\n");
         printf( "                             Coarsest grid:");
         for (j = 0; j < num_grid_sweeps[3]; j++)
              printf("  %2d", zero);
         printf( "\n\n");
      }
#endif
      if (smooth_type == 6)
         for (j=0; j < smooth_num_levels; j++)
            printf( " Schwarz Relaxation Weight %f level %d\n",
			hypre_ParAMGDataSchwarzRlxWeight(amg_data),j);
      for (j=0; j < num_levels; j++)
         if (relax_weight[j] != 1)
	       printf( " Relaxation Weight %f level %d\n",relax_weight[j],j);
      for (j=0; j < num_levels; j++)
         if (omega[j] != 1)
               printf( " Outer relaxation weight %f level %d\n",omega[j],j);
   }


   /*if (seq_cg) 
   {
      hypre_seqAMGSetupStats(amg_data,num_coeffs[0],num_variables[0], 
                             operat_cmplxty, grid_cmplxty );
   }*/
   




   hypre_TFree(num_coeffs);
   hypre_TFree(num_variables);
   hypre_TFree(send_buff);
   hypre_TFree(gather_buff);
   
   return(0);
}  
コード例 #27
0
ファイル: par_nodal_systems.c プロジェクト: LLNL/COGENT
HYPRE_Int
hypre_BoomerAMGCreateNodalA(hypre_ParCSRMatrix    *A,
                            HYPRE_Int                    num_functions,
                            HYPRE_Int                   *dof_func,
                            HYPRE_Int                    option,
                            HYPRE_Int                    diag_option,     
                            hypre_ParCSRMatrix   **AN_ptr)
{
   MPI_Comm 	       comm            = hypre_ParCSRMatrixComm(A);
   hypre_CSRMatrix    *A_diag          = hypre_ParCSRMatrixDiag(A);
   HYPRE_Int                *A_diag_i        = hypre_CSRMatrixI(A_diag);
   double             *A_diag_data     = hypre_CSRMatrixData(A_diag);


   hypre_CSRMatrix    *A_offd          = hypre_ParCSRMatrixOffd(A);
   HYPRE_Int                *A_offd_i        = hypre_CSRMatrixI(A_offd);
   double             *A_offd_data     = hypre_CSRMatrixData(A_offd);
   HYPRE_Int                *A_diag_j        = hypre_CSRMatrixJ(A_diag);
   HYPRE_Int                *A_offd_j        = hypre_CSRMatrixJ(A_offd);

   HYPRE_Int 		      *row_starts      = hypre_ParCSRMatrixRowStarts(A);
   HYPRE_Int 		      *col_map_offd    = hypre_ParCSRMatrixColMapOffd(A);
   HYPRE_Int                 num_variables   = hypre_CSRMatrixNumRows(A_diag);
   HYPRE_Int 		       num_nonzeros_offd = 0;
   HYPRE_Int 		       num_cols_offd = 0;
                  
   hypre_ParCSRMatrix *AN;
   hypre_CSRMatrix    *AN_diag;
   HYPRE_Int                *AN_diag_i;
   HYPRE_Int                *AN_diag_j;
   double             *AN_diag_data; 
   hypre_CSRMatrix    *AN_offd;
   HYPRE_Int                *AN_offd_i;
   HYPRE_Int                *AN_offd_j;
   double             *AN_offd_data; 
   HYPRE_Int		      *col_map_offd_AN;
   HYPRE_Int		      *new_col_map_offd;
   HYPRE_Int		      *row_starts_AN;
   HYPRE_Int		       AN_num_nonzeros_diag = 0;
   HYPRE_Int		       AN_num_nonzeros_offd = 0;
   HYPRE_Int		       num_cols_offd_AN;
   HYPRE_Int		       new_num_cols_offd;
                 
   hypre_ParCSRCommPkg *comm_pkg = hypre_ParCSRMatrixCommPkg(A);
   HYPRE_Int		       num_sends;
   HYPRE_Int		       num_recvs;
   HYPRE_Int		      *send_procs;
   HYPRE_Int		      *send_map_starts;
   HYPRE_Int		      *send_map_elmts;
   HYPRE_Int		      *new_send_map_elmts;
   HYPRE_Int		      *recv_procs;
   HYPRE_Int		      *recv_vec_starts;

   hypre_ParCSRCommPkg *comm_pkg_AN;
   HYPRE_Int		      *send_procs_AN;
   HYPRE_Int		      *send_map_starts_AN;
   HYPRE_Int		      *send_map_elmts_AN;
   HYPRE_Int		      *recv_procs_AN;
   HYPRE_Int		      *recv_vec_starts_AN;

   HYPRE_Int                 i, j, k, k_map;
                      
   HYPRE_Int                 ierr = 0;

   HYPRE_Int		       index, row;
   HYPRE_Int		       start_index;
   HYPRE_Int		       num_procs;
   HYPRE_Int		       node, cnt;
   HYPRE_Int		       mode;
   HYPRE_Int		       new_send_elmts_size;

   HYPRE_Int		       global_num_nodes;
   HYPRE_Int		       num_nodes;
   HYPRE_Int		       num_fun2;
   HYPRE_Int		      *map_to_node;
   HYPRE_Int		      *map_to_map;
   HYPRE_Int		      *counter;

   double sum;
   double *data;
   

   hypre_MPI_Comm_size(comm,&num_procs);

   if (!comm_pkg)
   {
      hypre_MatvecCommPkgCreate(A);
      comm_pkg = hypre_ParCSRMatrixCommPkg(A);
   }

   mode = fabs(option);

   comm_pkg_AN = NULL;
   col_map_offd_AN = NULL;

#ifdef HYPRE_NO_GLOBAL_PARTITION
   row_starts_AN = hypre_CTAlloc(HYPRE_Int, 2);

   for (i=0; i < 2; i++)
   {
      row_starts_AN[i] = row_starts[i]/num_functions;
      if (row_starts_AN[i]*num_functions < row_starts[i])
      {
	  hypre_printf("nodes not properly aligned or incomplete info!\n");
	  return (87);
      }
   }
   
   global_num_nodes = hypre_ParCSRMatrixGlobalNumRows(A)/num_functions;


#else
   row_starts_AN = hypre_CTAlloc(HYPRE_Int, num_procs+1);

  for (i=0; i < num_procs+1; i++)
   {
      row_starts_AN[i] = row_starts[i]/num_functions;
      if (row_starts_AN[i]*num_functions < row_starts[i])
      {
	  hypre_printf("nodes not properly aligned or incomplete info!\n");
	  return (87);
      }
   }
   
   global_num_nodes = row_starts_AN[num_procs];

#endif

 
   num_nodes =  num_variables/num_functions;
   num_fun2 = num_functions*num_functions;

   map_to_node = hypre_CTAlloc(HYPRE_Int, num_variables);
   AN_diag_i = hypre_CTAlloc(HYPRE_Int, num_nodes+1);
   counter = hypre_CTAlloc(HYPRE_Int, num_nodes);
   for (i=0; i < num_variables; i++)
      map_to_node[i] = i/num_functions;
   for (i=0; i < num_nodes; i++)
      counter[i] = -1;

   AN_num_nonzeros_diag = 0;
   row = 0;
   for (i=0; i < num_nodes; i++)
   {
      AN_diag_i[i] = AN_num_nonzeros_diag;
      for (j=0; j < num_functions; j++)
      {
	 for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
	 {
	    k_map = map_to_node[A_diag_j[k]];
	    if (counter[k_map] < i)
	    {
	       counter[k_map] = i;
	       AN_num_nonzeros_diag++;
	    }
	 }
	 row++;
      }
   }
   AN_diag_i[num_nodes] = AN_num_nonzeros_diag;

   AN_diag_j = hypre_CTAlloc(HYPRE_Int, AN_num_nonzeros_diag);	
   AN_diag_data = hypre_CTAlloc(double, AN_num_nonzeros_diag);	

   AN_diag = hypre_CSRMatrixCreate(num_nodes,num_nodes,AN_num_nonzeros_diag);
   hypre_CSRMatrixI(AN_diag) = AN_diag_i;
   hypre_CSRMatrixJ(AN_diag) = AN_diag_j;
   hypre_CSRMatrixData(AN_diag) = AN_diag_data;
       
   for (i=0; i < num_nodes; i++)
      counter[i] = -1;
   index = 0;
   start_index = 0;
   row = 0;

   switch (mode)
   {
      case 1:  /* frobenius norm */
      {
         for (i=0; i < num_nodes; i++)
         {
            for (j=0; j < num_functions; j++)
            {
	       for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
	       {
	          k_map = map_to_node[A_diag_j[k]];
	          if (counter[k_map] < start_index)
	          {
	             counter[k_map] = index;
	             AN_diag_j[index] = k_map;
	             AN_diag_data[index] = A_diag_data[k]*A_diag_data[k];
	             index++;
	          }
	          else
	          {
	             AN_diag_data[counter[k_map]] += 
				A_diag_data[k]*A_diag_data[k];
	          }
	       }
	       row++;
            }
            start_index = index;
         }
         for (i=0; i < AN_num_nonzeros_diag; i++)
            AN_diag_data[i] = sqrt(AN_diag_data[i]);

      }
      break;
      
      case 2:  /* sum of abs. value of all elements in each block */
      {
         for (i=0; i < num_nodes; i++)
         {
            for (j=0; j < num_functions; j++)
            {
	       for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
	       {
	          k_map = map_to_node[A_diag_j[k]];
	          if (counter[k_map] < start_index)
	          {
	             counter[k_map] = index;
	             AN_diag_j[index] = k_map;
	             AN_diag_data[index] = fabs(A_diag_data[k]);
	             index++;
	          }
	          else
	          {
	             AN_diag_data[counter[k_map]] += fabs(A_diag_data[k]);
	          }
	       }
	       row++;
            }
            start_index = index;
         }
         for (i=0; i < AN_num_nonzeros_diag; i++)
            AN_diag_data[i] /= num_fun2;
      }
      break;

      case 3:  /* largest element of each block (sets true value - not abs. value) */
      {

         for (i=0; i < num_nodes; i++)
         {
            for (j=0; j < num_functions; j++)
            {
      	       for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
      	       {
      	          k_map = map_to_node[A_diag_j[k]];
      	          if (counter[k_map] < start_index)
      	          {
      	             counter[k_map] = index;
      	             AN_diag_j[index] = k_map;
      	             AN_diag_data[index] = A_diag_data[k];
      	             index++;
      	          }
      	          else
      	          {
      	             if (fabs(A_diag_data[k]) > 
				fabs(AN_diag_data[counter[k_map]]))
      	                AN_diag_data[counter[k_map]] = A_diag_data[k];
      	          }
      	       }
      	       row++;
            }
            start_index = index;
         }
      }
      break;

      case 4:  /* inf. norm (row-sum)  */
      {

         data = hypre_CTAlloc(double, AN_num_nonzeros_diag*num_functions);

         for (i=0; i < num_nodes; i++)
         {
            for (j=0; j < num_functions; j++)
            {
	       for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
	       {
	          k_map = map_to_node[A_diag_j[k]];
	          if (counter[k_map] < start_index)
	          {
	             counter[k_map] = index;
	             AN_diag_j[index] = k_map;
	             data[index*num_functions + j] = fabs(A_diag_data[k]);
	             index++;
	          }
	          else
	          {
	             data[(counter[k_map])*num_functions + j] += fabs(A_diag_data[k]);
	          }
	       }
	       row++;
            }
            start_index = index;
         }
         for (i=0; i < AN_num_nonzeros_diag; i++)
         {
            AN_diag_data[i]  = data[i*num_functions];
            
            for (j=1; j< num_functions; j++)
            {
               AN_diag_data[i]  = hypre_max( AN_diag_data[i],data[i*num_functions+j]);
            }
         }
         hypre_TFree(data);
      
      }
      break;

      case 6:  /* sum of all elements in each block */
      {
         for (i=0; i < num_nodes; i++)
         {
            for (j=0; j < num_functions; j++)
            {
	       for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
	       {
	          k_map = map_to_node[A_diag_j[k]];
	          if (counter[k_map] < start_index)
	          {
	             counter[k_map] = index;
	             AN_diag_j[index] = k_map;
	             AN_diag_data[index] = (A_diag_data[k]);
	             index++;
	          }
	          else
	          {
	             AN_diag_data[counter[k_map]] += (A_diag_data[k]);
	          }
	       }
	       row++;
            }
            start_index = index;
         }
      }
      break;

   }

   if (diag_option ==1 )
   {
      /* make the diag entry the negative of the sum of off-diag entries (DO MORE BELOW) */
      for (i=0; i < num_nodes; i++)
      {
         index = AN_diag_i[i]; 
         sum = 0.0;
         for (k = AN_diag_i[i]+1; k < AN_diag_i[i+1]; k++)
         {
            sum += AN_diag_data[k];
            
         }
         AN_diag_data[index] = -sum;
      }
      
   }
   else if (diag_option == 2)
   {
      
      /*  make all diagonal entries negative */
      /* the diagonal is the first element listed in each row - */
      
      for (i=0; i < num_nodes; i++)
      {
         index = AN_diag_i[i];
         AN_diag_data[index] = - AN_diag_data[index];
      }
   }






   num_nonzeros_offd = A_offd_i[num_variables];
   AN_offd_i = hypre_CTAlloc(HYPRE_Int, num_nodes+1);

   num_cols_offd_AN = 0;

   if (comm_pkg)
   {
      comm_pkg_AN = hypre_CTAlloc(hypre_ParCSRCommPkg,1);
      hypre_ParCSRCommPkgComm(comm_pkg_AN) = comm;
      num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
      hypre_ParCSRCommPkgNumSends(comm_pkg_AN) = num_sends;
      num_recvs = hypre_ParCSRCommPkgNumRecvs(comm_pkg);
      hypre_ParCSRCommPkgNumRecvs(comm_pkg_AN) = num_recvs;
      send_procs = hypre_ParCSRCommPkgSendProcs(comm_pkg);
      send_map_starts = hypre_ParCSRCommPkgSendMapStarts(comm_pkg);
      send_map_elmts = hypre_ParCSRCommPkgSendMapElmts(comm_pkg);
      recv_procs = hypre_ParCSRCommPkgRecvProcs(comm_pkg);
      recv_vec_starts = hypre_ParCSRCommPkgRecvVecStarts(comm_pkg);
      send_procs_AN = NULL;
      send_map_elmts_AN = NULL;
      if (num_sends) 
      {
         send_procs_AN = hypre_CTAlloc(HYPRE_Int,num_sends);
         send_map_elmts_AN = hypre_CTAlloc(HYPRE_Int,send_map_starts[num_sends]);
      }
      send_map_starts_AN = hypre_CTAlloc(HYPRE_Int,num_sends+1);
      recv_vec_starts_AN = hypre_CTAlloc(HYPRE_Int,num_recvs+1);
      recv_procs_AN = NULL;
      if (num_recvs) recv_procs_AN = hypre_CTAlloc(HYPRE_Int,num_recvs);
      for (i=0; i < num_sends; i++)
         send_procs_AN[i] = send_procs[i];
      for (i=0; i < num_recvs; i++)
         recv_procs_AN[i] = recv_procs[i];

      send_map_starts_AN[0] = 0;
      cnt = 0;
      for (i=0; i < num_sends; i++)
      {
	 k_map = send_map_starts[i];
	 if (send_map_starts[i+1]-k_map)
            send_map_elmts_AN[cnt++] = send_map_elmts[k_map]/num_functions;
         for (j=send_map_starts[i]+1; j < send_map_starts[i+1]; j++)
         {
            node = send_map_elmts[j]/num_functions;
            if (node > send_map_elmts_AN[cnt-1])
	       send_map_elmts_AN[cnt++] = node; 
         }
         send_map_starts_AN[i+1] = cnt;
      }
      hypre_ParCSRCommPkgSendProcs(comm_pkg_AN) = send_procs_AN;
      hypre_ParCSRCommPkgSendMapStarts(comm_pkg_AN) = send_map_starts_AN;
      hypre_ParCSRCommPkgSendMapElmts(comm_pkg_AN) = send_map_elmts_AN;
      hypre_ParCSRCommPkgRecvProcs(comm_pkg_AN) = recv_procs_AN;
      hypre_ParCSRCommPkgRecvVecStarts(comm_pkg_AN) = recv_vec_starts_AN;
   }

   num_cols_offd = hypre_CSRMatrixNumCols(A_offd);
   if (num_cols_offd)
   {
      if (num_cols_offd > num_variables)
      {
         hypre_TFree(map_to_node);
         map_to_node = hypre_CTAlloc(HYPRE_Int,num_cols_offd);
      }

      num_cols_offd_AN = 1;
      map_to_node[0] = col_map_offd[0]/num_functions;
      for (i=1; i < num_cols_offd; i++)
      {
         map_to_node[i] = col_map_offd[i]/num_functions;
         if (map_to_node[i] > map_to_node[i-1]) num_cols_offd_AN++;
      }
      
      if (num_cols_offd_AN > num_nodes)
      {
         hypre_TFree(counter);
         counter = hypre_CTAlloc(HYPRE_Int,num_cols_offd_AN);
      }

      map_to_map = NULL;
      col_map_offd_AN = NULL;
      map_to_map = hypre_CTAlloc(HYPRE_Int, num_cols_offd);
      col_map_offd_AN = hypre_CTAlloc(HYPRE_Int,num_cols_offd_AN);
      col_map_offd_AN[0] = map_to_node[0];
      recv_vec_starts_AN[0] = 0;
      cnt = 1;
      for (i=0; i < num_recvs; i++)
      {
         for (j=recv_vec_starts[i]; j < recv_vec_starts[i+1]; j++)
         {
            node = map_to_node[j];
	    if (node > col_map_offd_AN[cnt-1])
	    {
	       col_map_offd_AN[cnt++] = node; 
	    }
	    map_to_map[j] = cnt-1;
         }
         recv_vec_starts_AN[i+1] = cnt;
      }

      for (i=0; i < num_cols_offd_AN; i++)
         counter[i] = -1;

      AN_num_nonzeros_offd = 0;
      row = 0;
      for (i=0; i < num_nodes; i++)
      {
         AN_offd_i[i] = AN_num_nonzeros_offd;
         for (j=0; j < num_functions; j++)
         {
	    for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
	    {
	       k_map = map_to_map[A_offd_j[k]];
	       if (counter[k_map] < i)
	       {
	          counter[k_map] = i;
	          AN_num_nonzeros_offd++;
	       }
	    }
	    row++;
         }
      }
      AN_offd_i[num_nodes] = AN_num_nonzeros_offd;
   }

       
   AN_offd = hypre_CSRMatrixCreate(num_nodes,num_cols_offd_AN,	
		AN_num_nonzeros_offd);
   hypre_CSRMatrixI(AN_offd) = AN_offd_i;
   if (AN_num_nonzeros_offd)
   {
      AN_offd_j = hypre_CTAlloc(HYPRE_Int, AN_num_nonzeros_offd);	
      AN_offd_data = hypre_CTAlloc(double, AN_num_nonzeros_offd);	
      hypre_CSRMatrixJ(AN_offd) = AN_offd_j;
      hypre_CSRMatrixData(AN_offd) = AN_offd_data;
   
      for (i=0; i < num_cols_offd_AN; i++)
         counter[i] = -1;
      index = 0;
      row = 0;
      AN_offd_i[0] = 0;
      start_index = 0;
      switch (mode)
      {
         case 1: /* frobenius norm */
         {
            for (i=0; i < num_nodes; i++)
            {
               for (j=0; j < num_functions; j++)
               {
	          for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
	          {
	             k_map = map_to_map[A_offd_j[k]];
	             if (counter[k_map] < start_index)
	             {
	                counter[k_map] = index;
	                AN_offd_j[index] = k_map;
	                AN_offd_data[index] = A_offd_data[k]*A_offd_data[k];
	                index++;
	             }
	             else
	             {
	                AN_offd_data[counter[k_map]] += 
				A_offd_data[k]*A_offd_data[k];
	             }
	          }
	          row++;
               }
               start_index = index;
            }
            for (i=0; i < AN_num_nonzeros_offd; i++)
	       AN_offd_data[i] = sqrt(AN_offd_data[i]);
         }
         break;
      
         case 2:  /* sum of abs. value of all elements in block */
         {
            for (i=0; i < num_nodes; i++)
            {
               for (j=0; j < num_functions; j++)
               {
	          for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
	          {
	             k_map = map_to_map[A_offd_j[k]];
	             if (counter[k_map] < start_index)
	             {
	                counter[k_map] = index;
	                AN_offd_j[index] = k_map;
	                AN_offd_data[index] = fabs(A_offd_data[k]);
	                index++;
	             }
	             else
	             {
	                AN_offd_data[counter[k_map]] += fabs(A_offd_data[k]);
	             }
	          }
	          row++;
               }
               start_index = index;
            }
            for (i=0; i < AN_num_nonzeros_offd; i++)
               AN_offd_data[i] /= num_fun2;
         }
         break;

         case 3: /* largest element in each block (not abs. value ) */
         {
            for (i=0; i < num_nodes; i++)
            {
               for (j=0; j < num_functions; j++)
               {
      	          for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
      	          {
      	             k_map = map_to_map[A_offd_j[k]];
      	             if (counter[k_map] < start_index)
      	             {
      	                counter[k_map] = index;
      	                AN_offd_j[index] = k_map;
      	                AN_offd_data[index] = A_offd_data[k];
      	                index++;
      	             }
      	             else
      	             {
      	                if (fabs(A_offd_data[k]) > 
				fabs(AN_offd_data[counter[k_map]]))
      	                   AN_offd_data[counter[k_map]] = A_offd_data[k];
      	             }
      	          }
      	          row++;
               }
               start_index = index;
            }
         }
         break;
         
         case 4:  /* inf. norm (row-sum)  */
         {
            
            data = hypre_CTAlloc(double, AN_num_nonzeros_offd*num_functions);
            
            for (i=0; i < num_nodes; i++)
            {
               for (j=0; j < num_functions; j++)
               {
                  for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
                  {
                     k_map = map_to_map[A_offd_j[k]];
                     if (counter[k_map] < start_index)
                     {
                        counter[k_map] = index;
                        AN_offd_j[index] = k_map;
                        data[index*num_functions + j] = fabs(A_offd_data[k]);
                        index++;
                     }
                     else
                     {
                        data[(counter[k_map])*num_functions + j] += fabs(A_offd_data[k]);
                     }
                  }
                  row++;
               }
               start_index = index;
            }
            for (i=0; i < AN_num_nonzeros_offd; i++)
            {
               AN_offd_data[i]  = data[i*num_functions];
               
               for (j=1; j< num_functions; j++)
               {
                  AN_offd_data[i]  = hypre_max( AN_offd_data[i],data[i*num_functions+j]);
               }
            }
            hypre_TFree(data);
            
         }
         break;
         
         case 6:  /* sum of value of all elements in block */
         {
            for (i=0; i < num_nodes; i++)
            {
               for (j=0; j < num_functions; j++)
               {
                  for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
                  {
                     k_map = map_to_map[A_offd_j[k]];
                     if (counter[k_map] < start_index)
                     {
                        counter[k_map] = index;
                        AN_offd_j[index] = k_map;
                        AN_offd_data[index] = (A_offd_data[k]);
                        index++;
                     }
                     else
                     {
                        AN_offd_data[counter[k_map]] += (A_offd_data[k]);
                     }
                  }
                  row++;
               }
               start_index = index;
            }
            
         }
         break;
      }
   
      hypre_TFree(map_to_map);
   }

   if (diag_option ==1 )
   {
      /* make the diag entry the negative of the sum of off-diag entries (here we are adding the 
         off_diag contribution)*/
      /* the diagonal is the first element listed in each row of AN_diag_data - */
      for (i=0; i < num_nodes; i++)
      {
         sum = 0.0;
         for (k = AN_offd_i[i]; k < AN_offd_i[i+1]; k++)
         {
            sum += AN_offd_data[k];
            
         }
         index = AN_diag_i[i];/* location of diag entry in data */ 
         AN_diag_data[index] -= sum; /* subtract from current value */
      }
      
   }

    
   AN = hypre_ParCSRMatrixCreate(comm, global_num_nodes, global_num_nodes,
		row_starts_AN, row_starts_AN, num_cols_offd_AN,
		AN_num_nonzeros_diag, AN_num_nonzeros_offd);

   /* we already created the diag and offd matrices - so we don't need the ones
      created above */
   hypre_CSRMatrixDestroy(hypre_ParCSRMatrixDiag(AN));
   hypre_CSRMatrixDestroy(hypre_ParCSRMatrixOffd(AN));
   hypre_ParCSRMatrixDiag(AN) = AN_diag;
   hypre_ParCSRMatrixOffd(AN) = AN_offd;


   hypre_ParCSRMatrixColMapOffd(AN) = col_map_offd_AN;
   hypre_ParCSRMatrixCommPkg(AN) = comm_pkg_AN;

   new_num_cols_offd = num_functions*num_cols_offd_AN;

   if (new_num_cols_offd > num_cols_offd)
   {
      new_col_map_offd = hypre_CTAlloc(HYPRE_Int, new_num_cols_offd);
      cnt = 0;
      for (i=0; i < num_cols_offd_AN; i++)
      {
	 for (j=0; j < num_functions; j++)
         {
 	    new_col_map_offd[cnt++] = num_functions*col_map_offd_AN[i]+j;
         }
      }
      cnt = 0;
      for (i=0; i < num_cols_offd; i++)
      {
         while (col_map_offd[i] >  new_col_map_offd[cnt])
            cnt++;
         col_map_offd[i] = cnt++;
      }
      for (i=0; i < num_recvs+1; i++)
      {
         recv_vec_starts[i] = num_functions*recv_vec_starts_AN[i];
      }

      for (i=0; i < num_nonzeros_offd; i++)
      {
         j = A_offd_j[i];
	 A_offd_j[i] = col_map_offd[j];
      }
      hypre_ParCSRMatrixColMapOffd(A) = new_col_map_offd;
      hypre_CSRMatrixNumCols(A_offd) = new_num_cols_offd;
      hypre_TFree(col_map_offd);
   }
 
   hypre_TFree(map_to_node);
   new_send_elmts_size = send_map_starts_AN[num_sends]*num_functions;

   if (new_send_elmts_size > send_map_starts[num_sends])
   {
      new_send_map_elmts = hypre_CTAlloc(HYPRE_Int,new_send_elmts_size);
      cnt = 0;
      send_map_starts[0] = 0;
      for (i=0; i < num_sends; i++)
      {
         send_map_starts[i+1] = send_map_starts_AN[i+1]*num_functions;
         for (j=send_map_starts_AN[i]; j < send_map_starts_AN[i+1]; j++)
	 {
            for (k=0; k < num_functions; k++)
	       new_send_map_elmts[cnt++] = send_map_elmts_AN[j]*num_functions+k;
	 }
      }
      hypre_TFree(send_map_elmts);
      hypre_ParCSRCommPkgSendMapElmts(comm_pkg) = new_send_map_elmts;
   }
 
   *AN_ptr        = AN;

   hypre_TFree(counter);

   return (ierr);
}
コード例 #28
0
ファイル: inx_part_of_u_interp.c プロジェクト: apc-llc/hypre
HYPRE_Int
hypre_InexactPartitionOfUnityInterpolation
(hypre_CSRMatrix **P_pointer,

 HYPRE_Int    *i_dof_dof,
 HYPRE_Int    *j_dof_dof,
 HYPRE_Real *a_dof_dof,


 HYPRE_Real *unit_vector,


 HYPRE_Int *i_domain_dof,
 HYPRE_Int *j_domain_dof,

 HYPRE_Int num_domains, /* == num-coarsedofs */

 HYPRE_Int num_dofs)

{
  HYPRE_Int ierr = 0;
  HYPRE_Int i,j,k;

  HYPRE_Int ind = 1;
  HYPRE_Int nu, nu_max = 1;

  HYPRE_Real  eps = 1.e-24;
  HYPRE_Int max_iter = 1000;
  HYPRE_Int iter;
  HYPRE_Real delta0, delta_old, delta, alpha, tau, beta;
  HYPRE_Real aux, diag;

  HYPRE_Real *P_t_coeff;
  hypre_CSRMatrix *P_t, *P;

  HYPRE_Real *x,*r,*d,*g,*h;
  HYPRE_Real *row_sum;


  HYPRE_Int *i_global_to_local;
  HYPRE_Int local_dof_counter;


  HYPRE_Real *diag_dof_dof;
  /* ------------------------------------------------------------------

     domain_dof relation should satisfy the following property:

     num_domains == num_coarsedofs;

     each domain contains only one coarse dof;

     ------------------------------------------------------------------ */

  
  i_global_to_local = hypre_CTAlloc(HYPRE_Int, num_dofs);

  for (i=0; i < num_dofs; i++)
    i_global_to_local[i] = -1;

  local_dof_counter = 0;
  for (i=0; i < num_domains; i++)
    if (local_dof_counter < i_domain_dof[i+1]-i_domain_dof[i])
      local_dof_counter = i_domain_dof[i+1]-i_domain_dof[i];
  /* solve T x = unit_vector; --------------------------------------- */

  /* cg loop: ------------------------------------------------------- */
  hypre_printf("\n---------------------- num_domains: %d, nnz: %d;\n", 
	 num_domains, i_domain_dof[num_domains]);

  x = hypre_CTAlloc(HYPRE_Real, num_dofs);
  d = hypre_CTAlloc(HYPRE_Real, num_dofs);
  g = hypre_CTAlloc(HYPRE_Real, num_dofs);
  r = hypre_CTAlloc(HYPRE_Real, num_dofs);

  h = hypre_CTAlloc(HYPRE_Real, local_dof_counter);
  diag_dof_dof = hypre_CTAlloc(HYPRE_Real, i_dof_dof[num_dofs]);
  for (i=0; i<num_dofs; i++)
    for (j=i_dof_dof[i]; j<i_dof_dof[i+1]; j++)
      if (i!=j_dof_dof[j])
	diag_dof_dof[j] = 0.e0;
      else
	diag_dof_dof[j] = a_dof_dof[j];	

  delta0 = 0.e0;
  for (i=0; i < num_dofs; i++)
    {
      x[i] = 0.e0;
      r[i] = unit_vector[i];
      delta0+=r[i]*r[i];
    }
  /* compute initial iterate:  

  ierr =
    compute_sum_A_i_action(x,
			   r, 
		       
			   i_domain_dof,
			   j_domain_dof,


			   i_dof_dof,
			   j_dof_dof,
			   a_dof_dof,

			   i_global_to_local,

			   num_domains,
			   num_dofs);
			   ------------------------------------- */	  


  /* matrix vector product: g < -- T x; ------------------------------ */

  ierr= 
    compute_sym_GS_T_action(g,
			    x,
			    h,

			    i_domain_dof,
			    j_domain_dof,
			    nu_max,
		     
			    i_dof_dof,
			    j_dof_dof,
			    a_dof_dof,

			    i_global_to_local,

			    num_domains,
			    num_dofs);

  delta = 0;
  for (i=0; i < num_dofs; i++)
    {
      r[i] -= g[i];
      delta+=r[i]*r[i];
    }

  if (delta < eps * delta0)
    goto end_cg;

  ierr= 
    compute_sym_GS_T_action(g,
			    unit_vector,
			    h,

			    i_domain_dof,
			    j_domain_dof,
			    1,
		     
			    i_dof_dof,
			    j_dof_dof,
			    diag_dof_dof,

			    i_global_to_local,

			    num_domains,
			    num_dofs);

  /* 
  ierr =
    compute_sum_A_i_action(d,
			   r, 
		       
			   i_domain_dof,
			   j_domain_dof,


			   i_dof_dof,
			   j_dof_dof,
			   a_dof_dof,

			   i_global_to_local,

			   num_domains,
			   num_dofs);
			   */

  for (i=0; i < num_dofs; i++)
    d[i]=r[i]/g[i];

  /* d contains precondtitioned residual: ------------------------ */
  delta = 0.e0;
  for (i=0; i < num_dofs; i++)
    delta+=d[i]*r[i];

  delta0 = delta;

  eps = 1.e-12;
  iter = 0;
loop:
  /* matrix vector product: -------------------------------------- */

  ierr= 
    compute_sym_GS_T_action(g,
			    d,
			    h,

			    i_domain_dof,
			    j_domain_dof,
			    nu_max,

			    i_dof_dof,
			    j_dof_dof,
			    a_dof_dof,

			    i_global_to_local,

			    num_domains,
			    num_dofs);

  tau = 0.e0;
  for (i=0; i < num_dofs; i++)
    tau += d[i]*g[i];

  alpha = delta/tau;

  for (i=0; i < num_dofs; i++)
    {
      x[i] += alpha * d[i];
      r[i] -= alpha * g[i];
    }

  iter++;
  delta_old = delta;
  /*
  ierr =
    compute_sum_A_i_action(g,
			   r, 
		       
			   i_domain_dof,
			   j_domain_dof,


			   i_dof_dof,
			   j_dof_dof,
			   a_dof_dof,

			   i_global_to_local,

			   num_domains,
			   num_dofs);

			   */
  ierr= 
    compute_sym_GS_T_action(g,
			    unit_vector,
			    h,

			    i_domain_dof,
			    j_domain_dof,
			    1,
		     
			    i_dof_dof,
			    j_dof_dof,
			    diag_dof_dof,

			    i_global_to_local,

			    num_domains,
			    num_dofs);

  for (i=0; i < num_dofs; i++)
    g[i] = r[i]/g[i];

  delta = 0.e0;
  for (i=0; i < num_dofs; i++)
    delta  += g[i] * r[i];

  hypre_printf("\n---------------------- iter: %d, delta: %le\n",
	 iter, delta);
  if (delta < eps * delta0 || iter > max_iter)
    goto end_cg;
  
  beta = delta/delta_old;

  for (i=0; i < num_dofs; i++)
    d[i] = g[i] + beta * d[i];

  goto loop;


 
end_cg:
  hypre_printf("\n END CG in partition of unity interpolation; num_iters: %d\n",
	 iter);

  hypre_TFree(r);
  hypre_TFree(g);
  hypre_TFree(d);

  /* ith column of P is T_i x; ----------------------------------- */

  P_t_coeff = hypre_CTAlloc(HYPRE_Real, i_domain_dof[num_domains]);

  for (i=0; i < num_domains; i++)
    {
      for (j=i_domain_dof[i]; j < i_domain_dof[i+1]; j++)
	{
	  i_global_to_local[j_domain_dof[j]] = j-i_domain_dof[i];
	  h[j-i_domain_dof[i]] = 0.e0;
	}
      nu = 0;
    loop_nu:
      for (j=i_domain_dof[i]; j < i_domain_dof[i+1]; j++)
	{

	  aux = x[j_domain_dof[j]];
	  for (k=i_dof_dof[j_domain_dof[j]];
	       k<i_dof_dof[j_domain_dof[j]+1]; k++)
             if (i_global_to_local[j_dof_dof[k]] > -1)
             {
	      /* this is a_{i_loc, j_loc} --------------------------------- */
               if (j_dof_dof[k] != j_domain_dof[j])
               {
                  aux -= a_dof_dof[k] * h[i_global_to_local[j_dof_dof[k]]];
               }
               else
               {
                  diag = a_dof_dof[k];
               }
             }
          

	  h[i_global_to_local[j_domain_dof[j]]] = aux/diag;
	}

      for (j=i_domain_dof[i+1]-1; j >= i_domain_dof[i]; j--)
	{
	  aux = x[j_domain_dof[j]];
	  for (k =i_dof_dof[j_domain_dof[j]+1]-1;
	       k>=i_dof_dof[j_domain_dof[j]]; k--)
             if (i_global_to_local[j_dof_dof[k]] > -1)
             {
	      /* this is a_{i_loc, j_loc} --------------------------------- */
               if (j_dof_dof[k] != j_domain_dof[j])
               {
                  aux -= a_dof_dof[k] * h[i_global_to_local[j_dof_dof[k]]];
               }
               else
               {
                  diag = a_dof_dof[k];
               }
             }
          
	  h[i_global_to_local[j_domain_dof[j]]] = aux/diag;
	}
      nu++;
      if (nu < nu_max)
	goto loop_nu;

      for (j=i_domain_dof[i]; j < i_domain_dof[i+1]; j++)
	{
	  P_t_coeff[j]= h[i_global_to_local[j_domain_dof[j]]];
	  i_global_to_local[j_domain_dof[j]] = -1;
	}

    }

  
  hypre_TFree(diag_dof_dof);


  hypre_TFree(x);
  hypre_TFree(h);

  hypre_TFree(i_global_to_local);

	  
  P_t = hypre_CSRMatrixCreate(num_domains, num_dofs,
			      i_domain_dof[num_domains]);


  hypre_CSRMatrixData(P_t) = P_t_coeff;
  hypre_CSRMatrixI(P_t) = i_domain_dof;
  hypre_CSRMatrixJ(P_t) = j_domain_dof;

  row_sum = hypre_CTAlloc(HYPRE_Real, num_dofs);
  for (i=0; i < num_dofs; i++)
    row_sum[i] = 0.e0;
  for (i=0; i < num_domains; i++)
    for (j=i_domain_dof[i]; j < i_domain_dof[i+1]; j++)
      row_sum[j_domain_dof[j]]+=P_t_coeff[j];

  delta = 0.e0;
  for (i=0; i < num_dofs; i++)
    delta+= (row_sum[i] - 1.e0)*(row_sum[i] - 1.e0);

  hypre_printf("\n unit row_sum deviation in seq_PU_interpolation: %le\n", 
	 sqrt(delta/num_dofs));

  hypre_TFree(row_sum);
    
  ind = 1;
  ierr =
    hypre_CSRMatrixTranspose(P_t, &P, ind);

  *P_pointer = P;

  hypre_CSRMatrixI(P_t) = NULL;
  hypre_CSRMatrixJ(P_t) = NULL;

  hypre_CSRMatrixDestroy(P_t);


  return ierr;

}
コード例 #29
0
ファイル: amgstats.c プロジェクト: LLNL/COGENT
HYPRE_Int
hypre_AMGSetupStats( void *amg_vdata )
{
   hypre_AMGData *amg_data = amg_vdata;

   /* Data Structure variables */

   hypre_CSRMatrix **A_array;
   hypre_CSRMatrix **P_array;

   HYPRE_Int      num_levels; 
   HYPRE_Int      num_nonzeros;
/*   HYPRE_Int      amg_ioutdat;
   char    *log_file_name;
*/ 

   /* Local variables */

   HYPRE_Int      *A_i;
   double   *A_data;

   HYPRE_Int      *P_i;
   double   *P_data;

   HYPRE_Int       level;
   HYPRE_Int       i,j;
   HYPRE_Int       fine_size;
   HYPRE_Int       coarse_size;
   HYPRE_Int       entries;
   HYPRE_Int       total_entries;
   HYPRE_Int       min_entries;
   HYPRE_Int       max_entries;
   double    avg_entries;
   double    rowsum;
   double    min_rowsum;
   double    max_rowsum;
   double    sparse;
   double    min_weight;
   double    max_weight;
   double    op_complxty=0;
   double    grid_complxty=0;
   double    num_nz0;
   double    num_var0;

   A_array = hypre_AMGDataAArray(amg_data);
   P_array = hypre_AMGDataPArray(amg_data);
   num_levels = hypre_AMGDataNumLevels(amg_data);
/*   amg_ioutdat = hypre_AMGDataIOutDat(amg_data);
   log_file_name = hypre_AMGDataLogFileName(amg_data);
*/    
   hypre_printf("\n  AMG SETUP PARAMETERS:\n\n");
   hypre_printf(" Strength threshold = %f\n",hypre_AMGDataStrongThreshold(amg_data));
   hypre_printf(" Max levels = %d\n",hypre_AMGDataMaxLevels(amg_data));
   hypre_printf(" Num levels = %d\n\n",num_levels);

   hypre_printf( "\nOperator Matrix Information:\n\n");

   hypre_printf("         nonzero         entries p");
   hypre_printf("er row        row sums\n");
   hypre_printf("lev rows entries  sparse  min max  ");
   hypre_printf("avg       min         max\n");
   hypre_printf("=======================================");
   hypre_printf("==========================\n");

  
   /*-----------------------------------------------------
    *  Enter Statistics Loop
    *-----------------------------------------------------*/

   num_var0 = (double) hypre_CSRMatrixNumRows(A_array[0]);
   num_nz0 = (double) hypre_CSRMatrixNumNonzeros(A_array[0]);
 
   for (level = 0; level < num_levels; level++)
   {
       A_i = hypre_CSRMatrixI(A_array[level]);
       A_data = hypre_CSRMatrixData(A_array[level]);

       fine_size = hypre_CSRMatrixNumRows(A_array[level]);
       num_nonzeros = hypre_CSRMatrixNumNonzeros(A_array[level]);
       sparse = num_nonzeros /((double) fine_size * (double) fine_size);
       op_complxty += ((double)num_nonzeros/num_nz0);
       grid_complxty += ((double)fine_size/num_var0);

       min_entries = A_i[1]-A_i[0];
       max_entries = 0;
       total_entries = 0;
       min_rowsum = 0.0;
       max_rowsum = 0.0;

       for (j = A_i[0]; j < A_i[1]; j++)
                    min_rowsum += A_data[j];

       max_rowsum = min_rowsum;

       for (j = 0; j < fine_size; j++)
       {
           entries = A_i[j+1] - A_i[j];
           min_entries = hypre_min(entries, min_entries);
           max_entries = hypre_max(entries, max_entries);
           total_entries += entries;

           rowsum = 0.0;
           for (i = A_i[j]; i < A_i[j+1]; i++)
               rowsum += A_data[i];

           min_rowsum = hypre_min(rowsum, min_rowsum);
           max_rowsum = hypre_max(rowsum, max_rowsum);
       }

       avg_entries = ((double) total_entries) / ((double) fine_size);

       hypre_printf( "%2d %5d %7d  %0.3f  %3d %3d",
                 level, fine_size, num_nonzeros, sparse, min_entries, 
                 max_entries);
       hypre_printf("  %4.1f  %10.3e  %10.3e\n", avg_entries,
                                 min_rowsum, max_rowsum);
   }
       
   hypre_printf( "\n\nInterpolation Matrix Information:\n\n");

   hypre_printf("                 entries/row    min     max");
   hypre_printf("         row sums\n");
   hypre_printf("lev  rows cols    min max  ");
   hypre_printf("   weight   weight     min       max \n");
   hypre_printf("=======================================");
   hypre_printf("==========================\n");

  
   /*-----------------------------------------------------
    *  Enter Statistics Loop
    *-----------------------------------------------------*/

   for (level = 0; level < num_levels-1; level++)
   {
       P_i = hypre_CSRMatrixI(P_array[level]);
       P_data = hypre_CSRMatrixData(P_array[level]);

       fine_size = hypre_CSRMatrixNumRows(P_array[level]);
       coarse_size = hypre_CSRMatrixNumCols(P_array[level]);
       num_nonzeros = hypre_CSRMatrixNumNonzeros(P_array[level]);

       min_entries = P_i[1]-P_i[0];
       max_entries = 0;
       total_entries = 0;
       min_rowsum = 0.0;
       max_rowsum = 0.0;
       min_weight = P_data[0];
       max_weight = 0.0;

       for (j = P_i[0]; j < P_i[1]; j++)
                    min_rowsum += P_data[j];

       max_rowsum = min_rowsum;

       for (j = 0; j < num_nonzeros; j++)
       {
          if (P_data[j] != 1.0)
          {
             min_weight = hypre_min(min_weight,P_data[j]);
             max_weight = hypre_max(max_weight,P_data[j]);
          }
       }

       for (j = 0; j < fine_size; j++)
       {
           entries = P_i[j+1] - P_i[j];
           min_entries = hypre_min(entries, min_entries);
           max_entries = hypre_max(entries, max_entries);
           total_entries += entries;

           rowsum = 0.0;
           for (i = P_i[j]; i < P_i[j+1]; i++)
               rowsum += P_data[i];

           min_rowsum = hypre_min(rowsum, min_rowsum);
           max_rowsum = hypre_max(rowsum, max_rowsum);
       }

       hypre_printf( "%2d %5d x %-5d %3d %3d",
             level, fine_size, coarse_size,  min_entries, max_entries);
       hypre_printf("  %5.3e  %5.3e %5.3e  %5.3e\n",
                 min_weight, max_weight, min_rowsum, max_rowsum);
   }
     
   hypre_printf("\n Operator Complexity: %8.3f\n", op_complxty); 
   hypre_printf(" Grid Complexity:     %8.3f\n", grid_complxty); 
   hypre_WriteSolverParams(amg_data);  
   
   return(0);
}  
コード例 #30
0
HYPRE_Int hypre_HarmonicExtension (hypre_CSRMatrix *A,
                             hypre_CSRMatrix *P,
                             HYPRE_Int num_DOF, HYPRE_Int *DOF,
                             HYPRE_Int num_idof, HYPRE_Int *idof,
                             HYPRE_Int num_bdof, HYPRE_Int *bdof)
{
   HYPRE_Int ierr = 0;

   HYPRE_Int i, j, k, l, m;
   double factor;

   HYPRE_Int *IA = hypre_CSRMatrixI(A);
   HYPRE_Int *JA = hypre_CSRMatrixJ(A);
   double *dataA = hypre_CSRMatrixData(A);

   HYPRE_Int *IP = hypre_CSRMatrixI(P);
   HYPRE_Int *JP = hypre_CSRMatrixJ(P);
   double *dataP = hypre_CSRMatrixData(P);

   double * Aii = hypre_CTAlloc(double, num_idof*num_idof);
   double * Pi = hypre_CTAlloc(double, num_idof*num_DOF);

   /* Loop over the rows of A */
   for (i = 0; i < num_idof; i++)
      for (j = IA[i]; j < IA[i+1]; j++)
      {
         /* Global to local*/
         k = hypre_BinarySearch(idof,JA[j], num_idof);
         /* If a column is a bdof, compute its participation in Pi = Aib x Pb */
         if (k == -1)
         {
            k = hypre_BinarySearch(bdof,JA[j], num_bdof);
            if (k > -1)
            {
               for (l = IP[k+num_idof]; l < IP[k+num_idof+1]; l++)
               {
                  m = hypre_BinarySearch(DOF,JP[l], num_DOF);
                  if (m > -1)
                  {
                     m+=i*num_DOF;
                    /* Pi[i*num_DOF+m] += dataA[j] * dataP[l];*/
                     Pi[m] += dataA[j] * dataP[l];
                  }
               }
            }
         }
         /* If a column is an idof, put it in Aii */
         else
            Aii[i*num_idof+k] = dataA[j];
      }

   /* Perform Gaussian elimination in [Aii, Pi] */
   for (j = 0; j < num_idof-1; j++)
      if (Aii[j*num_idof+j] != 0.0)
         for (i = j+1; i < num_idof; i++)
            if (Aii[i*num_idof+j] != 0.0)
            {
               factor = Aii[i*num_idof+j]/Aii[j*num_idof+j];
               for (m = j+1; m < num_idof; m++)
                  Aii[i*num_idof+m] -= factor * Aii[j*num_idof+m];
               for (m = 0; m < num_DOF; m++)
                  Pi[i*num_DOF+m] -= factor * Pi[j*num_DOF+m];
            }

   /* Back Substitution */
   for (i = num_idof-1; i >= 0; i--)
   {
      for (j = i+1; j < num_idof; j++)
         if (Aii[i*num_idof+j] != 0.0)
            for (m = 0; m < num_DOF; m++)
               Pi[i*num_DOF+m] -= Aii[i*num_idof+j] * Pi[j*num_DOF+m];

      for (m = 0; m < num_DOF; m++)
         Pi[i*num_DOF+m] /= Aii[i*num_idof+i];
   }

   /* Put -Pi back in P. We assume that each idof depends on _all_ DOFs */
   for (i = 0; i < num_idof; i++, JP += num_DOF, dataP += num_DOF)
      for (j = 0; j < num_DOF; j++)
      {
         JP[j]    = DOF[j];
         dataP[j] = -Pi[i*num_DOF+j];
      }

   hypre_TFree(Aii);
   hypre_TFree(Pi);

   return ierr;
}