Subroutine */ int igraphdgeevx_(char *balanc, char *jobvl, char *jobvr, char * sense, integer *n, doublereal *a, integer *lda, doublereal *wr, doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, integer *ilo, integer *ihi, doublereal *scale, doublereal *abnrm, doublereal *rconde, doublereal *rcondv, doublereal *work, integer *lwork, integer *iwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, k; doublereal r__, cs, sn; char job[1]; doublereal scl, dum[1], eps; char side[1]; doublereal anrm; integer ierr, itau; extern /* Subroutine */ int igraphdrot_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer iwrk, nout; extern doublereal igraphdnrm2_(integer *, doublereal *, integer *); extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *); integer icond; extern logical igraphlsame_(char *, char *); extern doublereal igraphdlapy2_(doublereal *, doublereal *); extern /* Subroutine */ int igraphdlabad_(doublereal *, doublereal *), igraphdgebak_( char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *), igraphdgebal_(char *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *); logical scalea; extern doublereal igraphdlamch_(char *); doublereal cscale; extern doublereal igraphdlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int igraphdgehrd_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), igraphdlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); extern integer igraphidamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdlartg_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), igraphxerbla_(char *, integer *, ftnlen); logical select[1]; extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); doublereal bignum; extern /* Subroutine */ int igraphdorghr_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), igraphdhseqr_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *), igraphdtrevc_(char *, char *, logical *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *), igraphdtrsna_(char *, char *, logical *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, integer *); integer minwrk, maxwrk; logical wantvl, wntsnb; integer hswork; logical wntsne; doublereal smlnum; logical lquery, wantvr, wntsnn, wntsnv; /* -- LAPACK driver routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Test the input arguments Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --wr; --wi; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --scale; --rconde; --rcondv; --work; --iwork; /* Function Body */ *info = 0; lquery = *lwork == -1; wantvl = igraphlsame_(jobvl, "V"); wantvr = igraphlsame_(jobvr, "V"); wntsnn = igraphlsame_(sense, "N"); wntsne = igraphlsame_(sense, "E"); wntsnv = igraphlsame_(sense, "V"); wntsnb = igraphlsame_(sense, "B"); if (! (igraphlsame_(balanc, "N") || igraphlsame_(balanc, "S") || igraphlsame_(balanc, "P") || igraphlsame_(balanc, "B"))) { *info = -1; } else if (! wantvl && ! igraphlsame_(jobvl, "N")) { *info = -2; } else if (! wantvr && ! igraphlsame_(jobvr, "N")) { *info = -3; } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) && ! (wantvl && wantvr)) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldvl < 1 || wantvl && *ldvl < *n) { *info = -11; } else if (*ldvr < 1 || wantvr && *ldvr < *n) { *info = -13; } /* Compute workspace (Note: Comments in the code beginning "Workspace:" describe the minimal amount of workspace needed at that point in the code, as well as the preferred amount for good performance. NB refers to the optimal block size for the immediately following subroutine, as returned by ILAENV. HSWORK refers to the workspace preferred by DHSEQR, as calculated below. HSWORK is computed assuming ILO=1 and IHI=N, the worst case.) */ if (*info == 0) { if (*n == 0) { minwrk = 1; maxwrk = 1; } else { maxwrk = *n + *n * igraphilaenv_(&c__1, "DGEHRD", " ", n, &c__1, n, & c__0, (ftnlen)6, (ftnlen)1); if (wantvl) { igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[ 1], &vl[vl_offset], ldvl, &work[1], &c_n1, info); } else if (wantvr) { igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[ 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info); } else { if (wntsnn) { igraphdhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, info); } else { igraphdhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, info); } } hswork = (integer) work[1]; if (! wantvl && ! wantvr) { minwrk = *n << 1; if (! wntsnn) { /* Computing MAX */ i__1 = minwrk, i__2 = *n * *n + *n * 6; minwrk = max(i__1,i__2); } maxwrk = max(maxwrk,hswork); if (! wntsnn) { /* Computing MAX */ i__1 = maxwrk, i__2 = *n * *n + *n * 6; maxwrk = max(i__1,i__2); } } else { minwrk = *n * 3; if (! wntsnn && ! wntsne) { /* Computing MAX */ i__1 = minwrk, i__2 = *n * *n + *n * 6; minwrk = max(i__1,i__2); } maxwrk = max(maxwrk,hswork); /* Computing MAX */ i__1 = maxwrk, i__2 = *n + (*n - 1) * igraphilaenv_(&c__1, "DORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1); maxwrk = max(i__1,i__2); if (! wntsnn && ! wntsne) { /* Computing MAX */ i__1 = maxwrk, i__2 = *n * *n + *n * 6; maxwrk = max(i__1,i__2); } /* Computing MAX */ i__1 = maxwrk, i__2 = *n * 3; maxwrk = max(i__1,i__2); } maxwrk = max(maxwrk,minwrk); } work[1] = (doublereal) maxwrk; if (*lwork < minwrk && ! lquery) { *info = -21; } } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DGEEVX", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = igraphdlamch_("P"); smlnum = igraphdlamch_("S"); bignum = 1. / smlnum; igraphdlabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1. / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ icond = 0; anrm = igraphdlange_("M", n, n, &a[a_offset], lda, dum); scalea = FALSE_; if (anrm > 0. && anrm < smlnum) { scalea = TRUE_; cscale = smlnum; } else if (anrm > bignum) { scalea = TRUE_; cscale = bignum; } if (scalea) { igraphdlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, & ierr); } /* Balance the matrix and compute ABNRM */ igraphdgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr); *abnrm = igraphdlange_("1", n, n, &a[a_offset], lda, dum); if (scalea) { dum[0] = *abnrm; igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, & ierr); *abnrm = dum[0]; } /* Reduce to upper Hessenberg form (Workspace: need 2*N, prefer N+N*NB) */ itau = 1; iwrk = itau + *n; i__1 = *lwork - iwrk + 1; igraphdgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, & ierr); if (wantvl) { /* Want left eigenvectors Copy Householder vectors to VL */ *(unsigned char *)side = 'L'; igraphdlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl) ; /* Generate orthogonal matrix in VL (Workspace: need 2*N-1, prefer N+(N-1)*NB) */ i__1 = *lwork - iwrk + 1; igraphdorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], & i__1, &ierr); /* Perform QR iteration, accumulating Schur vectors in VL (Workspace: need 1, prefer HSWORK (see comments) ) */ iwrk = itau; i__1 = *lwork - iwrk + 1; igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[ vl_offset], ldvl, &work[iwrk], &i__1, info); if (wantvr) { /* Want left and right eigenvectors Copy Schur vectors to VR */ *(unsigned char *)side = 'B'; igraphdlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr); } } else if (wantvr) { /* Want right eigenvectors Copy Householder vectors to VR */ *(unsigned char *)side = 'R'; igraphdlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr) ; /* Generate orthogonal matrix in VR (Workspace: need 2*N-1, prefer N+(N-1)*NB) */ i__1 = *lwork - iwrk + 1; igraphdorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], & i__1, &ierr); /* Perform QR iteration, accumulating Schur vectors in VR (Workspace: need 1, prefer HSWORK (see comments) ) */ iwrk = itau; i__1 = *lwork - iwrk + 1; igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[ vr_offset], ldvr, &work[iwrk], &i__1, info); } else { /* Compute eigenvalues only If condition numbers desired, compute Schur form */ if (wntsnn) { *(unsigned char *)job = 'E'; } else { *(unsigned char *)job = 'S'; } /* (Workspace: need 1, prefer HSWORK (see comments) ) */ iwrk = itau; i__1 = *lwork - iwrk + 1; igraphdhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[ vr_offset], ldvr, &work[iwrk], &i__1, info); } /* If INFO > 0 from DHSEQR, then quit */ if (*info > 0) { goto L50; } if (wantvl || wantvr) { /* Compute left and/or right eigenvectors (Workspace: need 3*N) */ igraphdtrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr); } /* Compute condition numbers if desired (Workspace: need N*N+6*N unless SENSE = 'E') */ if (! wntsnn) { igraphdtrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, &work[iwrk], n, &iwork[1], &icond); } if (wantvl) { /* Undo balancing of left eigenvectors */ igraphdgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, &ierr); /* Normalize left eigenvectors and make largest component real */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (wi[i__] == 0.) { scl = 1. / igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1); igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1); } else if (wi[i__] > 0.) { d__1 = igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1); d__2 = igraphdnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1); scl = 1. / igraphdlapy2_(&d__1, &d__2); igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1); igraphdscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1); i__2 = *n; for (k = 1; k <= i__2; ++k) { /* Computing 2nd power */ d__1 = vl[k + i__ * vl_dim1]; /* Computing 2nd power */ d__2 = vl[k + (i__ + 1) * vl_dim1]; work[k] = d__1 * d__1 + d__2 * d__2; /* L10: */ } k = igraphidamax_(n, &work[1], &c__1); igraphdlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1], &cs, &sn, &r__); igraphdrot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) * vl_dim1 + 1], &c__1, &cs, &sn); vl[k + (i__ + 1) * vl_dim1] = 0.; } /* L20: */ } } if (wantvr) { /* Undo balancing of right eigenvectors */ igraphdgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, &ierr); /* Normalize right eigenvectors and make largest component real */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (wi[i__] == 0.) { scl = 1. / igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1); igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1); } else if (wi[i__] > 0.) { d__1 = igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1); d__2 = igraphdnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1); scl = 1. / igraphdlapy2_(&d__1, &d__2); igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1); igraphdscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1); i__2 = *n; for (k = 1; k <= i__2; ++k) { /* Computing 2nd power */ d__1 = vr[k + i__ * vr_dim1]; /* Computing 2nd power */ d__2 = vr[k + (i__ + 1) * vr_dim1]; work[k] = d__1 * d__1 + d__2 * d__2; /* L30: */ } k = igraphidamax_(n, &work[1], &c__1); igraphdlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1], &cs, &sn, &r__); igraphdrot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) * vr_dim1 + 1], &c__1, &cs, &sn); vr[k + (i__ + 1) * vr_dim1] = 0.; } /* L40: */ } } /* Undo scaling if necessary */ L50: if (scalea) { i__1 = *n - *info; /* Computing MAX */ i__3 = *n - *info; i__2 = max(i__3,1); igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info + 1], &i__2, &ierr); i__1 = *n - *info; /* Computing MAX */ i__3 = *n - *info; i__2 = max(i__3,1); igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info + 1], &i__2, &ierr); if (*info == 0) { if ((wntsnv || wntsnb) && icond == 0) { igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[ 1], n, &ierr); } } else { i__1 = *ilo - 1; igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1], n, &ierr); i__1 = *ilo - 1; igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1], n, &ierr); } } work[1] = (doublereal) maxwrk; return 0; /* End of DGEEVX */ } /* igraphdgeevx_ */
Subroutine */ int igraphdnapps_(integer *n, integer *kev, integer *np, doublereal *shiftr, doublereal *shifti, doublereal *v, integer *ldv, doublereal *h__, integer *ldh, doublereal *resid, doublereal *q, integer *ldq, doublereal *workl, doublereal *workd) { /* Initialized data */ IGRAPH_F77_SAVE logical first = TRUE_; /* System generated locals */ integer h_dim1, h_offset, v_dim1, v_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4; doublereal d__1, d__2; /* Local variables */ doublereal c__, f, g; integer i__, j; doublereal r__, s, t, u[3]; real t0, t1; doublereal h11, h12, h21, h22, h32; integer jj, ir, nr; doublereal tau; IGRAPH_F77_SAVE doublereal ulp; doublereal tst1; integer iend; IGRAPH_F77_SAVE doublereal unfl, ovfl; extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *), igraphdlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *); logical cconj; extern /* Subroutine */ int igraphdgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), igraphdcopy_(integer *, doublereal *, integer *, doublereal *, integer *), igraphdaxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *) , igraphdmout_(integer *, integer *, integer *, doublereal *, integer *, integer *, char *, ftnlen), igraphdvout_(integer *, integer *, doublereal *, integer *, char *, ftnlen), igraphivout_(integer *, integer *, integer *, integer *, char *, ftnlen); extern doublereal igraphdlapy2_(doublereal *, doublereal *); extern /* Subroutine */ int igraphdlabad_(doublereal *, doublereal *); extern doublereal igraphdlamch_(char *); extern /* Subroutine */ int igraphdlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *); doublereal sigmai; extern doublereal igraphdlanhs_(char *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int igraphsecond_(real *), igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), igraphdlartg_( doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); integer logfil, ndigit; doublereal sigmar; integer mnapps = 0, msglvl; real tnapps = 0.; integer istart; IGRAPH_F77_SAVE doublereal smlnum; integer kplusp; /* %----------------------------------------------------% | Include files for debugging and timing information | %----------------------------------------------------% %------------------% | Scalar Arguments | %------------------% %-----------------% | Array Arguments | %-----------------% %------------% | Parameters | %------------% %------------------------% | Local Scalars & Arrays | %------------------------% %----------------------% | External Subroutines | %----------------------% %--------------------% | External Functions | %--------------------% %----------------------% | Intrinsics Functions | %----------------------% %----------------% | Data statments | %----------------% Parameter adjustments */ --workd; --resid; --workl; --shifti; --shiftr; v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; h_dim1 = *ldh; h_offset = 1 + h_dim1; h__ -= h_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; /* Function Body %-----------------------% | Executable Statements | %-----------------------% */ if (first) { /* %-----------------------------------------------% | Set machine-dependent constants for the | | stopping criterion. If norm(H) <= sqrt(OVFL), | | overflow should not occur. | | REFERENCE: LAPACK subroutine dlahqr | %-----------------------------------------------% */ unfl = igraphdlamch_("safe minimum"); ovfl = 1. / unfl; igraphdlabad_(&unfl, &ovfl); ulp = igraphdlamch_("precision"); smlnum = unfl * (*n / ulp); first = FALSE_; } /* %-------------------------------% | Initialize timing statistics | | & message level for debugging | %-------------------------------% */ igraphsecond_(&t0); msglvl = mnapps; kplusp = *kev + *np; /* %--------------------------------------------% | Initialize Q to the identity to accumulate | | the rotations and reflections | %--------------------------------------------% */ igraphdlaset_("All", &kplusp, &kplusp, &c_b5, &c_b6, &q[q_offset], ldq); /* %----------------------------------------------% | Quick return if there are no shifts to apply | %----------------------------------------------% */ if (*np == 0) { goto L9000; } /* %----------------------------------------------% | Chase the bulge with the application of each | | implicit shift. Each shift is applied to the | | whole matrix including each block. | %----------------------------------------------% */ cconj = FALSE_; i__1 = *np; for (jj = 1; jj <= i__1; ++jj) { sigmar = shiftr[jj]; sigmai = shifti[jj]; if (msglvl > 2) { igraphivout_(&logfil, &c__1, &jj, &ndigit, "_napps: shift number.", ( ftnlen)21); igraphdvout_(&logfil, &c__1, &sigmar, &ndigit, "_napps: The real part " "of the shift ", (ftnlen)35); igraphdvout_(&logfil, &c__1, &sigmai, &ndigit, "_napps: The imaginary " "part of the shift ", (ftnlen)40); } /* %-------------------------------------------------% | The following set of conditionals is necessary | | in order that complex conjugate pairs of shifts | | are applied together or not at all. | %-------------------------------------------------% */ if (cconj) { /* %-----------------------------------------% | cconj = .true. means the previous shift | | had non-zero imaginary part. | %-----------------------------------------% */ cconj = FALSE_; goto L110; } else if (jj < *np && abs(sigmai) > 0.) { /* %------------------------------------% | Start of a complex conjugate pair. | %------------------------------------% */ cconj = TRUE_; } else if (jj == *np && abs(sigmai) > 0.) { /* %----------------------------------------------% | The last shift has a nonzero imaginary part. | | Don't apply it; thus the order of the | | compressed H is order KEV+1 since only np-1 | | were applied. | %----------------------------------------------% */ ++(*kev); goto L110; } istart = 1; L20: /* %--------------------------------------------------% | if sigmai = 0 then | | Apply the jj-th shift ... | | else | | Apply the jj-th and (jj+1)-th together ... | | (Note that jj < np at this point in the code) | | end | | to the current block of H. The next do loop | | determines the current block ; | %--------------------------------------------------% */ i__2 = kplusp - 1; for (i__ = istart; i__ <= i__2; ++i__) { /* %----------------------------------------% | Check for splitting and deflation. Use | | a standard test as in the QR algorithm | | REFERENCE: LAPACK subroutine dlahqr | %----------------------------------------% */ tst1 = (d__1 = h__[i__ + i__ * h_dim1], abs(d__1)) + (d__2 = h__[ i__ + 1 + (i__ + 1) * h_dim1], abs(d__2)); if (tst1 == 0.) { i__3 = kplusp - jj + 1; tst1 = igraphdlanhs_("1", &i__3, &h__[h_offset], ldh, &workl[1]); } /* Computing MAX */ d__2 = ulp * tst1; if ((d__1 = h__[i__ + 1 + i__ * h_dim1], abs(d__1)) <= max(d__2, smlnum)) { if (msglvl > 0) { igraphivout_(&logfil, &c__1, &i__, &ndigit, "_napps: matrix sp" "litting at row/column no.", (ftnlen)42); igraphivout_(&logfil, &c__1, &jj, &ndigit, "_napps: matrix spl" "itting with shift number.", (ftnlen)43); igraphdvout_(&logfil, &c__1, &h__[i__ + 1 + i__ * h_dim1], & ndigit, "_napps: off diagonal element.", (ftnlen) 29); } iend = i__; h__[i__ + 1 + i__ * h_dim1] = 0.; goto L40; } /* L30: */ } iend = kplusp; L40: if (msglvl > 2) { igraphivout_(&logfil, &c__1, &istart, &ndigit, "_napps: Start of curre" "nt block ", (ftnlen)31); igraphivout_(&logfil, &c__1, &iend, &ndigit, "_napps: End of current b" "lock ", (ftnlen)29); } /* %------------------------------------------------% | No reason to apply a shift to block of order 1 | %------------------------------------------------% */ if (istart == iend) { goto L100; } /* %------------------------------------------------------% | If istart + 1 = iend then no reason to apply a | | complex conjugate pair of shifts on a 2 by 2 matrix. | %------------------------------------------------------% */ if (istart + 1 == iend && abs(sigmai) > 0.) { goto L100; } h11 = h__[istart + istart * h_dim1]; h21 = h__[istart + 1 + istart * h_dim1]; if (abs(sigmai) <= 0.) { /* %---------------------------------------------% | Real-valued shift ==> apply single shift QR | %---------------------------------------------% */ f = h11 - sigmar; g = h21; i__2 = iend - 1; for (i__ = istart; i__ <= i__2; ++i__) { /* %-----------------------------------------------------% | Contruct the plane rotation G to zero out the bulge | %-----------------------------------------------------% */ igraphdlartg_(&f, &g, &c__, &s, &r__); if (i__ > istart) { /* %-------------------------------------------% | The following ensures that h(1:iend-1,1), | | the first iend-2 off diagonal of elements | | H, remain non negative. | %-------------------------------------------% */ if (r__ < 0.) { r__ = -r__; c__ = -c__; s = -s; } h__[i__ + (i__ - 1) * h_dim1] = r__; h__[i__ + 1 + (i__ - 1) * h_dim1] = 0.; } /* %---------------------------------------------% | Apply rotation to the left of H; H <- G'*H | %---------------------------------------------% */ i__3 = kplusp; for (j = i__; j <= i__3; ++j) { t = c__ * h__[i__ + j * h_dim1] + s * h__[i__ + 1 + j * h_dim1]; h__[i__ + 1 + j * h_dim1] = -s * h__[i__ + j * h_dim1] + c__ * h__[i__ + 1 + j * h_dim1]; h__[i__ + j * h_dim1] = t; /* L50: */ } /* %---------------------------------------------% | Apply rotation to the right of H; H <- H*G | %---------------------------------------------% Computing MIN */ i__4 = i__ + 2; i__3 = min(i__4,iend); for (j = 1; j <= i__3; ++j) { t = c__ * h__[j + i__ * h_dim1] + s * h__[j + (i__ + 1) * h_dim1]; h__[j + (i__ + 1) * h_dim1] = -s * h__[j + i__ * h_dim1] + c__ * h__[j + (i__ + 1) * h_dim1]; h__[j + i__ * h_dim1] = t; /* L60: */ } /* %----------------------------------------------------% | Accumulate the rotation in the matrix Q; Q <- Q*G | %----------------------------------------------------% Computing MIN */ i__4 = j + jj; i__3 = min(i__4,kplusp); for (j = 1; j <= i__3; ++j) { t = c__ * q[j + i__ * q_dim1] + s * q[j + (i__ + 1) * q_dim1]; q[j + (i__ + 1) * q_dim1] = -s * q[j + i__ * q_dim1] + c__ * q[j + (i__ + 1) * q_dim1]; q[j + i__ * q_dim1] = t; /* L70: */ } /* %---------------------------% | Prepare for next rotation | %---------------------------% */ if (i__ < iend - 1) { f = h__[i__ + 1 + i__ * h_dim1]; g = h__[i__ + 2 + i__ * h_dim1]; } /* L80: */ } /* %-----------------------------------% | Finished applying the real shift. | %-----------------------------------% */ } else { /* %----------------------------------------------------% | Complex conjugate shifts ==> apply double shift QR | %----------------------------------------------------% */ h12 = h__[istart + (istart + 1) * h_dim1]; h22 = h__[istart + 1 + (istart + 1) * h_dim1]; h32 = h__[istart + 2 + (istart + 1) * h_dim1]; /* %---------------------------------------------------------% | Compute 1st column of (H - shift*I)*(H - conj(shift)*I) | %---------------------------------------------------------% */ s = sigmar * 2.f; t = igraphdlapy2_(&sigmar, &sigmai); u[0] = (h11 * (h11 - s) + t * t) / h21 + h12; u[1] = h11 + h22 - s; u[2] = h32; i__2 = iend - 1; for (i__ = istart; i__ <= i__2; ++i__) { /* Computing MIN */ i__3 = 3, i__4 = iend - i__ + 1; nr = min(i__3,i__4); /* %-----------------------------------------------------% | Construct Householder reflector G to zero out u(1). | | G is of the form I - tau*( 1 u )' * ( 1 u' ). | %-----------------------------------------------------% */ igraphdlarfg_(&nr, u, &u[1], &c__1, &tau); if (i__ > istart) { h__[i__ + (i__ - 1) * h_dim1] = u[0]; h__[i__ + 1 + (i__ - 1) * h_dim1] = 0.; if (i__ < iend - 1) { h__[i__ + 2 + (i__ - 1) * h_dim1] = 0.; } } u[0] = 1.; /* %--------------------------------------% | Apply the reflector to the left of H | %--------------------------------------% */ i__3 = kplusp - i__ + 1; igraphdlarf_("Left", &nr, &i__3, u, &c__1, &tau, &h__[i__ + i__ * h_dim1], ldh, &workl[1]); /* %---------------------------------------% | Apply the reflector to the right of H | %---------------------------------------% Computing MIN */ i__3 = i__ + 3; ir = min(i__3,iend); igraphdlarf_("Right", &ir, &nr, u, &c__1, &tau, &h__[i__ * h_dim1 + 1], ldh, &workl[1]); /* %-----------------------------------------------------% | Accumulate the reflector in the matrix Q; Q <- Q*G | %-----------------------------------------------------% */ igraphdlarf_("Right", &kplusp, &nr, u, &c__1, &tau, &q[i__ * q_dim1 + 1], ldq, &workl[1]); /* %----------------------------% | Prepare for next reflector | %----------------------------% */ if (i__ < iend - 1) { u[0] = h__[i__ + 1 + i__ * h_dim1]; u[1] = h__[i__ + 2 + i__ * h_dim1]; if (i__ < iend - 2) { u[2] = h__[i__ + 3 + i__ * h_dim1]; } } /* L90: */ } /* %--------------------------------------------% | Finished applying a complex pair of shifts | | to the current block | %--------------------------------------------% */ } L100: /* %---------------------------------------------------------% | Apply the same shift to the next block if there is any. | %---------------------------------------------------------% */ istart = iend + 1; if (iend < kplusp) { goto L20; } /* %---------------------------------------------% | Loop back to the top to get the next shift. | %---------------------------------------------% */ L110: ; } /* %--------------------------------------------------% | Perform a similarity transformation that makes | | sure that H will have non negative sub diagonals | %--------------------------------------------------% */ i__1 = *kev; for (j = 1; j <= i__1; ++j) { if (h__[j + 1 + j * h_dim1] < 0.) { i__2 = kplusp - j + 1; igraphdscal_(&i__2, &c_b43, &h__[j + 1 + j * h_dim1], ldh); /* Computing MIN */ i__3 = j + 2; i__2 = min(i__3,kplusp); igraphdscal_(&i__2, &c_b43, &h__[(j + 1) * h_dim1 + 1], &c__1); /* Computing MIN */ i__3 = j + *np + 1; i__2 = min(i__3,kplusp); igraphdscal_(&i__2, &c_b43, &q[(j + 1) * q_dim1 + 1], &c__1); } /* L120: */ } i__1 = *kev; for (i__ = 1; i__ <= i__1; ++i__) { /* %--------------------------------------------% | Final check for splitting and deflation. | | Use a standard test as in the QR algorithm | | REFERENCE: LAPACK subroutine dlahqr | %--------------------------------------------% */ tst1 = (d__1 = h__[i__ + i__ * h_dim1], abs(d__1)) + (d__2 = h__[i__ + 1 + (i__ + 1) * h_dim1], abs(d__2)); if (tst1 == 0.) { tst1 = igraphdlanhs_("1", kev, &h__[h_offset], ldh, &workl[1]); } /* Computing MAX */ d__1 = ulp * tst1; if (h__[i__ + 1 + i__ * h_dim1] <= max(d__1,smlnum)) { h__[i__ + 1 + i__ * h_dim1] = 0.; } /* L130: */ } /* %-------------------------------------------------% | Compute the (kev+1)-st column of (V*Q) and | | temporarily store the result in WORKD(N+1:2*N). | | This is needed in the residual update since we | | cannot GUARANTEE that the corresponding entry | | of H would be zero as in exact arithmetic. | %-------------------------------------------------% */ if (h__[*kev + 1 + *kev * h_dim1] > 0.) { igraphdgemv_("N", n, &kplusp, &c_b6, &v[v_offset], ldv, &q[(*kev + 1) * q_dim1 + 1], &c__1, &c_b5, &workd[*n + 1], &c__1); } /* %----------------------------------------------------------% | Compute column 1 to kev of (V*Q) in backward order | | taking advantage of the upper Hessenberg structure of Q. | %----------------------------------------------------------% */ i__1 = *kev; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = kplusp - i__ + 1; igraphdgemv_("N", n, &i__2, &c_b6, &v[v_offset], ldv, &q[(*kev - i__ + 1) * q_dim1 + 1], &c__1, &c_b5, &workd[1], &c__1); igraphdcopy_(n, &workd[1], &c__1, &v[(kplusp - i__ + 1) * v_dim1 + 1], & c__1); /* L140: */ } /* %-------------------------------------------------% | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). | %-------------------------------------------------% */ igraphdlacpy_("A", n, kev, &v[(kplusp - *kev + 1) * v_dim1 + 1], ldv, &v[ v_offset], ldv); /* %--------------------------------------------------------------% | Copy the (kev+1)-st column of (V*Q) in the appropriate place | %--------------------------------------------------------------% */ if (h__[*kev + 1 + *kev * h_dim1] > 0.) { igraphdcopy_(n, &workd[*n + 1], &c__1, &v[(*kev + 1) * v_dim1 + 1], &c__1); } /* %-------------------------------------% | Update the residual vector: | | r <- sigmak*r + betak*v(:,kev+1) | | where | | sigmak = (e_{kplusp}'*Q)*e_{kev} | | betak = e_{kev+1}'*H*e_{kev} | %-------------------------------------% */ igraphdscal_(n, &q[kplusp + *kev * q_dim1], &resid[1], &c__1); if (h__[*kev + 1 + *kev * h_dim1] > 0.) { igraphdaxpy_(n, &h__[*kev + 1 + *kev * h_dim1], &v[(*kev + 1) * v_dim1 + 1], &c__1, &resid[1], &c__1); } if (msglvl > 1) { igraphdvout_(&logfil, &c__1, &q[kplusp + *kev * q_dim1], &ndigit, "_napps:" " sigmak = (e_{kev+p}^T*Q)*e_{kev}", (ftnlen)40); igraphdvout_(&logfil, &c__1, &h__[*kev + 1 + *kev * h_dim1], &ndigit, "_na" "pps: betak = e_{kev+1}^T*H*e_{kev}", (ftnlen)37); igraphivout_(&logfil, &c__1, kev, &ndigit, "_napps: Order of the final Hes" "senberg matrix ", (ftnlen)45); if (msglvl > 2) { igraphdmout_(&logfil, kev, kev, &h__[h_offset], ldh, &ndigit, "_napps:" " updated Hessenberg matrix H for next iteration", (ftnlen) 54); } } L9000: igraphsecond_(&t1); tnapps += t1 - t0; return 0; /* %---------------% | End of dnapps | %---------------% */ } /* igraphdnapps_ */
/* Subroutine */ int igraphdlaexc_(logical *wantq, integer *n, doublereal *t, integer *ldt, doublereal *q, integer *ldq, integer *j1, integer *n1, integer *n2, doublereal *work, integer *info) { /* System generated locals */ integer q_dim1, q_offset, t_dim1, t_offset, i__1; doublereal d__1, d__2, d__3; /* Local variables */ doublereal d__[16] /* was [4][4] */; integer k; doublereal u[3], x[4] /* was [2][2] */; integer j2, j3, j4; doublereal u1[3], u2[3]; integer nd; doublereal cs, t11, t22, t33, sn, wi1, wi2, wr1, wr2, eps, tau, tau1, tau2; integer ierr; doublereal temp; extern /* Subroutine */ int igraphdrot_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); doublereal scale, dnorm, xnorm; extern /* Subroutine */ int igraphdlanv2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), igraphdlasy2_( logical *, logical *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); extern doublereal igraphdlamch_(char *), igraphdlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int igraphdlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *), igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdlartg_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), igraphdlarfx_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *); doublereal thresh, smlnum; /* -- LAPACK auxiliary routine (version 3.2.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- June 2010 Purpose ======= DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in an upper quasi-triangular matrix T by an orthogonal similarity transformation. T must be in Schur canonical form, that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elemnts equal and its off-diagonal elements of opposite sign. Arguments ========= WANTQ (input) LOGICAL = .TRUE. : accumulate the transformation in the matrix Q; = .FALSE.: do not accumulate the transformation. N (input) INTEGER The order of the matrix T. N >= 0. T (input/output) DOUBLE PRECISION array, dimension (LDT,N) On entry, the upper quasi-triangular matrix T, in Schur canonical form. On exit, the updated matrix T, again in Schur canonical form. LDT (input) INTEGER The leading dimension of the array T. LDT >= max(1,N). Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) On entry, if WANTQ is .TRUE., the orthogonal matrix Q. On exit, if WANTQ is .TRUE., the updated matrix Q. If WANTQ is .FALSE., Q is not referenced. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N. J1 (input) INTEGER The index of the first row of the first block T11. N1 (input) INTEGER The order of the first block T11. N1 = 0, 1 or 2. N2 (input) INTEGER The order of the second block T22. N2 = 0, 1 or 2. WORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER = 0: successful exit = 1: the transformed matrix T would be too far from Schur form; the blocks are not swapped and T and Q are unchanged. ===================================================================== Parameter adjustments */ t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --work; /* Function Body */ *info = 0; /* Quick return if possible */ if (*n == 0 || *n1 == 0 || *n2 == 0) { return 0; } if (*j1 + *n1 > *n) { return 0; } j2 = *j1 + 1; j3 = *j1 + 2; j4 = *j1 + 3; if (*n1 == 1 && *n2 == 1) { /* Swap two 1-by-1 blocks. */ t11 = t[*j1 + *j1 * t_dim1]; t22 = t[j2 + j2 * t_dim1]; /* Determine the transformation to perform the interchange. */ d__1 = t22 - t11; igraphdlartg_(&t[*j1 + j2 * t_dim1], &d__1, &cs, &sn, &temp); /* Apply transformation to the matrix T. */ if (j3 <= *n) { i__1 = *n - *j1 - 1; igraphdrot_(&i__1, &t[*j1 + j3 * t_dim1], ldt, &t[j2 + j3 * t_dim1], ldt, &cs, &sn); } i__1 = *j1 - 1; igraphdrot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &c__1, &cs, &sn); t[*j1 + *j1 * t_dim1] = t22; t[j2 + j2 * t_dim1] = t11; if (*wantq) { /* Accumulate transformation in the matrix Q. */ igraphdrot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &c__1, &cs, &sn); } } else { /* Swapping involves at least one 2-by-2 block. Copy the diagonal block of order N1+N2 to the local array D and compute its norm. */ nd = *n1 + *n2; igraphdlacpy_("Full", &nd, &nd, &t[*j1 + *j1 * t_dim1], ldt, d__, &c__4); dnorm = igraphdlange_("Max", &nd, &nd, d__, &c__4, &work[1]); /* Compute machine-dependent threshold for test for accepting swap. */ eps = igraphdlamch_("P"); smlnum = igraphdlamch_("S") / eps; /* Computing MAX */ d__1 = eps * 10. * dnorm; thresh = max(d__1,smlnum); /* Solve T11*X - X*T22 = scale*T12 for X. */ igraphdlasy2_(&c_false, &c_false, &c_n1, n1, n2, d__, &c__4, &d__[*n1 + 1 + (*n1 + 1 << 2) - 5], &c__4, &d__[(*n1 + 1 << 2) - 4], &c__4, & scale, x, &c__2, &xnorm, &ierr); /* Swap the adjacent diagonal blocks. */ k = *n1 + *n1 + *n2 - 3; switch (k) { case 1: goto L10; case 2: goto L20; case 3: goto L30; } L10: /* N1 = 1, N2 = 2: generate elementary reflector H so that: ( scale, X11, X12 ) H = ( 0, 0, * ) */ u[0] = scale; u[1] = x[0]; u[2] = x[2]; igraphdlarfg_(&c__3, &u[2], u, &c__1, &tau); u[2] = 1.; t11 = t[*j1 + *j1 * t_dim1]; /* Perform swap provisionally on diagonal block in D. */ igraphdlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]); igraphdlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]); /* Test whether to reject swap. Computing MAX */ d__2 = abs(d__[2]), d__3 = abs(d__[6]), d__2 = max(d__2,d__3), d__3 = (d__1 = d__[10] - t11, abs(d__1)); if (max(d__2,d__3) > thresh) { goto L50; } /* Accept swap: apply transformation to the entire matrix T. */ i__1 = *n - *j1 + 1; igraphdlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + *j1 * t_dim1], ldt, & work[1]); igraphdlarfx_("R", &j2, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]); t[j3 + *j1 * t_dim1] = 0.; t[j3 + j2 * t_dim1] = 0.; t[j3 + j3 * t_dim1] = t11; if (*wantq) { /* Accumulate transformation in the matrix Q. */ igraphdlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[ 1]); } goto L40; L20: /* N1 = 2, N2 = 1: generate elementary reflector H so that: H ( -X11 ) = ( * ) ( -X21 ) = ( 0 ) ( scale ) = ( 0 ) */ u[0] = -x[0]; u[1] = -x[1]; u[2] = scale; igraphdlarfg_(&c__3, u, &u[1], &c__1, &tau); u[0] = 1.; t33 = t[j3 + j3 * t_dim1]; /* Perform swap provisionally on diagonal block in D. */ igraphdlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]); igraphdlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]); /* Test whether to reject swap. Computing MAX */ d__2 = abs(d__[1]), d__3 = abs(d__[2]), d__2 = max(d__2,d__3), d__3 = (d__1 = d__[0] - t33, abs(d__1)); if (max(d__2,d__3) > thresh) { goto L50; } /* Accept swap: apply transformation to the entire matrix T. */ igraphdlarfx_("R", &j3, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]); i__1 = *n - *j1; igraphdlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + j2 * t_dim1], ldt, &work[ 1]); t[*j1 + *j1 * t_dim1] = t33; t[j2 + *j1 * t_dim1] = 0.; t[j3 + *j1 * t_dim1] = 0.; if (*wantq) { /* Accumulate transformation in the matrix Q. */ igraphdlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[ 1]); } goto L40; L30: /* N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so that: H(2) H(1) ( -X11 -X12 ) = ( * * ) ( -X21 -X22 ) ( 0 * ) ( scale 0 ) ( 0 0 ) ( 0 scale ) ( 0 0 ) */ u1[0] = -x[0]; u1[1] = -x[1]; u1[2] = scale; igraphdlarfg_(&c__3, u1, &u1[1], &c__1, &tau1); u1[0] = 1.; temp = -tau1 * (x[2] + u1[1] * x[3]); u2[0] = -temp * u1[1] - x[3]; u2[1] = -temp * u1[2]; u2[2] = scale; igraphdlarfg_(&c__3, u2, &u2[1], &c__1, &tau2); u2[0] = 1.; /* Perform swap provisionally on diagonal block in D. */ igraphdlarfx_("L", &c__3, &c__4, u1, &tau1, d__, &c__4, &work[1]) ; igraphdlarfx_("R", &c__4, &c__3, u1, &tau1, d__, &c__4, &work[1]) ; igraphdlarfx_("L", &c__3, &c__4, u2, &tau2, &d__[1], &c__4, &work[1]); igraphdlarfx_("R", &c__4, &c__3, u2, &tau2, &d__[4], &c__4, &work[1]); /* Test whether to reject swap. Computing MAX */ d__1 = abs(d__[2]), d__2 = abs(d__[6]), d__1 = max(d__1,d__2), d__2 = abs(d__[3]), d__1 = max(d__1,d__2), d__2 = abs(d__[7]); if (max(d__1,d__2) > thresh) { goto L50; } /* Accept swap: apply transformation to the entire matrix T. */ i__1 = *n - *j1 + 1; igraphdlarfx_("L", &c__3, &i__1, u1, &tau1, &t[*j1 + *j1 * t_dim1], ldt, & work[1]); igraphdlarfx_("R", &j4, &c__3, u1, &tau1, &t[*j1 * t_dim1 + 1], ldt, &work[ 1]); i__1 = *n - *j1 + 1; igraphdlarfx_("L", &c__3, &i__1, u2, &tau2, &t[j2 + *j1 * t_dim1], ldt, & work[1]); igraphdlarfx_("R", &j4, &c__3, u2, &tau2, &t[j2 * t_dim1 + 1], ldt, &work[1] ); t[j3 + *j1 * t_dim1] = 0.; t[j3 + j2 * t_dim1] = 0.; t[j4 + *j1 * t_dim1] = 0.; t[j4 + j2 * t_dim1] = 0.; if (*wantq) { /* Accumulate transformation in the matrix Q. */ igraphdlarfx_("R", n, &c__3, u1, &tau1, &q[*j1 * q_dim1 + 1], ldq, & work[1]); igraphdlarfx_("R", n, &c__3, u2, &tau2, &q[j2 * q_dim1 + 1], ldq, &work[ 1]); } L40: if (*n2 == 2) { /* Standardize new 2-by-2 block T11 */ igraphdlanv2_(&t[*j1 + *j1 * t_dim1], &t[*j1 + j2 * t_dim1], &t[j2 + * j1 * t_dim1], &t[j2 + j2 * t_dim1], &wr1, &wi1, &wr2, & wi2, &cs, &sn); i__1 = *n - *j1 - 1; igraphdrot_(&i__1, &t[*j1 + (*j1 + 2) * t_dim1], ldt, &t[j2 + (*j1 + 2) * t_dim1], ldt, &cs, &sn); i__1 = *j1 - 1; igraphdrot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], & c__1, &cs, &sn); if (*wantq) { igraphdrot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], & c__1, &cs, &sn); } } if (*n1 == 2) { /* Standardize new 2-by-2 block T22 */ j3 = *j1 + *n2; j4 = j3 + 1; igraphdlanv2_(&t[j3 + j3 * t_dim1], &t[j3 + j4 * t_dim1], &t[j4 + j3 * t_dim1], &t[j4 + j4 * t_dim1], &wr1, &wi1, &wr2, &wi2, & cs, &sn); if (j3 + 2 <= *n) { i__1 = *n - j3 - 1; igraphdrot_(&i__1, &t[j3 + (j3 + 2) * t_dim1], ldt, &t[j4 + (j3 + 2) * t_dim1], ldt, &cs, &sn); } i__1 = j3 - 1; igraphdrot_(&i__1, &t[j3 * t_dim1 + 1], &c__1, &t[j4 * t_dim1 + 1], & c__1, &cs, &sn); if (*wantq) { igraphdrot_(n, &q[j3 * q_dim1 + 1], &c__1, &q[j4 * q_dim1 + 1], & c__1, &cs, &sn); } } } return 0; /* Exit with INFO = 1 if swap was rejected. */ L50: *info = 1; return 0; /* End of DLAEXC */ } /* igraphdlaexc_ */
/* Subroutine */ int igraphdgeevx_(char *balanc, char *jobvl, char *jobvr, char * sense, integer *n, doublereal *a, integer *lda, doublereal *wr, doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, integer *ilo, integer *ihi, doublereal *scale, doublereal *abnrm, doublereal *rconde, doublereal *rcondv, doublereal *work, integer *lwork, integer *iwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, k; doublereal r__, cs, sn; char job[1]; doublereal scl, dum[1], eps; char side[1]; doublereal anrm; integer ierr, itau; extern /* Subroutine */ int igraphdrot_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer iwrk, nout; extern doublereal igraphdnrm2_(integer *, doublereal *, integer *); extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *); integer icond; extern logical igraphlsame_(char *, char *); extern doublereal igraphdlapy2_(doublereal *, doublereal *); extern /* Subroutine */ int igraphdlabad_(doublereal *, doublereal *), igraphdgebak_( char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *), igraphdgebal_(char *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *); logical scalea; extern doublereal igraphdlamch_(char *); doublereal cscale; extern doublereal igraphdlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int igraphdgehrd_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), igraphdlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); extern integer igraphidamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdlartg_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), igraphxerbla_(char *, integer *, ftnlen); logical select[1]; extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); doublereal bignum; extern /* Subroutine */ int igraphdorghr_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), igraphdhseqr_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *), igraphdtrevc_(char *, char *, logical *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *), igraphdtrsna_(char *, char *, logical *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, integer *); integer minwrk, maxwrk; logical wantvl, wntsnb; integer hswork; logical wntsne; doublereal smlnum; logical lquery, wantvr, wntsnn, wntsnv; /* -- LAPACK driver routine (version 3.3.1) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -- April 2011 -- Purpose ======= DGEEVX computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ILO, IHI, SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues (RCONDE), and reciprocal condition numbers for the right eigenvectors (RCONDV). The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**T * A = lambda(j) * u(j)**T where u(j)**T denotes the transpose of u(j). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real. Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and applying a diagonal similarity transformation D * A * D**(-1), where D is a diagonal matrix, to make its rows and columns closer in norm and the condition numbers of its eigenvalues and eigenvectors smaller. The computed reciprocal condition numbers correspond to the balanced matrix. Permuting rows and columns will not change the condition numbers (in exact arithmetic) but diagonal scaling will. For further explanation of balancing, see section 4.10.2 of the LAPACK Users' Guide. Arguments ========= BALANC (input) CHARACTER*1 Indicates how the input matrix should be diagonally scaled and/or permuted to improve the conditioning of its eigenvalues. = 'N': Do not diagonally scale or permute; = 'P': Perform permutations to make the matrix more nearly upper triangular. Do not diagonally scale; = 'S': Diagonally scale the matrix, i.e. replace A by D*A*D**(-1), where D is a diagonal matrix chosen to make the rows and columns of A more equal in norm. Do not permute; = 'B': Both diagonally scale and permute A. Computed reciprocal condition numbers will be for the matrix after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does. JOBVL (input) CHARACTER*1 = 'N': left eigenvectors of A are not computed; = 'V': left eigenvectors of A are computed. If SENSE = 'E' or 'B', JOBVL must = 'V'. JOBVR (input) CHARACTER*1 = 'N': right eigenvectors of A are not computed; = 'V': right eigenvectors of A are computed. If SENSE = 'E' or 'B', JOBVR must = 'V'. SENSE (input) CHARACTER*1 Determines which reciprocal condition numbers are computed. = 'N': None are computed; = 'E': Computed for eigenvalues only; = 'V': Computed for right eigenvectors only; = 'B': Computed for eigenvalues and right eigenvectors. If SENSE = 'E' or 'B', both left and right eigenvectors must also be computed (JOBVL = 'V' and JOBVR = 'V'). N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. If JOBVL = 'V' or JOBVR = 'V', A contains the real Schur form of the balanced version of the input matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). WR (output) DOUBLE PRECISION array, dimension (N) WI (output) DOUBLE PRECISION array, dimension (N) WR and WI contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first. VL (output) DOUBLE PRECISION array, dimension (LDVL,N) If JOBVL = 'V', the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = 'N', VL is not referenced. If the j-th eigenvalue is real, then u(j) = VL(:,j), the j-th column of VL. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and u(j+1) = VL(:,j) - i*VL(:,j+1). LDVL (input) INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = 'V', LDVL >= N. VR (output) DOUBLE PRECISION array, dimension (LDVR,N) If JOBVR = 'V', the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = 'N', VR is not referenced. If the j-th eigenvalue is real, then v(j) = VR(:,j), the j-th column of VR. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and v(j+1) = VR(:,j) - i*VR(:,j+1). LDVR (input) INTEGER The leading dimension of the array VR. LDVR >= 1, and if JOBVR = 'V', LDVR >= N. ILO (output) INTEGER IHI (output) INTEGER ILO and IHI are integer values determined when A was balanced. The balanced A(i,j) = 0 if I > J and J = 1,...,ILO-1 or I = IHI+1,...,N. SCALE (output) DOUBLE PRECISION array, dimension (N) Details of the permutations and scaling factors applied when balancing A. If P(j) is the index of the row and column interchanged with row and column j, and D(j) is the scaling factor applied to row and column j, then SCALE(J) = P(J), for J = 1,...,ILO-1 = D(J), for J = ILO,...,IHI = P(J) for J = IHI+1,...,N. The order in which the interchanges are made is N to IHI+1, then 1 to ILO-1. ABNRM (output) DOUBLE PRECISION The one-norm of the balanced matrix (the maximum of the sum of absolute values of elements of any column). RCONDE (output) DOUBLE PRECISION array, dimension (N) RCONDE(j) is the reciprocal condition number of the j-th eigenvalue. RCONDV (output) DOUBLE PRECISION array, dimension (N) RCONDV(j) is the reciprocal condition number of the j-th right eigenvector. WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If SENSE = 'N' or 'E', LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V', LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6). For good performance, LWORK must generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. IWORK (workspace) INTEGER array, dimension (2*N-2) If SENSE = 'N' or 'E', not referenced. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors or condition numbers have been computed; elements 1:ILO-1 and i+1:N of WR and WI contain eigenvalues which have converged. ===================================================================== Test the input arguments Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --wr; --wi; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --scale; --rconde; --rcondv; --work; --iwork; /* Function Body */ *info = 0; lquery = *lwork == -1; wantvl = igraphlsame_(jobvl, "V"); wantvr = igraphlsame_(jobvr, "V"); wntsnn = igraphlsame_(sense, "N"); wntsne = igraphlsame_(sense, "E"); wntsnv = igraphlsame_(sense, "V"); wntsnb = igraphlsame_(sense, "B"); if (! (igraphlsame_(balanc, "N") || igraphlsame_(balanc, "S") || igraphlsame_(balanc, "P") || igraphlsame_(balanc, "B"))) { *info = -1; } else if (! wantvl && ! igraphlsame_(jobvl, "N")) { *info = -2; } else if (! wantvr && ! igraphlsame_(jobvr, "N")) { *info = -3; } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) && ! (wantvl && wantvr)) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldvl < 1 || wantvl && *ldvl < *n) { *info = -11; } else if (*ldvr < 1 || wantvr && *ldvr < *n) { *info = -13; } /* Compute workspace (Note: Comments in the code beginning "Workspace:" describe the minimal amount of workspace needed at that point in the code, as well as the preferred amount for good performance. NB refers to the optimal block size for the immediately following subroutine, as returned by ILAENV. HSWORK refers to the workspace preferred by DHSEQR, as calculated below. HSWORK is computed assuming ILO=1 and IHI=N, the worst case.) */ if (*info == 0) { if (*n == 0) { minwrk = 1; maxwrk = 1; } else { maxwrk = *n + *n * igraphilaenv_(&c__1, "DGEHRD", " ", n, &c__1, n, & c__0, (ftnlen)6, (ftnlen)1); if (wantvl) { igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[ 1], &vl[vl_offset], ldvl, &work[1], &c_n1, info); } else if (wantvr) { igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[ 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info); } else { if (wntsnn) { igraphdhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, info); } else { igraphdhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, info); } } hswork = (integer) work[1]; if (! wantvl && ! wantvr) { minwrk = *n << 1; if (! wntsnn) { /* Computing MAX */ i__1 = minwrk, i__2 = *n * *n + *n * 6; minwrk = max(i__1,i__2); } maxwrk = max(maxwrk,hswork); if (! wntsnn) { /* Computing MAX */ i__1 = maxwrk, i__2 = *n * *n + *n * 6; maxwrk = max(i__1,i__2); } } else { minwrk = *n * 3; if (! wntsnn && ! wntsne) { /* Computing MAX */ i__1 = minwrk, i__2 = *n * *n + *n * 6; minwrk = max(i__1,i__2); } maxwrk = max(maxwrk,hswork); /* Computing MAX */ i__1 = maxwrk, i__2 = *n + (*n - 1) * igraphilaenv_(&c__1, "DORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1); maxwrk = max(i__1,i__2); if (! wntsnn && ! wntsne) { /* Computing MAX */ i__1 = maxwrk, i__2 = *n * *n + *n * 6; maxwrk = max(i__1,i__2); } /* Computing MAX */ i__1 = maxwrk, i__2 = *n * 3; maxwrk = max(i__1,i__2); } maxwrk = max(maxwrk,minwrk); } work[1] = (doublereal) maxwrk; if (*lwork < minwrk && ! lquery) { *info = -21; } } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DGEEVX", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = igraphdlamch_("P"); smlnum = igraphdlamch_("S"); bignum = 1. / smlnum; igraphdlabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1. / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ icond = 0; anrm = igraphdlange_("M", n, n, &a[a_offset], lda, dum); scalea = FALSE_; if (anrm > 0. && anrm < smlnum) { scalea = TRUE_; cscale = smlnum; } else if (anrm > bignum) { scalea = TRUE_; cscale = bignum; } if (scalea) { igraphdlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, & ierr); } /* Balance the matrix and compute ABNRM */ igraphdgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr); *abnrm = igraphdlange_("1", n, n, &a[a_offset], lda, dum); if (scalea) { dum[0] = *abnrm; igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, & ierr); *abnrm = dum[0]; } /* Reduce to upper Hessenberg form (Workspace: need 2*N, prefer N+N*NB) */ itau = 1; iwrk = itau + *n; i__1 = *lwork - iwrk + 1; igraphdgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, & ierr); if (wantvl) { /* Want left eigenvectors Copy Householder vectors to VL */ *(unsigned char *)side = 'L'; igraphdlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl) ; /* Generate orthogonal matrix in VL (Workspace: need 2*N-1, prefer N+(N-1)*NB) */ i__1 = *lwork - iwrk + 1; igraphdorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], & i__1, &ierr); /* Perform QR iteration, accumulating Schur vectors in VL (Workspace: need 1, prefer HSWORK (see comments) ) */ iwrk = itau; i__1 = *lwork - iwrk + 1; igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[ vl_offset], ldvl, &work[iwrk], &i__1, info); if (wantvr) { /* Want left and right eigenvectors Copy Schur vectors to VR */ *(unsigned char *)side = 'B'; igraphdlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr); } } else if (wantvr) { /* Want right eigenvectors Copy Householder vectors to VR */ *(unsigned char *)side = 'R'; igraphdlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr) ; /* Generate orthogonal matrix in VR (Workspace: need 2*N-1, prefer N+(N-1)*NB) */ i__1 = *lwork - iwrk + 1; igraphdorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], & i__1, &ierr); /* Perform QR iteration, accumulating Schur vectors in VR (Workspace: need 1, prefer HSWORK (see comments) ) */ iwrk = itau; i__1 = *lwork - iwrk + 1; igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[ vr_offset], ldvr, &work[iwrk], &i__1, info); } else { /* Compute eigenvalues only If condition numbers desired, compute Schur form */ if (wntsnn) { *(unsigned char *)job = 'E'; } else { *(unsigned char *)job = 'S'; } /* (Workspace: need 1, prefer HSWORK (see comments) ) */ iwrk = itau; i__1 = *lwork - iwrk + 1; igraphdhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[ vr_offset], ldvr, &work[iwrk], &i__1, info); } /* If INFO > 0 from DHSEQR, then quit */ if (*info > 0) { goto L50; } if (wantvl || wantvr) { /* Compute left and/or right eigenvectors (Workspace: need 3*N) */ igraphdtrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr); } /* Compute condition numbers if desired (Workspace: need N*N+6*N unless SENSE = 'E') */ if (! wntsnn) { igraphdtrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, &work[iwrk], n, &iwork[1], &icond); } if (wantvl) { /* Undo balancing of left eigenvectors */ igraphdgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, &ierr); /* Normalize left eigenvectors and make largest component real */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (wi[i__] == 0.) { scl = 1. / igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1); igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1); } else if (wi[i__] > 0.) { d__1 = igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1); d__2 = igraphdnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1); scl = 1. / igraphdlapy2_(&d__1, &d__2); igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1); igraphdscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1); i__2 = *n; for (k = 1; k <= i__2; ++k) { /* Computing 2nd power */ d__1 = vl[k + i__ * vl_dim1]; /* Computing 2nd power */ d__2 = vl[k + (i__ + 1) * vl_dim1]; work[k] = d__1 * d__1 + d__2 * d__2; /* L10: */ } k = igraphidamax_(n, &work[1], &c__1); igraphdlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1], &cs, &sn, &r__); igraphdrot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) * vl_dim1 + 1], &c__1, &cs, &sn); vl[k + (i__ + 1) * vl_dim1] = 0.; } /* L20: */ } } if (wantvr) { /* Undo balancing of right eigenvectors */ igraphdgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, &ierr); /* Normalize right eigenvectors and make largest component real */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (wi[i__] == 0.) { scl = 1. / igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1); igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1); } else if (wi[i__] > 0.) { d__1 = igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1); d__2 = igraphdnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1); scl = 1. / igraphdlapy2_(&d__1, &d__2); igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1); igraphdscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1); i__2 = *n; for (k = 1; k <= i__2; ++k) { /* Computing 2nd power */ d__1 = vr[k + i__ * vr_dim1]; /* Computing 2nd power */ d__2 = vr[k + (i__ + 1) * vr_dim1]; work[k] = d__1 * d__1 + d__2 * d__2; /* L30: */ } k = igraphidamax_(n, &work[1], &c__1); igraphdlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1], &cs, &sn, &r__); igraphdrot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) * vr_dim1 + 1], &c__1, &cs, &sn); vr[k + (i__ + 1) * vr_dim1] = 0.; } /* L40: */ } } /* Undo scaling if necessary */ L50: if (scalea) { i__1 = *n - *info; /* Computing MAX */ i__3 = *n - *info; i__2 = max(i__3,1); igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info + 1], &i__2, &ierr); i__1 = *n - *info; /* Computing MAX */ i__3 = *n - *info; i__2 = max(i__3,1); igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info + 1], &i__2, &ierr); if (*info == 0) { if ((wntsnv || wntsnb) && icond == 0) { igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[ 1], n, &ierr); } } else { i__1 = *ilo - 1; igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1], n, &ierr); i__1 = *ilo - 1; igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1], n, &ierr); } } work[1] = (doublereal) maxwrk; return 0; /* End of DGEEVX */ } /* igraphdgeevx_ */
/* Subroutine */ int igraphdlaqr2_(logical *wantt, logical *wantz, integer *n, integer *ktop, integer *kbot, integer *nw, doublereal *h__, integer * ldh, integer *iloz, integer *ihiz, doublereal *z__, integer *ldz, integer *ns, integer *nd, doublereal *sr, doublereal *si, doublereal * v, integer *ldv, integer *nh, doublereal *t, integer *ldt, integer * nv, doublereal *wv, integer *ldwv, doublereal *work, integer *lwork) { /* System generated locals */ integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4; doublereal d__1, d__2, d__3, d__4, d__5, d__6; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, k; doublereal s, aa, bb, cc, dd, cs, sn; integer jw; doublereal evi, evk, foo; integer kln; doublereal tau, ulp; integer lwk1, lwk2; doublereal beta; integer kend, kcol, info, ifst, ilst, ltop, krow; extern /* Subroutine */ int igraphdlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *), igraphdgemm_(char *, char *, integer *, integer * , integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); logical bulge; extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, doublereal *, integer *); integer infqr, kwtop; extern /* Subroutine */ int igraphdlanv2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), igraphdlabad_( doublereal *, doublereal *); extern doublereal igraphdlamch_(char *); extern /* Subroutine */ int igraphdgehrd_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), igraphdlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *), igraphdlahqr_(logical *, logical *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); doublereal safmin; extern /* Subroutine */ int igraphdlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); doublereal safmax; extern /* Subroutine */ int igraphdtrexc_(char *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *), igraphdormhr_(char *, char *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); logical sorted; doublereal smlnum; integer lwkopt; /* -- LAPACK auxiliary routine (version 3.2.2) -- Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. -- June 2010 -- This subroutine is identical to DLAQR3 except that it avoids recursion by calling DLAHQR instead of DLAQR4. ****************************************************************** Aggressive early deflation: This subroutine accepts as input an upper Hessenberg matrix H and performs an orthogonal similarity transformation designed to detect and deflate fully converged eigenvalues from a trailing principal submatrix. On output H has been over- written by a new Hessenberg matrix that is a perturbation of an orthogonal similarity transformation of H. It is to be hoped that the final version of H has many zero subdiagonal entries. ****************************************************************** WANTT (input) LOGICAL If .TRUE., then the Hessenberg matrix H is fully updated so that the quasi-triangular Schur factor may be computed (in cooperation with the calling subroutine). If .FALSE., then only enough of H is updated to preserve the eigenvalues. WANTZ (input) LOGICAL If .TRUE., then the orthogonal matrix Z is updated so so that the orthogonal Schur factor may be computed (in cooperation with the calling subroutine). If .FALSE., then Z is not referenced. N (input) INTEGER The order of the matrix H and (if WANTZ is .TRUE.) the order of the orthogonal matrix Z. KTOP (input) INTEGER It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. KBOT and KTOP together determine an isolated block along the diagonal of the Hessenberg matrix. KBOT (input) INTEGER It is assumed without a check that either KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together determine an isolated block along the diagonal of the Hessenberg matrix. NW (input) INTEGER Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1). H (input/output) DOUBLE PRECISION array, dimension (LDH,N) On input the initial N-by-N section of H stores the Hessenberg matrix undergoing aggressive early deflation. On output H has been transformed by an orthogonal similarity transformation, perturbed, and the returned to Hessenberg form that (it is to be hoped) has some zero subdiagonal entries. LDH (input) integer Leading dimension of H just as declared in the calling subroutine. N .LE. LDH ILOZ (input) INTEGER IHIZ (input) INTEGER Specify the rows of Z to which transformations must be applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) IF WANTZ is .TRUE., then on output, the orthogonal similarity transformation mentioned above has been accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right. If WANTZ is .FALSE., then Z is unreferenced. LDZ (input) integer The leading dimension of Z just as declared in the calling subroutine. 1 .LE. LDZ. NS (output) integer The number of unconverged (ie approximate) eigenvalues returned in SR and SI that may be used as shifts by the calling subroutine. ND (output) integer The number of converged eigenvalues uncovered by this subroutine. SR (output) DOUBLE PRECISION array, dimension (KBOT) SI (output) DOUBLE PRECISION array, dimension (KBOT) On output, the real and imaginary parts of approximate eigenvalues that may be used for shifts are stored in SR(KBOT-ND-NS+1) through SR(KBOT-ND) and SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. The real and imaginary parts of converged eigenvalues are stored in SR(KBOT-ND+1) through SR(KBOT) and SI(KBOT-ND+1) through SI(KBOT), respectively. V (workspace) DOUBLE PRECISION array, dimension (LDV,NW) An NW-by-NW work array. LDV (input) integer scalar The leading dimension of V just as declared in the calling subroutine. NW .LE. LDV NH (input) integer scalar The number of columns of T. NH.GE.NW. T (workspace) DOUBLE PRECISION array, dimension (LDT,NW) LDT (input) integer The leading dimension of T just as declared in the calling subroutine. NW .LE. LDT NV (input) integer The number of rows of work array WV available for workspace. NV.GE.NW. WV (workspace) DOUBLE PRECISION array, dimension (LDWV,NW) LDWV (input) integer The leading dimension of W just as declared in the calling subroutine. NW .LE. LDV WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) On exit, WORK(1) is set to an estimate of the optimal value of LWORK for the given values of N, NW, KTOP and KBOT. LWORK (input) integer The dimension of the work array WORK. LWORK = 2*NW suffices, but greater efficiency may result from larger values of LWORK. If LWORK = -1, then a workspace query is assumed; DLAQR2 only estimates the optimal workspace size for the given values of N, NW, KTOP and KBOT. The estimate is returned in WORK(1). No error message related to LWORK is issued by XERBLA. Neither H nor Z are accessed. ================================================================ Based on contributions by Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA ================================================================ ==== Estimate optimal workspace. ==== Parameter adjustments */ h_dim1 = *ldh; h_offset = 1 + h_dim1; h__ -= h_offset; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --sr; --si; v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; wv_dim1 = *ldwv; wv_offset = 1 + wv_dim1; wv -= wv_offset; --work; /* Function Body Computing MIN */ i__1 = *nw, i__2 = *kbot - *ktop + 1; jw = min(i__1,i__2); if (jw <= 2) { lwkopt = 1; } else { /* ==== Workspace query call to DGEHRD ==== */ i__1 = jw - 1; igraphdgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], & c_n1, &info); lwk1 = (integer) work[1]; /* ==== Workspace query call to DORMHR ==== */ i__1 = jw - 1; igraphdormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &v[v_offset], ldv, &work[1], &c_n1, &info); lwk2 = (integer) work[1]; /* ==== Optimal workspace ==== */ lwkopt = jw + max(lwk1,lwk2); } /* ==== Quick return in case of workspace query. ==== */ if (*lwork == -1) { work[1] = (doublereal) lwkopt; return 0; } /* ==== Nothing to do ... ... for an empty active block ... ==== */ *ns = 0; *nd = 0; work[1] = 1.; if (*ktop > *kbot) { return 0; } /* ... nor for an empty deflation window. ==== */ if (*nw < 1) { return 0; } /* ==== Machine constants ==== */ safmin = igraphdlamch_("SAFE MINIMUM"); safmax = 1. / safmin; igraphdlabad_(&safmin, &safmax); ulp = igraphdlamch_("PRECISION"); smlnum = safmin * ((doublereal) (*n) / ulp); /* ==== Setup deflation window ==== Computing MIN */ i__1 = *nw, i__2 = *kbot - *ktop + 1; jw = min(i__1,i__2); kwtop = *kbot - jw + 1; if (kwtop == *ktop) { s = 0.; } else { s = h__[kwtop + (kwtop - 1) * h_dim1]; } if (*kbot == kwtop) { /* ==== 1-by-1 deflation window: not much to do ==== */ sr[kwtop] = h__[kwtop + kwtop * h_dim1]; si[kwtop] = 0.; *ns = 1; *nd = 0; /* Computing MAX */ d__2 = smlnum, d__3 = ulp * (d__1 = h__[kwtop + kwtop * h_dim1], abs( d__1)); if (abs(s) <= max(d__2,d__3)) { *ns = 0; *nd = 1; if (kwtop > *ktop) { h__[kwtop + (kwtop - 1) * h_dim1] = 0.; } } work[1] = 1.; return 0; } /* ==== Convert to spike-triangular form. (In case of a . rare QR failure, this routine continues to do . aggressive early deflation using that part of . the deflation window that converged using INFQR . here and there to keep track.) ==== */ igraphdlacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset], ldt); i__1 = jw - 1; i__2 = *ldh + 1; i__3 = *ldt + 1; igraphdcopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], & i__3); igraphdlaset_("A", &jw, &jw, &c_b12, &c_b13, &v[v_offset], ldv); igraphdlahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr); /* ==== DTREXC needs a clean margin near the diagonal ==== */ i__1 = jw - 3; for (j = 1; j <= i__1; ++j) { t[j + 2 + j * t_dim1] = 0.; t[j + 3 + j * t_dim1] = 0.; /* L10: */ } if (jw > 2) { t[jw + (jw - 2) * t_dim1] = 0.; } /* ==== Deflation detection loop ==== */ *ns = jw; ilst = infqr + 1; L20: if (ilst <= *ns) { if (*ns == 1) { bulge = FALSE_; } else { bulge = t[*ns + (*ns - 1) * t_dim1] != 0.; } /* ==== Small spike tip test for deflation ==== */ if (! bulge) { /* ==== Real eigenvalue ==== */ foo = (d__1 = t[*ns + *ns * t_dim1], abs(d__1)); if (foo == 0.) { foo = abs(s); } /* Computing MAX */ d__2 = smlnum, d__3 = ulp * foo; if ((d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)) <= max(d__2,d__3)) { /* ==== Deflatable ==== */ --(*ns); } else { /* ==== Undeflatable. Move it up out of the way. . (DTREXC can not fail in this case.) ==== */ ifst = *ns; igraphdtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &ilst, &work[1], &info); ++ilst; } } else { /* ==== Complex conjugate pair ==== */ foo = (d__3 = t[*ns + *ns * t_dim1], abs(d__3)) + sqrt((d__1 = t[* ns + (*ns - 1) * t_dim1], abs(d__1))) * sqrt((d__2 = t[* ns - 1 + *ns * t_dim1], abs(d__2))); if (foo == 0.) { foo = abs(s); } /* Computing MAX */ d__3 = (d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)), d__4 = (d__2 = s * v[(*ns - 1) * v_dim1 + 1], abs(d__2)); /* Computing MAX */ d__5 = smlnum, d__6 = ulp * foo; if (max(d__3,d__4) <= max(d__5,d__6)) { /* ==== Deflatable ==== */ *ns += -2; } else { /* ==== Undeflatable. Move them up out of the way. . Fortunately, DTREXC does the right thing with . ILST in case of a rare exchange failure. ==== */ ifst = *ns; igraphdtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &ilst, &work[1], &info); ilst += 2; } } /* ==== End deflation detection loop ==== */ goto L20; } /* ==== Return to Hessenberg form ==== */ if (*ns == 0) { s = 0.; } if (*ns < jw) { /* ==== sorting diagonal blocks of T improves accuracy for . graded matrices. Bubble sort deals well with . exchange failures. ==== */ sorted = FALSE_; i__ = *ns + 1; L30: if (sorted) { goto L50; } sorted = TRUE_; kend = i__ - 1; i__ = infqr + 1; if (i__ == *ns) { k = i__ + 1; } else if (t[i__ + 1 + i__ * t_dim1] == 0.) { k = i__ + 1; } else { k = i__ + 2; } L40: if (k <= kend) { if (k == i__ + 1) { evi = (d__1 = t[i__ + i__ * t_dim1], abs(d__1)); } else { evi = (d__3 = t[i__ + i__ * t_dim1], abs(d__3)) + sqrt((d__1 = t[i__ + 1 + i__ * t_dim1], abs(d__1))) * sqrt((d__2 = t[i__ + (i__ + 1) * t_dim1], abs(d__2))); } if (k == kend) { evk = (d__1 = t[k + k * t_dim1], abs(d__1)); } else if (t[k + 1 + k * t_dim1] == 0.) { evk = (d__1 = t[k + k * t_dim1], abs(d__1)); } else { evk = (d__3 = t[k + k * t_dim1], abs(d__3)) + sqrt((d__1 = t[ k + 1 + k * t_dim1], abs(d__1))) * sqrt((d__2 = t[k + (k + 1) * t_dim1], abs(d__2))); } if (evi >= evk) { i__ = k; } else { sorted = FALSE_; ifst = i__; ilst = k; igraphdtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &ilst, &work[1], &info); if (info == 0) { i__ = ilst; } else { i__ = k; } } if (i__ == kend) { k = i__ + 1; } else if (t[i__ + 1 + i__ * t_dim1] == 0.) { k = i__ + 1; } else { k = i__ + 2; } goto L40; } goto L30; L50: ; } /* ==== Restore shift/eigenvalue array from T ==== */ i__ = jw; L60: if (i__ >= infqr + 1) { if (i__ == infqr + 1) { sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1]; si[kwtop + i__ - 1] = 0.; --i__; } else if (t[i__ + (i__ - 1) * t_dim1] == 0.) { sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1]; si[kwtop + i__ - 1] = 0.; --i__; } else { aa = t[i__ - 1 + (i__ - 1) * t_dim1]; cc = t[i__ + (i__ - 1) * t_dim1]; bb = t[i__ - 1 + i__ * t_dim1]; dd = t[i__ + i__ * t_dim1]; igraphdlanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__ - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, & sn); i__ += -2; } goto L60; } if (*ns < jw || s == 0.) { if (*ns > 1 && s != 0.) { /* ==== Reflect spike back into lower triangle ==== */ igraphdcopy_(ns, &v[v_offset], ldv, &work[1], &c__1); beta = work[1]; igraphdlarfg_(ns, &beta, &work[2], &c__1, &tau); work[1] = 1.; i__1 = jw - 2; i__2 = jw - 2; igraphdlaset_("L", &i__1, &i__2, &c_b12, &c_b12, &t[t_dim1 + 3], ldt); igraphdlarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, & work[jw + 1]); igraphdlarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, & work[jw + 1]); igraphdlarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, & work[jw + 1]); i__1 = *lwork - jw; igraphdgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1] , &i__1, &info); } /* ==== Copy updated reduced window into place ==== */ if (kwtop > 1) { h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1]; } igraphdlacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1] , ldh); i__1 = jw - 1; i__2 = *ldt + 1; i__3 = *ldh + 1; igraphdcopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1], &i__3); /* ==== Accumulate orthogonal matrix in order update . H and Z, if requested. ==== */ if (*ns > 1 && s != 0.) { i__1 = *lwork - jw; igraphdormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1], &v[v_offset], ldv, &work[jw + 1], &i__1, &info); } /* ==== Update vertical slab in H ==== */ if (*wantt) { ltop = 1; } else { ltop = *ktop; } i__1 = kwtop - 1; i__2 = *nv; for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow += i__2) { /* Computing MIN */ i__3 = *nv, i__4 = kwtop - krow; kln = min(i__3,i__4); igraphdgemm_("N", "N", &kln, &jw, &jw, &c_b13, &h__[krow + kwtop * h_dim1], ldh, &v[v_offset], ldv, &c_b12, &wv[wv_offset], ldwv); igraphdlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop * h_dim1], ldh); /* L70: */ } /* ==== Update horizontal slab in H ==== */ if (*wantt) { i__2 = *n; i__1 = *nh; for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2; kcol += i__1) { /* Computing MIN */ i__3 = *nh, i__4 = *n - kcol + 1; kln = min(i__3,i__4); igraphdgemm_("C", "N", &jw, &kln, &jw, &c_b13, &v[v_offset], ldv, & h__[kwtop + kcol * h_dim1], ldh, &c_b12, &t[t_offset], ldt); igraphdlacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol * h_dim1], ldh); /* L80: */ } } /* ==== Update vertical slab in Z ==== */ if (*wantz) { i__1 = *ihiz; i__2 = *nv; for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow += i__2) { /* Computing MIN */ i__3 = *nv, i__4 = *ihiz - krow + 1; kln = min(i__3,i__4); igraphdgemm_("N", "N", &kln, &jw, &jw, &c_b13, &z__[krow + kwtop * z_dim1], ldz, &v[v_offset], ldv, &c_b12, &wv[ wv_offset], ldwv); igraphdlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow + kwtop * z_dim1], ldz); /* L90: */ } } } /* ==== Return the number of deflations ... ==== */ *nd = jw - *ns; /* ==== ... and the number of shifts. (Subtracting . INFQR from the spike length takes care . of the case of a rare QR failure while . calculating eigenvalues of the deflation . window.) ==== */ *ns -= infqr; /* ==== Return optimal workspace. ==== */ work[1] = (doublereal) lwkopt; /* ==== End of DLAQR2 ==== */ return 0; } /* igraphdlaqr2_ */
Subroutine */ int igraphdlaqr0_(logical *wantt, logical *wantz, integer *n, integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal *wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__, integer *ldz, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2, d__3, d__4; /* Local variables */ integer i__, k; doublereal aa, bb, cc, dd; integer ld; doublereal cs; integer nh, it, ks, kt; doublereal sn; integer ku, kv, ls, ns; doublereal ss; integer nw, inf, kdu, nho, nve, kwh, nsr, nwr, kwv, ndec, ndfl, kbot, nmin; doublereal swap; integer ktop; doublereal zdum[1] /* was [1][1] */; integer kacc22, itmax, nsmax, nwmax, kwtop; extern /* Subroutine */ int igraphdlanv2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), igraphdlaqr3_( logical *, logical *, integer *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdlaqr4_(logical *, logical *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *), igraphdlaqr5_(logical *, logical *, integer *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *); integer nibble; extern /* Subroutine */ int igraphdlahqr_(logical *, logical *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); char jbcmpz[2]; integer nwupbd; logical sorted; integer lwkopt; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ================================================================ ==== Matrices of order NTINY or smaller must be processed by . DLAHQR because of insufficient subdiagonal scratch space. . (This is a hard limit.) ==== ==== Exceptional deflation windows: try to cure rare . slow convergence by varying the size of the . deflation window after KEXNW iterations. ==== ==== Exceptional shifts: try to cure rare slow convergence . with ad-hoc exceptional shifts every KEXSH iterations. . ==== ==== The constants WILK1 and WILK2 are used to form the . exceptional shifts. ==== Parameter adjustments */ h_dim1 = *ldh; h_offset = 1 + h_dim1; h__ -= h_offset; --wr; --wi; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; /* Function Body */ *info = 0; /* ==== Quick return for N = 0: nothing to do. ==== */ if (*n == 0) { work[1] = 1.; return 0; } if (*n <= 11) { /* ==== Tiny matrices must use DLAHQR. ==== */ lwkopt = 1; if (*lwork != -1) { igraphdlahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], & wi[1], iloz, ihiz, &z__[z_offset], ldz, info); } } else { /* ==== Use small bulge multi-shift QR with aggressive early . deflation on larger-than-tiny matrices. ==== ==== Hope for the best. ==== */ *info = 0; /* ==== Set up job flags for ILAENV. ==== */ if (*wantt) { *(unsigned char *)jbcmpz = 'S'; } else { *(unsigned char *)jbcmpz = 'E'; } if (*wantz) { *(unsigned char *)&jbcmpz[1] = 'V'; } else { *(unsigned char *)&jbcmpz[1] = 'N'; } /* ==== NWR = recommended deflation window size. At this . point, N .GT. NTINY = 11, so there is enough . subdiagonal workspace for NWR.GE.2 as required. . (In fact, there is enough subdiagonal space for . NWR.GE.3.) ==== */ nwr = igraphilaenv_(&c__13, "DLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6, (ftnlen)2); nwr = max(2,nwr); /* Computing MIN */ i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = min(i__1,i__2); nwr = min(i__1,nwr); /* ==== NSR = recommended number of simultaneous shifts. . At this point N .GT. NTINY = 11, so there is at . enough subdiagonal workspace for NSR to be even . and greater than or equal to two as required. ==== */ nsr = igraphilaenv_(&c__15, "DLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6, (ftnlen)2); /* Computing MIN */ i__1 = nsr, i__2 = (*n + 6) / 9, i__1 = min(i__1,i__2), i__2 = *ihi - *ilo; nsr = min(i__1,i__2); /* Computing MAX */ i__1 = 2, i__2 = nsr - nsr % 2; nsr = max(i__1,i__2); /* ==== Estimate optimal workspace ==== ==== Workspace query call to DLAQR3 ==== */ i__1 = nwr + 1; igraphdlaqr3_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[ h_offset], ldh, n, &h__[h_offset], ldh, n, &h__[h_offset], ldh, &work[1], &c_n1); /* ==== Optimal workspace = MAX(DLAQR5, DLAQR3) ==== Computing MAX */ i__1 = nsr * 3 / 2, i__2 = (integer) work[1]; lwkopt = max(i__1,i__2); /* ==== Quick return in case of workspace query. ==== */ if (*lwork == -1) { work[1] = (doublereal) lwkopt; return 0; } /* ==== DLAHQR/DLAQR0 crossover point ==== */ nmin = igraphilaenv_(&c__12, "DLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen) 6, (ftnlen)2); nmin = max(11,nmin); /* ==== Nibble crossover point ==== */ nibble = igraphilaenv_(&c__14, "DLAQR0", jbcmpz, n, ilo, ihi, lwork, ( ftnlen)6, (ftnlen)2); nibble = max(0,nibble); /* ==== Accumulate reflections during ttswp? Use block . 2-by-2 structure during matrix-matrix multiply? ==== */ kacc22 = igraphilaenv_(&c__16, "DLAQR0", jbcmpz, n, ilo, ihi, lwork, ( ftnlen)6, (ftnlen)2); kacc22 = max(0,kacc22); kacc22 = min(2,kacc22); /* ==== NWMAX = the largest possible deflation window for . which there is sufficient workspace. ==== Computing MIN */ i__1 = (*n - 1) / 3, i__2 = *lwork / 2; nwmax = min(i__1,i__2); nw = nwmax; /* ==== NSMAX = the Largest number of simultaneous shifts . for which there is sufficient workspace. ==== Computing MIN */ i__1 = (*n + 6) / 9, i__2 = (*lwork << 1) / 3; nsmax = min(i__1,i__2); nsmax -= nsmax % 2; /* ==== NDFL: an iteration count restarted at deflation. ==== */ ndfl = 1; /* ==== ITMAX = iteration limit ==== Computing MAX */ i__1 = 10, i__2 = *ihi - *ilo + 1; itmax = max(i__1,i__2) * 30; /* ==== Last row and column in the active block ==== */ kbot = *ihi; /* ==== Main Loop ==== */ i__1 = itmax; for (it = 1; it <= i__1; ++it) { /* ==== Done when KBOT falls below ILO ==== */ if (kbot < *ilo) { goto L90; } /* ==== Locate active block ==== */ i__2 = *ilo + 1; for (k = kbot; k >= i__2; --k) { if (h__[k + (k - 1) * h_dim1] == 0.) { goto L20; } /* L10: */ } k = *ilo; L20: ktop = k; /* ==== Select deflation window size: . Typical Case: . If possible and advisable, nibble the entire . active block. If not, use size MIN(NWR,NWMAX) . or MIN(NWR+1,NWMAX) depending upon which has . the smaller corresponding subdiagonal entry . (a heuristic). . . Exceptional Case: . If there have been no deflations in KEXNW or . more iterations, then vary the deflation window . size. At first, because, larger windows are, . in general, more powerful than smaller ones, . rapidly increase the window to the maximum possible. . Then, gradually reduce the window size. ==== */ nh = kbot - ktop + 1; nwupbd = min(nh,nwmax); if (ndfl < 5) { nw = min(nwupbd,nwr); } else { /* Computing MIN */ i__2 = nwupbd, i__3 = nw << 1; nw = min(i__2,i__3); } if (nw < nwmax) { if (nw >= nh - 1) { nw = nh; } else { kwtop = kbot - nw + 1; if ((d__1 = h__[kwtop + (kwtop - 1) * h_dim1], abs(d__1)) > (d__2 = h__[kwtop - 1 + (kwtop - 2) * h_dim1], abs(d__2))) { ++nw; } } } if (ndfl < 5) { ndec = -1; } else if (ndec >= 0 || nw >= nwupbd) { ++ndec; if (nw - ndec < 2) { ndec = 0; } nw -= ndec; } /* ==== Aggressive early deflation: . split workspace under the subdiagonal into . - an nw-by-nw work array V in the lower . left-hand-corner, . - an NW-by-at-least-NW-but-more-is-better . (NW-by-NHO) horizontal work array along . the bottom edge, . - an at-least-NW-but-more-is-better (NHV-by-NW) . vertical work array along the left-hand-edge. . ==== */ kv = *n - nw + 1; kt = nw + 1; nho = *n - nw - 1 - kt + 1; kwv = nw + 2; nve = *n - nw - kwv + 1; /* ==== Aggressive early deflation ==== */ igraphdlaqr3_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[kv + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1], ldh, &nve, &h__[kwv + h_dim1], ldh, &work[1], lwork); /* ==== Adjust KBOT accounting for new deflations. ==== */ kbot -= ld; /* ==== KS points to the shifts. ==== */ ks = kbot - ls + 1; /* ==== Skip an expensive QR sweep if there is a (partly . heuristic) reason to expect that many eigenvalues . will deflate without it. Here, the QR sweep is . skipped if many eigenvalues have just been deflated . or if the remaining active block is small. */ if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > min( nmin,nwmax)) { /* ==== NS = nominal number of simultaneous shifts. . This may be lowered (slightly) if DLAQR3 . did not provide that many shifts. ==== Computing MIN Computing MAX */ i__4 = 2, i__5 = kbot - ktop; i__2 = min(nsmax,nsr), i__3 = max(i__4,i__5); ns = min(i__2,i__3); ns -= ns % 2; /* ==== If there have been no deflations . in a multiple of KEXSH iterations, . then try exceptional shifts. . Otherwise use shifts provided by . DLAQR3 above or from the eigenvalues . of a trailing principal submatrix. ==== */ if (ndfl % 6 == 0) { ks = kbot - ns + 1; /* Computing MAX */ i__3 = ks + 1, i__4 = ktop + 2; i__2 = max(i__3,i__4); for (i__ = kbot; i__ >= i__2; i__ += -2) { ss = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1)) + (d__2 = h__[i__ - 1 + (i__ - 2) * h_dim1], abs(d__2)); aa = ss * .75 + h__[i__ + i__ * h_dim1]; bb = ss; cc = ss * -.4375; dd = aa; igraphdlanv2_(&aa, &bb, &cc, &dd, &wr[i__ - 1], &wi[i__ - 1] , &wr[i__], &wi[i__], &cs, &sn); /* L30: */ } if (ks == ktop) { wr[ks + 1] = h__[ks + 1 + (ks + 1) * h_dim1]; wi[ks + 1] = 0.; wr[ks] = wr[ks + 1]; wi[ks] = wi[ks + 1]; } } else { /* ==== Got NS/2 or fewer shifts? Use DLAQR4 or . DLAHQR on a trailing principal submatrix to . get more. (Since NS.LE.NSMAX.LE.(N+6)/9, . there is enough space below the subdiagonal . to fit an NS-by-NS scratch array.) ==== */ if (kbot - ks + 1 <= ns / 2) { ks = kbot - ns + 1; kt = *n - ns + 1; igraphdlacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, & h__[kt + h_dim1], ldh); if (ns > nmin) { igraphdlaqr4_(&c_false, &c_false, &ns, &c__1, &ns, &h__[ kt + h_dim1], ldh, &wr[ks], &wi[ks], & c__1, &c__1, zdum, &c__1, &work[1], lwork, &inf); } else { igraphdlahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[ kt + h_dim1], ldh, &wr[ks], &wi[ks], & c__1, &c__1, zdum, &c__1, &inf); } ks += inf; /* ==== In case of a rare QR failure use . eigenvalues of the trailing 2-by-2 . principal submatrix. ==== */ if (ks >= kbot) { aa = h__[kbot - 1 + (kbot - 1) * h_dim1]; cc = h__[kbot + (kbot - 1) * h_dim1]; bb = h__[kbot - 1 + kbot * h_dim1]; dd = h__[kbot + kbot * h_dim1]; igraphdlanv2_(&aa, &bb, &cc, &dd, &wr[kbot - 1], &wi[ kbot - 1], &wr[kbot], &wi[kbot], &cs, &sn) ; ks = kbot - 1; } } if (kbot - ks + 1 > ns) { /* ==== Sort the shifts (Helps a little) . Bubble sort keeps complex conjugate . pairs together. ==== */ sorted = FALSE_; i__2 = ks + 1; for (k = kbot; k >= i__2; --k) { if (sorted) { goto L60; } sorted = TRUE_; i__3 = k - 1; for (i__ = ks; i__ <= i__3; ++i__) { if ((d__1 = wr[i__], abs(d__1)) + (d__2 = wi[ i__], abs(d__2)) < (d__3 = wr[i__ + 1] , abs(d__3)) + (d__4 = wi[i__ + 1], abs(d__4))) { sorted = FALSE_; swap = wr[i__]; wr[i__] = wr[i__ + 1]; wr[i__ + 1] = swap; swap = wi[i__]; wi[i__] = wi[i__ + 1]; wi[i__ + 1] = swap; } /* L40: */ } /* L50: */ } L60: ; } /* ==== Shuffle shifts into pairs of real shifts . and pairs of complex conjugate shifts . assuming complex conjugate shifts are . already adjacent to one another. (Yes, . they are.) ==== */ i__2 = ks + 2; for (i__ = kbot; i__ >= i__2; i__ += -2) { if (wi[i__] != -wi[i__ - 1]) { swap = wr[i__]; wr[i__] = wr[i__ - 1]; wr[i__ - 1] = wr[i__ - 2]; wr[i__ - 2] = swap; swap = wi[i__]; wi[i__] = wi[i__ - 1]; wi[i__ - 1] = wi[i__ - 2]; wi[i__ - 2] = swap; } /* L70: */ } } /* ==== If there are only two shifts and both are . real, then use only one. ==== */ if (kbot - ks + 1 == 2) { if (wi[kbot] == 0.) { if ((d__1 = wr[kbot] - h__[kbot + kbot * h_dim1], abs( d__1)) < (d__2 = wr[kbot - 1] - h__[kbot + kbot * h_dim1], abs(d__2))) { wr[kbot - 1] = wr[kbot]; } else { wr[kbot] = wr[kbot - 1]; } } } /* ==== Use up to NS of the the smallest magnatiude . shifts. If there aren't NS shifts available, . then use them all, possibly dropping one to . make the number of shifts even. ==== Computing MIN */ i__2 = ns, i__3 = kbot - ks + 1; ns = min(i__2,i__3); ns -= ns % 2; ks = kbot - ns + 1; /* ==== Small-bulge multi-shift QR sweep: . split workspace under the subdiagonal into . - a KDU-by-KDU work array U in the lower . left-hand-corner, . - a KDU-by-at-least-KDU-but-more-is-better . (KDU-by-NHo) horizontal work array WH along . the bottom edge, . - and an at-least-KDU-but-more-is-better-by-KDU . (NVE-by-KDU) vertical work WV arrow along . the left-hand-edge. ==== */ kdu = ns * 3 - 3; ku = *n - kdu + 1; kwh = kdu + 1; nho = *n - kdu - 3 - (kdu + 1) + 1; kwv = kdu + 4; nve = *n - kdu - kwv + 1; /* ==== Small-bulge multi-shift QR sweep ==== */ igraphdlaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &wr[ks], &wi[ks], &h__[h_offset], ldh, iloz, ihiz, &z__[ z_offset], ldz, &work[1], &c__3, &h__[ku + h_dim1], ldh, &nve, &h__[kwv + h_dim1], ldh, &nho, &h__[ku + kwh * h_dim1], ldh); } /* ==== Note progress (or the lack of it). ==== */ if (ld > 0) { ndfl = 1; } else { ++ndfl; } /* ==== End of main loop ==== L80: */ } /* ==== Iteration limit exceeded. Set INFO to show where . the problem occurred and exit. ==== */ *info = kbot; L90: ; } /* ==== Return the optimal value of LWORK. ==== */ work[1] = (doublereal) lwkopt; /* ==== End of DLAQR0 ==== */ return 0; } /* igraphdlaqr0_ */
/* ----------------------------------------------------------------------- */ /* Subroutine */ int igraphdneupd_(logical *rvec, char *howmny, logical *select, doublereal *dr, doublereal *di, doublereal *z__, integer *ldz, doublereal *sigmar, doublereal *sigmai, doublereal *workev, char * bmat, integer *n, char *which, integer *nev, doublereal *tol, doublereal *resid, integer *ncv, doublereal *v, integer *ldv, integer *iparam, integer *ipntr, doublereal *workd, doublereal *workl, integer *lworkl, integer *info) { /* System generated locals */ integer v_dim1, v_offset, z_dim1, z_offset, i__1; doublereal d__1, d__2; /* Builtin functions */ double igraphpow_dd(doublereal *, doublereal *); integer igraphs_cmp(char *, char *, ftnlen, ftnlen); /* Subroutine */ int igraphs_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer j, k, ih, jj, np; static doublereal vl[1] /* was [1][1] */; static integer ibd, ldh, ldq, iri; static doublereal sep; static integer irr, wri, wrr; extern /* Subroutine */ int igraphdger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); static integer mode; static doublereal eps23; static integer ierr; static doublereal temp; static integer iwev; static char type__[6]; extern doublereal igraphdnrm2_(integer *, doublereal *, integer *); static doublereal temp1; extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *); static integer ihbds, iconj; extern /* Subroutine */ int igraphdgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); static doublereal conds; static logical reord; extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer nconv; extern /* Subroutine */ int igraphdtrmm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), igraphdmout_( integer *, integer *, integer *, doublereal *, integer *, integer *, char *); static integer iwork[1]; static doublereal rnorm; static integer ritzi; extern /* Subroutine */ int igraphdvout_(integer *, integer *, doublereal *, integer *, char *), igraphivout_(integer *, integer *, integer * , integer *, char *); static integer ritzr; extern /* Subroutine */ int igraphdgeqr2_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal igraphdlapy2_(doublereal *, doublereal *); extern /* Subroutine */ int igraphdorm2r_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); extern doublereal igraphdlamch_(char *); static integer iheigi, iheigr, bounds, invsub, iuptri, msglvl, outncv, ishift, numcnv; extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdlahqr_(logical *, logical *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), igraphdlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), igraphdtrevc_(char *, char *, logical *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer * ), igraphdtrsen_(char *, char *, logical *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, integer *), igraphdngets_(integer *, char *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); /* %----------------------------------------------------% */ /* | Include files for debugging and timing information | */ /* %----------------------------------------------------% */ /* \SCCS Information: @(#) */ /* FILE: debug.h SID: 2.3 DATE OF SID: 11/16/95 RELEASE: 2 */ /* %---------------------------------% */ /* | See debug.doc for documentation | */ /* %---------------------------------% */ /* %------------------% */ /* | Scalar Arguments | */ /* %------------------% */ /* %--------------------------------% */ /* | See stat.doc for documentation | */ /* %--------------------------------% */ /* \SCCS Information: @(#) */ /* FILE: stat.h SID: 2.2 DATE OF SID: 11/16/95 RELEASE: 2 */ /* %-----------------% */ /* | Array Arguments | */ /* %-----------------% */ /* %------------% */ /* | Parameters | */ /* %------------% */ /* %---------------% */ /* | Local Scalars | */ /* %---------------% */ /* %----------------------% */ /* | External Subroutines | */ /* %----------------------% */ /* %--------------------% */ /* | External Functions | */ /* %--------------------% */ /* %---------------------% */ /* | Intrinsic Functions | */ /* %---------------------% */ /* %-----------------------% */ /* | Executable Statements | */ /* %-----------------------% */ /* %------------------------% */ /* | Set default parameters | */ /* %------------------------% */ /* Parameter adjustments */ z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --workd; --resid; --di; --dr; --workev; --select; v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; --iparam; --ipntr; --workl; /* Function Body */ msglvl = debug_1.mneupd; mode = iparam[7]; nconv = iparam[5]; *info = 0; /* %---------------------------------% */ /* | Get machine dependent constant. | */ /* %---------------------------------% */ eps23 = igraphdlamch_("Epsilon-Machine"); eps23 = igraphpow_dd(&eps23, &c_b3); /* %--------------% */ /* | Quick return | */ /* %--------------% */ ierr = 0; if (nconv <= 0) { ierr = -14; } else if (*n <= 0) { ierr = -1; } else if (*nev <= 0) { ierr = -2; } else if (*ncv <= *nev + 1 || *ncv > *n) { ierr = -3; } else if (igraphs_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && igraphs_cmp(which, "SM", (ftnlen)2, (ftnlen)2) != 0 && igraphs_cmp(which, "LR", (ftnlen)2, (ftnlen)2 ) != 0 && igraphs_cmp(which, "SR", (ftnlen)2, (ftnlen)2) != 0 && igraphs_cmp(which, "LI", (ftnlen)2, (ftnlen)2) != 0 && igraphs_cmp(which, "SI", (ftnlen)2, (ftnlen)2) != 0) { ierr = -5; } else if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G') { ierr = -6; } else /* if(complicated condition) */ { /* Computing 2nd power */ i__1 = *ncv; if (*lworkl < i__1 * i__1 * 3 + *ncv * 6) { ierr = -7; } else if (*(unsigned char *)howmny != 'A' && *(unsigned char *) howmny != 'P' && *(unsigned char *)howmny != 'S' && *rvec) { ierr = -13; } else if (*(unsigned char *)howmny == 'S') { ierr = -12; } } if (mode == 1 || mode == 2) { igraphs_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6); } else if (mode == 3 && *sigmai == 0.) { igraphs_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6); } else if (mode == 3) { igraphs_copy(type__, "REALPT", (ftnlen)6, (ftnlen)6); } else if (mode == 4) { igraphs_copy(type__, "IMAGPT", (ftnlen)6, (ftnlen)6); } else { ierr = -10; } if (mode == 1 && *(unsigned char *)bmat == 'G') { ierr = -11; } /* %------------% */ /* | Error Exit | */ /* %------------% */ if (ierr != 0) { *info = ierr; goto L9000; } /* %--------------------------------------------------------% */ /* | Pointer into WORKL for address of H, RITZ, BOUNDS, Q | */ /* | etc... and the remaining workspace. | */ /* | Also update pointer to be used on output. | */ /* | Memory is laid out as follows: | */ /* | workl(1:ncv*ncv) := generated Hessenberg matrix | */ /* | workl(ncv*ncv+1:ncv*ncv+2*ncv) := real and imaginary | */ /* | parts of ritz values | */ /* | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := error bounds | */ /* %--------------------------------------------------------% */ /* %-----------------------------------------------------------% */ /* | The following is used and set by DNEUPD . | */ /* | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed | */ /* | real part of the Ritz values. | */ /* | workl(ncv*ncv+4*ncv+1:ncv*ncv+5*ncv) := The untransformed | */ /* | imaginary part of the Ritz values. | */ /* | workl(ncv*ncv+5*ncv+1:ncv*ncv+6*ncv) := The untransformed | */ /* | error bounds of the Ritz values | */ /* | workl(ncv*ncv+6*ncv+1:2*ncv*ncv+6*ncv) := Holds the upper | */ /* | quasi-triangular matrix for H | */ /* | workl(2*ncv*ncv+6*ncv+1: 3*ncv*ncv+6*ncv) := Holds the | */ /* | associated matrix representation of the invariant | */ /* | subspace for H. | */ /* | GRAND total of NCV * ( 3 * NCV + 6 ) locations. | */ /* %-----------------------------------------------------------% */ ih = ipntr[5]; ritzr = ipntr[6]; ritzi = ipntr[7]; bounds = ipntr[8]; ldh = *ncv; ldq = *ncv; iheigr = bounds + ldh; iheigi = iheigr + ldh; ihbds = iheigi + ldh; iuptri = ihbds + ldh; invsub = iuptri + ldh * *ncv; ipntr[9] = iheigr; ipntr[10] = iheigi; ipntr[11] = ihbds; ipntr[12] = iuptri; ipntr[13] = invsub; wrr = 1; wri = *ncv + 1; iwev = wri + *ncv; /* %-----------------------------------------% */ /* | irr points to the REAL part of the Ritz | */ /* | values computed by _neigh before | */ /* | exiting _naup2. | */ /* | iri points to the IMAGINARY part of the | */ /* | Ritz values computed by _neigh | */ /* | before exiting _naup2. | */ /* | ibd points to the Ritz estimates | */ /* | computed by _neigh before exiting | */ /* | _naup2. | */ /* %-----------------------------------------% */ irr = ipntr[14] + *ncv * *ncv; iri = irr + *ncv; ibd = iri + *ncv; /* %------------------------------------% */ /* | RNORM is B-norm of the RESID(1:N). | */ /* %------------------------------------% */ rnorm = workl[ih + 2]; workl[ih + 2] = 0.; if (msglvl > 2) { igraphdvout_(&debug_1.logfil, ncv, &workl[irr], &debug_1.ndigit, "_neupd: " "Real part of Ritz values passed in from _NAUPD."); igraphdvout_(&debug_1.logfil, ncv, &workl[iri], &debug_1.ndigit, "_neupd: " "Imag part of Ritz values passed in from _NAUPD."); igraphdvout_(&debug_1.logfil, ncv, &workl[ibd], &debug_1.ndigit, "_neupd: " "Ritz estimates passed in from _NAUPD."); } if (*rvec) { reord = FALSE_; /* %---------------------------------------------------% */ /* | Use the temporary bounds array to store indices | */ /* | These will be used to mark the select array later | */ /* %---------------------------------------------------% */ i__1 = *ncv; for (j = 1; j <= i__1; ++j) { workl[bounds + j - 1] = (doublereal) j; select[j] = FALSE_; /* L10: */ } /* %-------------------------------------% */ /* | Select the wanted Ritz values. | */ /* | Sort the Ritz values so that the | */ /* | wanted ones appear at the tailing | */ /* | NEV positions of workl(irr) and | */ /* | workl(iri). Move the corresponding | */ /* | error estimates in workl(bound) | */ /* | accordingly. | */ /* %-------------------------------------% */ np = *ncv - *nev; ishift = 0; igraphdngets_(&ishift, which, nev, &np, &workl[irr], &workl[iri], &workl[ bounds], &workl[1], &workl[np + 1]); if (msglvl > 2) { igraphdvout_(&debug_1.logfil, ncv, &workl[irr], &debug_1.ndigit, "_neu" "pd: Real part of Ritz values after calling _NGETS."); igraphdvout_(&debug_1.logfil, ncv, &workl[iri], &debug_1.ndigit, "_neu" "pd: Imag part of Ritz values after calling _NGETS."); igraphdvout_(&debug_1.logfil, ncv, &workl[bounds], &debug_1.ndigit, "_neupd: Ritz value indices after calling _NGETS."); } /* %-----------------------------------------------------% */ /* | Record indices of the converged wanted Ritz values | */ /* | Mark the select array for possible reordering | */ /* %-----------------------------------------------------% */ numcnv = 0; i__1 = *ncv; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ d__1 = eps23, d__2 = igraphdlapy2_(&workl[irr + *ncv - j], &workl[iri + *ncv - j]); temp1 = max(d__1,d__2); jj = (integer) workl[bounds + *ncv - j]; if (numcnv < nconv && workl[ibd + jj - 1] <= *tol * temp1) { select[jj] = TRUE_; ++numcnv; if (jj > *nev) { reord = TRUE_; } } /* L11: */ } /* %-----------------------------------------------------------% */ /* | Check the count (numcnv) of converged Ritz values with | */ /* | the number (nconv) reported by igraphdnaupd. If these two | */ /* | are different then there has probably been an error | */ /* | caused by incorrect passing of the igraphdnaupd data. | */ /* %-----------------------------------------------------------% */ if (msglvl > 2) { igraphivout_(&debug_1.logfil, &c__1, &numcnv, &debug_1.ndigit, "_neupd" ": Number of specified eigenvalues"); igraphivout_(&debug_1.logfil, &c__1, &nconv, &debug_1.ndigit, "_neupd:" " Number of \"converged\" eigenvalues"); } if (numcnv != nconv) { *info = -15; goto L9000; } /* %-----------------------------------------------------------% */ /* | Call LAPACK routine dlahqr to compute the real Schur form | */ /* | of the upper Hessenberg matrix returned by DNAUPD . | */ /* | Make a copy of the upper Hessenberg matrix. | */ /* | Initialize the Schur vector matrix Q to the identity. | */ /* %-----------------------------------------------------------% */ i__1 = ldh * *ncv; igraphdcopy_(&i__1, &workl[ih], &c__1, &workl[iuptri], &c__1); igraphdlaset_("All", ncv, ncv, &c_b37, &c_b38, &workl[invsub], &ldq); igraphdlahqr_(&c_true, &c_true, ncv, &c__1, ncv, &workl[iuptri], &ldh, & workl[iheigr], &workl[iheigi], &c__1, ncv, &workl[invsub], & ldq, &ierr); igraphdcopy_(ncv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds], &c__1); if (ierr != 0) { *info = -8; goto L9000; } if (msglvl > 1) { igraphdvout_(&debug_1.logfil, ncv, &workl[iheigr], &debug_1.ndigit, "_neupd: Real part of the eigenvalues of H"); igraphdvout_(&debug_1.logfil, ncv, &workl[iheigi], &debug_1.ndigit, "_neupd: Imaginary part of the Eigenvalues of H"); igraphdvout_(&debug_1.logfil, ncv, &workl[ihbds], &debug_1.ndigit, "_neupd: Last row of the Schur vector matrix"); if (msglvl > 3) { igraphdmout_(&debug_1.logfil, ncv, ncv, &workl[iuptri], &ldh, & debug_1.ndigit, "_neupd: The upper quasi-triangular " "matrix "); } } if (reord) { /* %-----------------------------------------------------% */ /* | Reorder the computed upper quasi-triangular matrix. | */ /* %-----------------------------------------------------% */ igraphdtrsen_("None", "V", &select[1], ncv, &workl[iuptri], &ldh, & workl[invsub], &ldq, &workl[iheigr], &workl[iheigi], & nconv, &conds, &sep, &workl[ihbds], ncv, iwork, &c__1, & ierr); if (ierr == 1) { *info = 1; goto L9000; } if (msglvl > 2) { igraphdvout_(&debug_1.logfil, ncv, &workl[iheigr], &debug_1.ndigit, "_neupd: Real part of the eigenvalues of H--reordered"); igraphdvout_(&debug_1.logfil, ncv, &workl[iheigi], &debug_1.ndigit, "_neupd: Imag part of the eigenvalues of H--reordered"); if (msglvl > 3) { igraphdmout_(&debug_1.logfil, ncv, ncv, &workl[iuptri], &ldq, & debug_1.ndigit, "_neupd: Quasi-triangular matrix" " after re-ordering"); } } } /* %---------------------------------------% */ /* | Copy the last row of the Schur vector | */ /* | into workl(ihbds). This will be used | */ /* | to compute the Ritz estimates of | */ /* | converged Ritz values. | */ /* %---------------------------------------% */ igraphdcopy_(ncv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds], &c__1); /* %----------------------------------------------------% */ /* | Place the computed eigenvalues of H into DR and DI | */ /* | if a spectral transformation was not used. | */ /* %----------------------------------------------------% */ if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) { igraphdcopy_(&nconv, &workl[iheigr], &c__1, &dr[1], &c__1); igraphdcopy_(&nconv, &workl[iheigi], &c__1, &di[1], &c__1); } /* %----------------------------------------------------------% */ /* | Compute the QR factorization of the matrix representing | */ /* | the wanted invariant subspace located in the first NCONV | */ /* | columns of workl(invsub,ldq). | */ /* %----------------------------------------------------------% */ igraphdgeqr2_(ncv, &nconv, &workl[invsub], &ldq, &workev[1], &workev[*ncv + 1], &ierr); /* %---------------------------------------------------------% */ /* | * Postmultiply V by Q using dorm2r . | */ /* | * Copy the first NCONV columns of VQ into Z. | */ /* | * Postmultiply Z by R. | */ /* | The N by NCONV matrix Z is now a matrix representation | */ /* | of the approximate invariant subspace associated with | */ /* | the Ritz values in workl(iheigr) and workl(iheigi) | */ /* | The first NCONV columns of V are now approximate Schur | */ /* | vectors associated with the real upper quasi-triangular | */ /* | matrix of order NCONV in workl(iuptri) | */ /* %---------------------------------------------------------% */ igraphdorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[invsub], &ldq, &workev[1], &v[v_offset], ldv, &workd[*n + 1], &ierr); igraphdlacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], ldz); i__1 = nconv; for (j = 1; j <= i__1; ++j) { /* %---------------------------------------------------% */ /* | Perform both a column and row scaling if the | */ /* | diagonal element of workl(invsub,ldq) is negative | */ /* | I'm lazy and don't take advantage of the upper | */ /* | quasi-triangular form of workl(iuptri,ldq) | */ /* | Note that since Q is orthogonal, R is a diagonal | */ /* | matrix consisting of plus or minus ones | */ /* %---------------------------------------------------% */ if (workl[invsub + (j - 1) * ldq + j - 1] < 0.) { igraphdscal_(&nconv, &c_b64, &workl[iuptri + j - 1], &ldq); igraphdscal_(&nconv, &c_b64, &workl[iuptri + (j - 1) * ldq], &c__1); } /* L20: */ } if (*(unsigned char *)howmny == 'A') { /* %--------------------------------------------% */ /* | Compute the NCONV wanted eigenvectors of T | */ /* | located in workl(iuptri,ldq). | */ /* %--------------------------------------------% */ i__1 = *ncv; for (j = 1; j <= i__1; ++j) { if (j <= nconv) { select[j] = TRUE_; } else { select[j] = FALSE_; } /* L30: */ } igraphdtrevc_("Right", "Select", &select[1], ncv, &workl[iuptri], &ldq, vl, &c__1, &workl[invsub], &ldq, ncv, &outncv, &workev[1], &ierr); if (ierr != 0) { *info = -9; goto L9000; } /* %------------------------------------------------% */ /* | Scale the returning eigenvectors so that their | */ /* | Euclidean norms are all one. LAPACK subroutine | */ /* | igraphdtrevc returns each eigenvector normalized so | */ /* | that the element of largest magnitude has | */ /* | magnitude 1; | */ /* %------------------------------------------------% */ iconj = 0; i__1 = nconv; for (j = 1; j <= i__1; ++j) { if (workl[iheigi + j - 1] == 0.) { /* %----------------------% */ /* | real eigenvalue case | */ /* %----------------------% */ temp = igraphdnrm2_(ncv, &workl[invsub + (j - 1) * ldq], &c__1); d__1 = 1. / temp; igraphdscal_(ncv, &d__1, &workl[invsub + (j - 1) * ldq], &c__1); } else { /* %-------------------------------------------% */ /* | Complex conjugate pair case. Note that | */ /* | since the real and imaginary part of | */ /* | the eigenvector are stored in consecutive | */ /* | columns, we further normalize by the | */ /* | square root of two. | */ /* %-------------------------------------------% */ if (iconj == 0) { d__1 = igraphdnrm2_(ncv, &workl[invsub + (j - 1) * ldq], & c__1); d__2 = igraphdnrm2_(ncv, &workl[invsub + j * ldq], &c__1); temp = igraphdlapy2_(&d__1, &d__2); d__1 = 1. / temp; igraphdscal_(ncv, &d__1, &workl[invsub + (j - 1) * ldq], & c__1); d__1 = 1. / temp; igraphdscal_(ncv, &d__1, &workl[invsub + j * ldq], &c__1); iconj = 1; } else { iconj = 0; } } /* L40: */ } igraphdgemv_("T", ncv, &nconv, &c_b38, &workl[invsub], &ldq, &workl[ ihbds], &c__1, &c_b37, &workev[1], &c__1); iconj = 0; i__1 = nconv; for (j = 1; j <= i__1; ++j) { if (workl[iheigi + j - 1] != 0.) { /* %-------------------------------------------% */ /* | Complex conjugate pair case. Note that | */ /* | since the real and imaginary part of | */ /* | the eigenvector are stored in consecutive | */ /* %-------------------------------------------% */ if (iconj == 0) { workev[j] = igraphdlapy2_(&workev[j], &workev[j + 1]); workev[j + 1] = workev[j]; iconj = 1; } else { iconj = 0; } } /* L45: */ } if (msglvl > 2) { igraphdcopy_(ncv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds], & c__1); igraphdvout_(&debug_1.logfil, ncv, &workl[ihbds], &debug_1.ndigit, "_neupd: Last row of the eigenvector matrix for T"); if (msglvl > 3) { igraphdmout_(&debug_1.logfil, ncv, ncv, &workl[invsub], &ldq, & debug_1.ndigit, "_neupd: The eigenvector matrix " "for T"); } } /* %---------------------------------------% */ /* | Copy Ritz estimates into workl(ihbds) | */ /* %---------------------------------------% */ igraphdcopy_(&nconv, &workev[1], &c__1, &workl[ihbds], &c__1); /* %---------------------------------------------------------% */ /* | Compute the QR factorization of the eigenvector matrix | */ /* | associated with leading portion of T in the first NCONV | */ /* | columns of workl(invsub,ldq). | */ /* %---------------------------------------------------------% */ igraphdgeqr2_(ncv, &nconv, &workl[invsub], &ldq, &workev[1], &workev[* ncv + 1], &ierr); /* %----------------------------------------------% */ /* | * Postmultiply Z by Q. | */ /* | * Postmultiply Z by R. | */ /* | The N by NCONV matrix Z is now contains the | */ /* | Ritz vectors associated with the Ritz values | */ /* | in workl(iheigr) and workl(iheigi). | */ /* %----------------------------------------------% */ igraphdorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[invsub], & ldq, &workev[1], &z__[z_offset], ldz, &workd[*n + 1], & ierr); igraphdtrmm_("Right", "Upper", "No transpose", "Non-unit", n, &nconv, & c_b38, &workl[invsub], &ldq, &z__[z_offset], ldz); } } else { /* %------------------------------------------------------% */ /* | An approximate invariant subspace is not needed. | */ /* | Place the Ritz values computed DNAUPD into DR and DI | */ /* %------------------------------------------------------% */ igraphdcopy_(&nconv, &workl[ritzr], &c__1, &dr[1], &c__1); igraphdcopy_(&nconv, &workl[ritzi], &c__1, &di[1], &c__1); igraphdcopy_(&nconv, &workl[ritzr], &c__1, &workl[iheigr], &c__1); igraphdcopy_(&nconv, &workl[ritzi], &c__1, &workl[iheigi], &c__1); igraphdcopy_(&nconv, &workl[bounds], &c__1, &workl[ihbds], &c__1); } /* %------------------------------------------------% */ /* | Transform the Ritz values and possibly vectors | */ /* | and corresponding error bounds of OP to those | */ /* | of A*x = lambda*B*x. | */ /* %------------------------------------------------% */ if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) { if (*rvec) { igraphdscal_(ncv, &rnorm, &workl[ihbds], &c__1); } } else { /* %---------------------------------------% */ /* | A spectral transformation was used. | */ /* | * Determine the Ritz estimates of the | */ /* | Ritz values in the original system. | */ /* %---------------------------------------% */ if (igraphs_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) { if (*rvec) { igraphdscal_(ncv, &rnorm, &workl[ihbds], &c__1); } i__1 = *ncv; for (k = 1; k <= i__1; ++k) { temp = igraphdlapy2_(&workl[iheigr + k - 1], &workl[iheigi + k - 1]) ; workl[ihbds + k - 1] = (d__1 = workl[ihbds + k - 1], abs(d__1) ) / temp / temp; /* L50: */ } } else if (igraphs_cmp(type__, "REALPT", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { /* L60: */ } } else if (igraphs_cmp(type__, "IMAGPT", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { /* L70: */ } } /* %-----------------------------------------------------------% */ /* | * Transform the Ritz values back to the original system. | */ /* | For TYPE = 'SHIFTI' the transformation is | */ /* | lambda = 1/theta + sigma | */ /* | For TYPE = 'REALPT' or 'IMAGPT' the user must from | */ /* | Rayleigh quotients or a projection. See remark 3 above.| */ /* | NOTES: | */ /* | *The Ritz vectors are not affected by the transformation. | */ /* %-----------------------------------------------------------% */ if (igraphs_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { temp = igraphdlapy2_(&workl[iheigr + k - 1], &workl[iheigi + k - 1]) ; workl[iheigr + k - 1] = workl[iheigr + k - 1] / temp / temp + *sigmar; workl[iheigi + k - 1] = -workl[iheigi + k - 1] / temp / temp + *sigmai; /* L80: */ } igraphdcopy_(&nconv, &workl[iheigr], &c__1, &dr[1], &c__1); igraphdcopy_(&nconv, &workl[iheigi], &c__1, &di[1], &c__1); } else if (igraphs_cmp(type__, "REALPT", (ftnlen)6, (ftnlen)6) == 0 || igraphs_cmp(type__, "IMAGPT", (ftnlen)6, (ftnlen)6) == 0) { igraphdcopy_(&nconv, &workl[iheigr], &c__1, &dr[1], &c__1); igraphdcopy_(&nconv, &workl[iheigi], &c__1, &di[1], &c__1); } } if (igraphs_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0 && msglvl > 1) { igraphdvout_(&debug_1.logfil, &nconv, &dr[1], &debug_1.ndigit, "_neupd: Un" "transformed real part of the Ritz valuess."); igraphdvout_(&debug_1.logfil, &nconv, &di[1], &debug_1.ndigit, "_neupd: Un" "transformed imag part of the Ritz valuess."); igraphdvout_(&debug_1.logfil, &nconv, &workl[ihbds], &debug_1.ndigit, "_ne" "upd: Ritz estimates of untransformed Ritz values."); } else if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0 && msglvl > 1) { igraphdvout_(&debug_1.logfil, &nconv, &dr[1], &debug_1.ndigit, "_neupd: Re" "al parts of converged Ritz values."); igraphdvout_(&debug_1.logfil, &nconv, &di[1], &debug_1.ndigit, "_neupd: Im" "ag parts of converged Ritz values."); igraphdvout_(&debug_1.logfil, &nconv, &workl[ihbds], &debug_1.ndigit, "_ne" "upd: Associated Ritz estimates."); } /* %-------------------------------------------------% */ /* | Eigenvector Purification step. Formally perform | */ /* | one of inverse subspace iteration. Only used | */ /* | for MODE = 2. | */ /* %-------------------------------------------------% */ if (*rvec && *(unsigned char *)howmny == 'A' && igraphs_cmp(type__, "SHIFTI" , (ftnlen)6, (ftnlen)6) == 0) { /* %------------------------------------------------% */ /* | Purify the computed Ritz vectors by adding a | */ /* | little bit of the residual vector: | */ /* | T | */ /* | resid(:)*( e s ) / theta | */ /* | NCV | */ /* | where H s = s theta. Remember that when theta | */ /* | has nonzero imaginary part, the corresponding | */ /* | Ritz vector is stored across two columns of Z. | */ /* %------------------------------------------------% */ iconj = 0; i__1 = nconv; for (j = 1; j <= i__1; ++j) { if (workl[iheigi + j - 1] == 0.) { workev[j] = workl[invsub + (j - 1) * ldq + *ncv - 1] / workl[ iheigr + j - 1]; } else if (iconj == 0) { temp = igraphdlapy2_(&workl[iheigr + j - 1], &workl[iheigi + j - 1]) ; workev[j] = (workl[invsub + (j - 1) * ldq + *ncv - 1] * workl[ iheigr + j - 1] + workl[invsub + j * ldq + *ncv - 1] * workl[iheigi + j - 1]) / temp / temp; workev[j + 1] = (workl[invsub + j * ldq + *ncv - 1] * workl[ iheigr + j - 1] - workl[invsub + (j - 1) * ldq + *ncv - 1] * workl[iheigi + j - 1]) / temp / temp; iconj = 1; } else { iconj = 0; } /* L110: */ } /* %---------------------------------------% */ /* | Perform a rank one update to Z and | */ /* | purify all the Ritz vectors together. | */ /* %---------------------------------------% */ igraphdger_(n, &nconv, &c_b38, &resid[1], &c__1, &workev[1], &c__1, &z__[ z_offset], ldz); } L9000: return 0; /* %---------------% */ /* | End of DNEUPD | */ /* %---------------% */ } /* dneupd_ */
/* ----------------------------------------------------------------------- */ /* Subroutine */ int igraphdseupd_(logical *rvec, char *howmny, logical * select, doublereal *d__, doublereal *z__, integer *ldz, doublereal * sigma, char *bmat, integer *n, char *which, integer *nev, doublereal * tol, doublereal *resid, integer *ncv, doublereal *v, integer *ldv, integer *iparam, integer *ipntr, doublereal *workd, doublereal *workl, integer *lworkl, integer *info) { /* System generated locals */ integer v_dim1, v_offset, z_dim1, z_offset, i__1; doublereal d__1, d__2, d__3; /* Builtin functions */ integer igraphs_cmp(char *, char *, ftnlen, ftnlen); /* Subroutine */ int igraphs_copy(char *, char *, ftnlen, ftnlen); double igraphpow_dd(doublereal *, doublereal *); /* Local variables */ static integer j, k, ih, jj, iq, np, iw; extern /* Subroutine */ int igraphdger_(integer *, integer *, doublereal * , doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); static integer ibd, ihb, ihd, ldh; extern doublereal igraphdnrm2_(integer *, doublereal *, integer *); static integer ldq, irz; extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *), igraphdcopy_(integer *, doublereal *, integer *, doublereal *, integer *), igraphdvout_(integer *, integer *, doublereal *, integer *, char *), igraphivout_( integer *, integer *, integer *, integer *, char *), igraphdgeqr2_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); static integer mode; static doublereal eps23; extern /* Subroutine */ int igraphdorm2r_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); static integer ierr; static doublereal temp; static integer next; static char type__[6]; extern doublereal igraphdlamch_(char *); static integer ritz; extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdsgets_(integer *, char *, integer *, integer *, doublereal *, doublereal *, doublereal *); static doublereal temp1; extern /* Subroutine */ int igraphdsteqr_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *), igraphdsesrt_(char *, logical *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdsortr_(char * , logical *, integer *, doublereal *, doublereal *); static logical reord; static integer nconv; static doublereal rnorm, bnorm2; static integer bounds, msglvl, ishift, numcnv, leftptr, rghtptr; /* %----------------------------------------------------% */ /* | Include files for debugging and timing information | */ /* %----------------------------------------------------% */ /* \SCCS Information: @(#) */ /* FILE: debug.h SID: 2.3 DATE OF SID: 11/16/95 RELEASE: 2 */ /* %---------------------------------% */ /* | See debug.doc for documentation | */ /* %---------------------------------% */ /* %------------------% */ /* | Scalar Arguments | */ /* %------------------% */ /* %--------------------------------% */ /* | See stat.doc for documentation | */ /* %--------------------------------% */ /* \SCCS Information: @(#) */ /* FILE: stat.h SID: 2.2 DATE OF SID: 11/16/95 RELEASE: 2 */ /* %-----------------% */ /* | Array Arguments | */ /* %-----------------% */ /* %------------% */ /* | Parameters | */ /* %------------% */ /* %---------------% */ /* | Local Scalars | */ /* %---------------% */ /* %----------------------% */ /* | External Subroutines | */ /* %----------------------% */ /* %--------------------% */ /* | External Functions | */ /* %--------------------% */ /* %---------------------% */ /* | Intrinsic Functions | */ /* %---------------------% */ /* %-----------------------% */ /* | Executable Statements | */ /* %-----------------------% */ /* %------------------------% */ /* | Set default parameters | */ /* %------------------------% */ /* Parameter adjustments */ --workd; --resid; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --d__; --select; v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; --iparam; --ipntr; --workl; /* Function Body */ msglvl = debug_1.mseupd; mode = iparam[7]; nconv = iparam[5]; *info = 0; /* %--------------% */ /* | Quick return | */ /* %--------------% */ if (nconv == 0) { goto L9000; } ierr = 0; if (nconv <= 0) { ierr = -14; } if (*n <= 0) { ierr = -1; } if (*nev <= 0) { ierr = -2; } if (*ncv <= *nev || *ncv > *n) { ierr = -3; } if (igraphs_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && igraphs_cmp(which, "SM", ( ftnlen)2, (ftnlen)2) != 0 && igraphs_cmp(which, "LA", (ftnlen)2, ( ftnlen)2) != 0 && igraphs_cmp(which, "SA", (ftnlen)2, (ftnlen)2) != 0 && igraphs_cmp(which, "BE", (ftnlen)2, (ftnlen)2) != 0) { ierr = -5; } if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G') { ierr = -6; } if (*(unsigned char *)howmny != 'A' && *(unsigned char *)howmny != 'P' && *(unsigned char *)howmny != 'S' && *rvec) { ierr = -15; } if (*rvec && *(unsigned char *)howmny == 'S') { ierr = -16; } /* Computing 2nd power */ i__1 = *ncv; if (*rvec && *lworkl < i__1 * i__1 + (*ncv << 3)) { ierr = -7; } if (mode == 1 || mode == 2) { igraphs_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6); } else if (mode == 3) { igraphs_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6); } else if (mode == 4) { igraphs_copy(type__, "BUCKLE", (ftnlen)6, (ftnlen)6); } else if (mode == 5) { igraphs_copy(type__, "CAYLEY", (ftnlen)6, (ftnlen)6); } else { ierr = -10; } if (mode == 1 && *(unsigned char *)bmat == 'G') { ierr = -11; } if (*nev == 1 && igraphs_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) { ierr = -12; } /* %------------% */ /* | Error Exit | */ /* %------------% */ if (ierr != 0) { *info = ierr; goto L9000; } /* %-------------------------------------------------------% */ /* | Pointer into WORKL for address of H, RITZ, BOUNDS, Q | */ /* | etc... and the remaining workspace. | */ /* | Also update pointer to be used on output. | */ /* | Memory is laid out as follows: | */ /* | workl(1:2*ncv) := generated tridiagonal matrix H | */ /* | The subdiagonal is stored in workl(2:ncv). | */ /* | The dead spot is workl(1) but upon exiting | */ /* | dsaupd stores the B-norm of the last residual | */ /* | vector in workl(1). We use this !!! | */ /* | workl(2*ncv+1:2*ncv+ncv) := ritz values | */ /* | The wanted values are in the first NCONV spots. | */ /* | workl(3*ncv+1:3*ncv+ncv) := computed Ritz estimates | */ /* | The wanted values are in the first NCONV spots. | */ /* | NOTE: workl(1:4*ncv) is set by dsaupd and is not | */ /* | modified by dseupd . | */ /* %-------------------------------------------------------% */ /* %-------------------------------------------------------% */ /* | The following is used and set by dseupd . | */ /* | workl(4*ncv+1:4*ncv+ncv) := used as workspace during | */ /* | computation of the eigenvectors of H. Stores | */ /* | the diagonal of H. Upon EXIT contains the NCV | */ /* | Ritz values of the original system. The first | */ /* | NCONV spots have the wanted values. If MODE = | */ /* | 1 or 2 then will equal workl(2*ncv+1:3*ncv). | */ /* | workl(5*ncv+1:5*ncv+ncv) := used as workspace during | */ /* | computation of the eigenvectors of H. Stores | */ /* | the subdiagonal of H. Upon EXIT contains the | */ /* | NCV corresponding Ritz estimates of the | */ /* | original system. The first NCONV spots have the | */ /* | wanted values. If MODE = 1,2 then will equal | */ /* | workl(3*ncv+1:4*ncv). | */ /* | workl(6*ncv+1:6*ncv+ncv*ncv) := orthogonal Q that is | */ /* | the eigenvector matrix for H as returned by | */ /* | dsteqr . Not referenced if RVEC = .False. | */ /* | Ordering follows that of workl(4*ncv+1:5*ncv) | */ /* | workl(6*ncv+ncv*ncv+1:6*ncv+ncv*ncv+2*ncv) := | */ /* | Workspace. Needed by dsteqr and by dseupd . | */ /* | GRAND total of NCV*(NCV+8) locations. | */ /* %-------------------------------------------------------% */ ih = ipntr[5]; ritz = ipntr[6]; bounds = ipntr[7]; ldh = *ncv; ldq = *ncv; ihd = bounds + ldh; ihb = ihd + ldh; iq = ihb + ldh; iw = iq + ldh * *ncv; next = iw + (*ncv << 1); ipntr[4] = next; ipntr[8] = ihd; ipntr[9] = ihb; ipntr[10] = iq; /* %----------------------------------------% */ /* | irz points to the Ritz values computed | */ /* | by _seigt before exiting _saup2. | */ /* | ibd points to the Ritz estimates | */ /* | computed by _seigt before exiting | */ /* | _saup2. | */ /* %----------------------------------------% */ irz = ipntr[11] + *ncv; ibd = irz + *ncv; /* %---------------------------------% */ /* | Set machine dependent constant. | */ /* %---------------------------------% */ eps23 = igraphdlamch_("Epsilon-Machine"); eps23 = igraphpow_dd(&eps23, &c_b21); /* %---------------------------------------% */ /* | RNORM is B-norm of the RESID(1:N). | */ /* | BNORM2 is the 2 norm of B*RESID(1:N). | */ /* | Upon exit of dsaupd WORKD(1:N) has | */ /* | B*RESID(1:N). | */ /* %---------------------------------------% */ rnorm = workl[ih]; if (*(unsigned char *)bmat == 'I') { bnorm2 = rnorm; } else if (*(unsigned char *)bmat == 'G') { bnorm2 = igraphdnrm2_(n, &workd[1], &c__1); } if (msglvl > 2) { igraphdvout_(&debug_1.logfil, ncv, &workl[irz], &debug_1.ndigit, "_seupd: Ritz values passed in from _SAUPD."); igraphdvout_(&debug_1.logfil, ncv, &workl[ibd], &debug_1.ndigit, "_seupd: Ritz estimates passed in from _SAUPD."); } if (*rvec) { reord = FALSE_; /* %---------------------------------------------------% */ /* | Use the temporary bounds array to store indices | */ /* | These will be used to mark the select array later | */ /* %---------------------------------------------------% */ i__1 = *ncv; for (j = 1; j <= i__1; ++j) { workl[bounds + j - 1] = (doublereal) j; select[j] = FALSE_; /* L10: */ } /* %-------------------------------------% */ /* | Select the wanted Ritz values. | */ /* | Sort the Ritz values so that the | */ /* | wanted ones appear at the tailing | */ /* | NEV positions of workl(irr) and | */ /* | workl(iri). Move the corresponding | */ /* | error estimates in workl(bound) | */ /* | accordingly. | */ /* %-------------------------------------% */ np = *ncv - *nev; ishift = 0; igraphdsgets_(&ishift, which, nev, &np, &workl[irz], &workl[bounds], & workl[1]); if (msglvl > 2) { igraphdvout_(&debug_1.logfil, ncv, &workl[irz], &debug_1.ndigit, "_seupd: Ritz values after calling _SGETS."); igraphdvout_(&debug_1.logfil, ncv, &workl[bounds], & debug_1.ndigit, "_seupd: Ritz value indices after callin" "g _SGETS."); } /* %-----------------------------------------------------% */ /* | Record indices of the converged wanted Ritz values | */ /* | Mark the select array for possible reordering | */ /* %-----------------------------------------------------% */ numcnv = 0; i__1 = *ncv; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ d__2 = eps23, d__3 = (d__1 = workl[irz + *ncv - j], abs(d__1)); temp1 = max(d__2,d__3); jj = (integer) workl[bounds + *ncv - j]; if (numcnv < nconv && workl[ibd + jj - 1] <= *tol * temp1) { select[jj] = TRUE_; ++numcnv; if (jj > *nev) { reord = TRUE_; } } /* L11: */ } /* %-----------------------------------------------------------% */ /* | Check the count (numcnv) of converged Ritz values with | */ /* | the number (nconv) reported by _saupd. If these two | */ /* | are different then there has probably been an error | */ /* | caused by incorrect passing of the _saupd data. | */ /* %-----------------------------------------------------------% */ if (msglvl > 2) { igraphivout_(&debug_1.logfil, &c__1, &numcnv, &debug_1.ndigit, "_seupd: Number of specified eigenvalues"); igraphivout_(&debug_1.logfil, &c__1, &nconv, &debug_1.ndigit, "_seupd: Number of \"converged\" eigenvalues") ; } if (numcnv != nconv) { *info = -17; goto L9000; } /* %-----------------------------------------------------------% */ /* | Call LAPACK routine _steqr to compute the eigenvalues and | */ /* | eigenvectors of the final symmetric tridiagonal matrix H. | */ /* | Initialize the eigenvector matrix Q to the identity. | */ /* %-----------------------------------------------------------% */ i__1 = *ncv - 1; igraphdcopy_(&i__1, &workl[ih + 1], &c__1, &workl[ihb], &c__1); igraphdcopy_(ncv, &workl[ih + ldh], &c__1, &workl[ihd], &c__1); igraphdsteqr_("Identity", ncv, &workl[ihd], &workl[ihb], &workl[iq], & ldq, &workl[iw], &ierr); if (ierr != 0) { *info = -8; goto L9000; } if (msglvl > 1) { igraphdcopy_(ncv, &workl[iq + *ncv - 1], &ldq, &workl[iw], &c__1); igraphdvout_(&debug_1.logfil, ncv, &workl[ihd], &debug_1.ndigit, "_seupd: NCV Ritz values of the final H matrix"); igraphdvout_(&debug_1.logfil, ncv, &workl[iw], &debug_1.ndigit, "_seupd: last row of the eigenvector matrix for H"); } if (reord) { /* %---------------------------------------------% */ /* | Reordered the eigenvalues and eigenvectors | */ /* | computed by _steqr so that the "converged" | */ /* | eigenvalues appear in the first NCONV | */ /* | positions of workl(ihd), and the associated | */ /* | eigenvectors appear in the first NCONV | */ /* | columns. | */ /* %---------------------------------------------% */ leftptr = 1; rghtptr = *ncv; if (*ncv == 1) { goto L30; } L20: if (select[leftptr]) { /* %-------------------------------------------% */ /* | Search, from the left, for the first Ritz | */ /* | value that has not converged. | */ /* %-------------------------------------------% */ ++leftptr; } else if (! select[rghtptr]) { /* %----------------------------------------------% */ /* | Search, from the right, the first Ritz value | */ /* | that has converged. | */ /* %----------------------------------------------% */ --rghtptr; } else { /* %----------------------------------------------% */ /* | Swap the Ritz value on the left that has not | */ /* | converged with the Ritz value on the right | */ /* | that has converged. Swap the associated | */ /* | eigenvector of the tridiagonal matrix H as | */ /* | well. | */ /* %----------------------------------------------% */ temp = workl[ihd + leftptr - 1]; workl[ihd + leftptr - 1] = workl[ihd + rghtptr - 1]; workl[ihd + rghtptr - 1] = temp; igraphdcopy_(ncv, &workl[iq + *ncv * (leftptr - 1)], &c__1, & workl[iw], &c__1); igraphdcopy_(ncv, &workl[iq + *ncv * (rghtptr - 1)], &c__1, & workl[iq + *ncv * (leftptr - 1)], &c__1); igraphdcopy_(ncv, &workl[iw], &c__1, &workl[iq + *ncv * ( rghtptr - 1)], &c__1); ++leftptr; --rghtptr; } if (leftptr < rghtptr) { goto L20; } L30: ; } if (msglvl > 2) { igraphdvout_(&debug_1.logfil, ncv, &workl[ihd], &debug_1.ndigit, "_seupd: The eigenvalues of H--reordered"); } /* %----------------------------------------% */ /* | Load the converged Ritz values into D. | */ /* %----------------------------------------% */ igraphdcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1); } else { /* %-----------------------------------------------------% */ /* | Ritz vectors not required. Load Ritz values into D. | */ /* %-----------------------------------------------------% */ igraphdcopy_(&nconv, &workl[ritz], &c__1, &d__[1], &c__1); igraphdcopy_(ncv, &workl[ritz], &c__1, &workl[ihd], &c__1); } /* %------------------------------------------------------------------% */ /* | Transform the Ritz values and possibly vectors and corresponding | */ /* | Ritz estimates of OP to those of A*x=lambda*B*x. The Ritz values | */ /* | (and corresponding data) are returned in ascending order. | */ /* %------------------------------------------------------------------% */ if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) { /* %---------------------------------------------------------% */ /* | Ascending sort of wanted Ritz values, vectors and error | */ /* | bounds. Not necessary if only Ritz values are desired. | */ /* %---------------------------------------------------------% */ if (*rvec) { igraphdsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq); } else { igraphdcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1); } } else { /* %-------------------------------------------------------------% */ /* | * Make a copy of all the Ritz values. | */ /* | * Transform the Ritz values back to the original system. | */ /* | For TYPE = 'SHIFTI' the transformation is | */ /* | lambda = 1/theta + sigma | */ /* | For TYPE = 'BUCKLE' the transformation is | */ /* | lambda = sigma * theta / ( theta - 1 ) | */ /* | For TYPE = 'CAYLEY' the transformation is | */ /* | lambda = sigma * (theta + 1) / (theta - 1 ) | */ /* | where the theta are the Ritz values returned by dsaupd . | */ /* | NOTES: | */ /* | *The Ritz vectors are not affected by the transformation. | */ /* | They are only reordered. | */ /* %-------------------------------------------------------------% */ igraphdcopy_(ncv, &workl[ihd], &c__1, &workl[iw], &c__1); if (igraphs_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihd + k - 1] = 1. / workl[ihd + k - 1] + *sigma; /* L40: */ } } else if (igraphs_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihd + k - 1] = *sigma * workl[ihd + k - 1] / (workl[ihd + k - 1] - 1.); /* L50: */ } } else if (igraphs_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihd + k - 1] = *sigma * (workl[ihd + k - 1] + 1.) / ( workl[ihd + k - 1] - 1.); /* L60: */ } } /* %-------------------------------------------------------------% */ /* | * Store the wanted NCONV lambda values into D. | */ /* | * Sort the NCONV wanted lambda in WORKL(IHD:IHD+NCONV-1) | */ /* | into ascending order and apply sort to the NCONV theta | */ /* | values in the transformed system. We will need this to | */ /* | compute Ritz estimates in the original system. | */ /* | * Finally sort the lambda`s into ascending order and apply | */ /* | to Ritz vectors if wanted. Else just sort lambda`s into | */ /* | ascending order. | */ /* | NOTES: | */ /* | *workl(iw:iw+ncv-1) contain the theta ordered so that they | */ /* | match the ordering of the lambda. We`ll use them again for | */ /* | Ritz vector purification. | */ /* %-------------------------------------------------------------% */ igraphdcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1); igraphdsortr_("LA", &c_true, &nconv, &workl[ihd], &workl[iw]); if (*rvec) { igraphdsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq); } else { igraphdcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1); d__1 = bnorm2 / rnorm; igraphdscal_(ncv, &d__1, &workl[ihb], &c__1); igraphdsortr_("LA", &c_true, &nconv, &d__[1], &workl[ihb]); } } /* %------------------------------------------------% */ /* | Compute the Ritz vectors. Transform the wanted | */ /* | eigenvectors of the symmetric tridiagonal H by | */ /* | the Lanczos basis matrix V. | */ /* %------------------------------------------------% */ if (*rvec && *(unsigned char *)howmny == 'A') { /* %----------------------------------------------------------% */ /* | Compute the QR factorization of the matrix representing | */ /* | the wanted invariant subspace located in the first NCONV | */ /* | columns of workl(iq,ldq). | */ /* %----------------------------------------------------------% */ igraphdgeqr2_(ncv, &nconv, &workl[iq], &ldq, &workl[iw + *ncv], & workl[ihb], &ierr); /* %--------------------------------------------------------% */ /* | * Postmultiply V by Q. | */ /* | * Copy the first NCONV columns of VQ into Z. | */ /* | The N by NCONV matrix Z is now a matrix representation | */ /* | of the approximate invariant subspace associated with | */ /* | the Ritz values in workl(ihd). | */ /* %--------------------------------------------------------% */ igraphdorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[iq], & ldq, &workl[iw + *ncv], &v[v_offset], ldv, &workd[*n + 1], & ierr); igraphdlacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], ldz); /* %-----------------------------------------------------% */ /* | In order to compute the Ritz estimates for the Ritz | */ /* | values in both systems, need the last row of the | */ /* | eigenvector matrix. Remember, it`s in factored form | */ /* %-----------------------------------------------------% */ i__1 = *ncv - 1; for (j = 1; j <= i__1; ++j) { workl[ihb + j - 1] = 0.; /* L65: */ } workl[ihb + *ncv - 1] = 1.; igraphdorm2r_("Left", "Transpose", ncv, &c__1, &nconv, &workl[iq], & ldq, &workl[iw + *ncv], &workl[ihb], ncv, &temp, &ierr); } else if (*rvec && *(unsigned char *)howmny == 'S') { /* Not yet implemented. See remark 2 above. */ } if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0 && *rvec) { i__1 = *ncv; for (j = 1; j <= i__1; ++j) { workl[ihb + j - 1] = rnorm * (d__1 = workl[ihb + j - 1], abs(d__1) ); /* L70: */ } } else if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && *rvec) { /* %-------------------------------------------------% */ /* | * Determine Ritz estimates of the theta. | */ /* | If RVEC = .true. then compute Ritz estimates | */ /* | of the theta. | */ /* | If RVEC = .false. then copy Ritz estimates | */ /* | as computed by dsaupd . | */ /* | * Determine Ritz estimates of the lambda. | */ /* %-------------------------------------------------% */ igraphdscal_(ncv, &bnorm2, &workl[ihb], &c__1); if (igraphs_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { /* Computing 2nd power */ d__2 = workl[iw + k - 1]; workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1], abs(d__1)) / (d__2 * d__2); /* L80: */ } } else if (igraphs_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { /* Computing 2nd power */ d__2 = workl[iw + k - 1] - 1.; workl[ihb + k - 1] = *sigma * (d__1 = workl[ihb + k - 1], abs( d__1)) / (d__2 * d__2); /* L90: */ } } else if (igraphs_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1] / workl[iw + k - 1] * (workl[iw + k - 1] - 1.), abs(d__1)); /* L100: */ } } } if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && msglvl > 1) { igraphdvout_(&debug_1.logfil, &nconv, &d__[1], &debug_1.ndigit, "_se" "upd: Untransformed converged Ritz values"); igraphdvout_(&debug_1.logfil, &nconv, &workl[ihb], &debug_1.ndigit, "_seupd: Ritz estimates of the untransformed Ritz values"); } else if (msglvl > 1) { igraphdvout_(&debug_1.logfil, &nconv, &d__[1], &debug_1.ndigit, "_se" "upd: Converged Ritz values"); igraphdvout_(&debug_1.logfil, &nconv, &workl[ihb], &debug_1.ndigit, "_seupd: Associated Ritz estimates"); } /* %-------------------------------------------------% */ /* | Ritz vector purification step. Formally perform | */ /* | one of inverse subspace iteration. Only used | */ /* | for MODE = 3,4,5. See reference 7 | */ /* %-------------------------------------------------% */ if (*rvec && (igraphs_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0 || igraphs_cmp( type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0)) { i__1 = nconv - 1; for (k = 0; k <= i__1; ++k) { workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / workl[iw + k]; /* L110: */ } } else if (*rvec && igraphs_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) { i__1 = nconv - 1; for (k = 0; k <= i__1; ++k) { workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / (workl[iw + k] - 1.); /* L120: */ } } if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0) { igraphdger_(n, &nconv, &c_b110, &resid[1], &c__1, &workl[iw], &c__1, & z__[z_offset], ldz); } L9000: return 0; /* %---------------% */ /* | End of dseupd | */ /* %---------------% */ } /* igraphdseupd_ */
Subroutine */ int igraphdseupd_(logical *rvec, char *howmny, logical *select, doublereal *d__, doublereal *z__, integer *ldz, doublereal *sigma, char *bmat, integer *n, char *which, integer *nev, doublereal *tol, doublereal *resid, integer *ncv, doublereal *v, integer *ldv, integer *iparam, integer *ipntr, doublereal *workd, doublereal *workl, integer *lworkl, integer *info) { /* System generated locals */ integer v_dim1, v_offset, z_dim1, z_offset, i__1; doublereal d__1, d__2, d__3; /* Builtin functions */ integer s_cmp(char *, char *, ftnlen, ftnlen); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double pow_dd(doublereal *, doublereal *); /* Local variables */ integer j, k, ih, iq, iw; doublereal kv[2]; integer ibd, ihb, ihd, ldh, ilg, ldq, ism, irz; extern /* Subroutine */ int igraphdger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); integer mode; doublereal eps23; integer ierr; doublereal temp; integer next; char type__[6]; integer ritz; extern doublereal igraphdnrm2_(integer *, doublereal *, integer *); extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *); logical reord; extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, doublereal *, integer *); integer nconv; doublereal rnorm; extern /* Subroutine */ int igraphdvout_(integer *, integer *, doublereal *, integer *, char *, ftnlen), igraphivout_(integer *, integer *, integer * , integer *, char *, ftnlen), igraphdgeqr2_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); doublereal bnorm2; extern /* Subroutine */ int igraphdorm2r_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); doublereal thres1, thres2; extern doublereal igraphdlamch_(char *); extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); integer logfil, ndigit, bounds, mseupd = 0; extern /* Subroutine */ int igraphdsteqr_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *); integer msglvl, ktrord; extern /* Subroutine */ int igraphdsesrt_(char *, logical *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdsortr_(char *, logical *, integer *, doublereal *, doublereal *); doublereal tempbnd; integer leftptr, rghtptr; /* %----------------------------------------------------% | Include files for debugging and timing information | %----------------------------------------------------% %------------------% | Scalar Arguments | %------------------% %-----------------% | Array Arguments | %-----------------% %------------% | Parameters | %------------% %---------------% | Local Scalars | %---------------% %--------------% | Local Arrays | %--------------% %----------------------% | External Subroutines | %----------------------% %--------------------% | External Functions | %--------------------% %---------------------% | Intrinsic Functions | %---------------------% %-----------------------% | Executable Statements | %-----------------------% %------------------------% | Set default parameters | %------------------------% Parameter adjustments */ --workd; --resid; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --d__; --select; v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; --iparam; --ipntr; --workl; /* Function Body */ msglvl = mseupd; mode = iparam[7]; nconv = iparam[5]; *info = 0; /* %--------------% | Quick return | %--------------% */ if (nconv == 0) { goto L9000; } ierr = 0; if (nconv <= 0) { ierr = -14; } if (*n <= 0) { ierr = -1; } if (*nev <= 0) { ierr = -2; } if (*ncv <= *nev || *ncv > *n) { ierr = -3; } if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "SM", ( ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "LA", (ftnlen)2, ( ftnlen)2) != 0 && s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) != 0) { ierr = -5; } if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G') { ierr = -6; } if (*(unsigned char *)howmny != 'A' && *(unsigned char *)howmny != 'P' && *(unsigned char *)howmny != 'S' && *rvec) { ierr = -15; } if (*rvec && *(unsigned char *)howmny == 'S') { ierr = -16; } /* Computing 2nd power */ i__1 = *ncv; if (*rvec && *lworkl < i__1 * i__1 + (*ncv << 3)) { ierr = -7; } if (mode == 1 || mode == 2) { s_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6); } else if (mode == 3) { s_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6); } else if (mode == 4) { s_copy(type__, "BUCKLE", (ftnlen)6, (ftnlen)6); } else if (mode == 5) { s_copy(type__, "CAYLEY", (ftnlen)6, (ftnlen)6); } else { ierr = -10; } if (mode == 1 && *(unsigned char *)bmat == 'G') { ierr = -11; } if (*nev == 1 && s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) { ierr = -12; } /* %------------% | Error Exit | %------------% */ if (ierr != 0) { *info = ierr; goto L9000; } /* %-------------------------------------------------------% | Pointer into WORKL for address of H, RITZ, BOUNDS, Q | | etc... and the remaining workspace. | | Also update pointer to be used on output. | | Memory is laid out as follows: | | workl(1:2*ncv) := generated tridiagonal matrix H | | The subdiagonal is stored in workl(2:ncv). | | The dead spot is workl(1) but upon exiting | | dsaupd stores the B-norm of the last residual | | vector in workl(1). We use this !!! | | workl(2*ncv+1:2*ncv+ncv) := ritz values | | The wanted values are in the first NCONV spots. | | workl(3*ncv+1:3*ncv+ncv) := computed Ritz estimates | | The wanted values are in the first NCONV spots. | | NOTE: workl(1:4*ncv) is set by dsaupd and is not | | modified by dseupd. | %-------------------------------------------------------% %-------------------------------------------------------% | The following is used and set by dseupd. | | workl(4*ncv+1:4*ncv+ncv) := used as workspace during | | computation of the eigenvectors of H. Stores | | the diagonal of H. Upon EXIT contains the NCV | | Ritz values of the original system. The first | | NCONV spots have the wanted values. If MODE = | | 1 or 2 then will equal workl(2*ncv+1:3*ncv). | | workl(5*ncv+1:5*ncv+ncv) := used as workspace during | | computation of the eigenvectors of H. Stores | | the subdiagonal of H. Upon EXIT contains the | | NCV corresponding Ritz estimates of the | | original system. The first NCONV spots have the | | wanted values. If MODE = 1,2 then will equal | | workl(3*ncv+1:4*ncv). | | workl(6*ncv+1:6*ncv+ncv*ncv) := orthogonal Q that is | | the eigenvector matrix for H as returned by | | dsteqr. Not referenced if RVEC = .False. | | Ordering follows that of workl(4*ncv+1:5*ncv) | | workl(6*ncv+ncv*ncv+1:6*ncv+ncv*ncv+2*ncv) := | | Workspace. Needed by dsteqr and by dseupd. | | GRAND total of NCV*(NCV+8) locations. | %-------------------------------------------------------% */ ih = ipntr[5]; ritz = ipntr[6]; bounds = ipntr[7]; ldh = *ncv; ldq = *ncv; ihd = bounds + ldh; ihb = ihd + ldh; iq = ihb + ldh; iw = iq + ldh * *ncv; next = iw + (*ncv << 1); ipntr[4] = next; ipntr[8] = ihd; ipntr[9] = ihb; ipntr[10] = iq; /* %----------------------------------------% | irz points to the Ritz values computed | | by _seigt before exiting _saup2. | | ibd points to the Ritz estimates | | computed by _seigt before exiting | | _saup2. | %----------------------------------------% */ irz = ipntr[11] + *ncv; ibd = irz + *ncv; /* %---------------------------------% | Set machine dependent constant. | %---------------------------------% */ eps23 = igraphdlamch_("Epsilon-Machine"); eps23 = pow_dd(&eps23, &c_b21); /* %---------------------------------------% | RNORM is B-norm of the RESID(1:N). | | BNORM2 is the 2 norm of B*RESID(1:N). | | Upon exit of dsaupd WORKD(1:N) has | | B*RESID(1:N). | %---------------------------------------% */ rnorm = workl[ih]; if (*(unsigned char *)bmat == 'I') { bnorm2 = rnorm; } else if (*(unsigned char *)bmat == 'G') { bnorm2 = igraphdnrm2_(n, &workd[1], &c__1); } if (*rvec) { /* %------------------------------------------------% | Get the converged Ritz value on the boundary. | | This value will be used to dermine whether we | | need to reorder the eigenvalues and | | eigenvectors comupted by _steqr, and is | | referred to as the "threshold" value. | | | | A Ritz value gamma is said to be a wanted | | one, if | | abs(gamma) .ge. threshold, when WHICH = 'LM'; | | abs(gamma) .le. threshold, when WHICH = 'SM'; | | gamma .ge. threshold, when WHICH = 'LA'; | | gamma .le. threshold, when WHICH = 'SA'; | | gamma .le. thres1 .or. gamma .ge. thres2 | | when WHICH = 'BE'; | | | | Note: converged Ritz values and associated | | Ritz estimates have been placed in the first | | NCONV locations in workl(ritz) and | | workl(bounds) respectively. They have been | | sorted (in _saup2) according to the WHICH | | selection criterion. (Except in the case | | WHICH = 'BE', they are sorted in an increasing | | order.) | %------------------------------------------------% */ if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(which, "SM", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(which, "LA", ( ftnlen)2, (ftnlen)2) == 0 || s_cmp(which, "SA", (ftnlen)2, ( ftnlen)2) == 0) { thres1 = workl[ritz]; if (msglvl > 2) { igraphdvout_(&logfil, &c__1, &thres1, &ndigit, "_seupd: Threshold " "eigenvalue used for re-ordering", (ftnlen)49); } } else if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) { /* %------------------------------------------------% | Ritz values returned from _saup2 have been | | sorted in increasing order. Thus two | | "threshold" values (one for the small end, one | | for the large end) are in the middle. | %------------------------------------------------% */ ism = max(*nev,nconv) / 2; ilg = ism + 1; thres1 = workl[ism]; thres2 = workl[ilg]; if (msglvl > 2) { kv[0] = thres1; kv[1] = thres2; igraphdvout_(&logfil, &c__2, kv, &ndigit, "_seupd: Threshold eigen" "values used for re-ordering", (ftnlen)50); } } /* %----------------------------------------------------------% | Check to see if all converged Ritz values appear within | | the first NCONV diagonal elements returned from _seigt. | | This is done in the following way: | | | | 1) For each Ritz value obtained from _seigt, compare it | | with the threshold Ritz value computed above to | | determine whether it is a wanted one. | | | | 2) If it is wanted, then check the corresponding Ritz | | estimate to see if it has converged. If it has, set | | correponding entry in the logical array SELECT to | | .TRUE.. | | | | If SELECT(j) = .TRUE. and j > NCONV, then there is a | | converged Ritz value that does not appear at the top of | | the diagonal matrix computed by _seigt in _saup2. | | Reordering is needed. | %----------------------------------------------------------% */ reord = FALSE_; ktrord = 0; i__1 = *ncv - 1; for (j = 0; j <= i__1; ++j) { select[j + 1] = FALSE_; if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0) { if ((d__1 = workl[irz + j], abs(d__1)) >= abs(thres1)) { /* Computing MAX */ d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1)); tempbnd = max(d__2,d__3); if (workl[ibd + j] <= *tol * tempbnd) { select[j + 1] = TRUE_; } } } else if (s_cmp(which, "SM", (ftnlen)2, (ftnlen)2) == 0) { if ((d__1 = workl[irz + j], abs(d__1)) <= abs(thres1)) { /* Computing MAX */ d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1)); tempbnd = max(d__2,d__3); if (workl[ibd + j] <= *tol * tempbnd) { select[j + 1] = TRUE_; } } } else if (s_cmp(which, "LA", (ftnlen)2, (ftnlen)2) == 0) { if (workl[irz + j] >= thres1) { /* Computing MAX */ d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1)); tempbnd = max(d__2,d__3); if (workl[ibd + j] <= *tol * tempbnd) { select[j + 1] = TRUE_; } } } else if (s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) == 0) { if (workl[irz + j] <= thres1) { /* Computing MAX */ d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1)); tempbnd = max(d__2,d__3); if (workl[ibd + j] <= *tol * tempbnd) { select[j + 1] = TRUE_; } } } else if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) { if (workl[irz + j] <= thres1 || workl[irz + j] >= thres2) { /* Computing MAX */ d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1)); tempbnd = max(d__2,d__3); if (workl[ibd + j] <= *tol * tempbnd) { select[j + 1] = TRUE_; } } } if (j + 1 > nconv) { reord = select[j + 1] || reord; } if (select[j + 1]) { ++ktrord; } /* L10: */ } /* %-------------------------------------------% | If KTRORD .ne. NCONV, something is wrong. | %-------------------------------------------% */ if (msglvl > 2) { igraphivout_(&logfil, &c__1, &ktrord, &ndigit, "_seupd: Number of spec" "ified eigenvalues", (ftnlen)39); igraphivout_(&logfil, &c__1, &nconv, &ndigit, "_seupd: Number of \"con" "verged\" eigenvalues", (ftnlen)41); } /* %-----------------------------------------------------------% | Call LAPACK routine _steqr to compute the eigenvalues and | | eigenvectors of the final symmetric tridiagonal matrix H. | | Initialize the eigenvector matrix Q to the identity. | %-----------------------------------------------------------% */ i__1 = *ncv - 1; igraphdcopy_(&i__1, &workl[ih + 1], &c__1, &workl[ihb], &c__1); igraphdcopy_(ncv, &workl[ih + ldh], &c__1, &workl[ihd], &c__1); igraphdsteqr_("Identity", ncv, &workl[ihd], &workl[ihb], &workl[iq], &ldq, & workl[iw], &ierr); if (ierr != 0) { *info = -8; goto L9000; } if (msglvl > 1) { igraphdcopy_(ncv, &workl[iq + *ncv - 1], &ldq, &workl[iw], &c__1); igraphdvout_(&logfil, ncv, &workl[ihd], &ndigit, "_seupd: NCV Ritz val" "ues of the final H matrix", (ftnlen)45); igraphdvout_(&logfil, ncv, &workl[iw], &ndigit, "_seupd: last row of t" "he eigenvector matrix for H", (ftnlen)48); } if (reord) { /* %---------------------------------------------% | Reordered the eigenvalues and eigenvectors | | computed by _steqr so that the "converged" | | eigenvalues appear in the first NCONV | | positions of workl(ihd), and the associated | | eigenvectors appear in the first NCONV | | columns. | %---------------------------------------------% */ leftptr = 1; rghtptr = *ncv; if (*ncv == 1) { goto L30; } L20: if (select[leftptr]) { /* %-------------------------------------------% | Search, from the left, for the first Ritz | | value that has not converged. | %-------------------------------------------% */ ++leftptr; } else if (! select[rghtptr]) { /* %----------------------------------------------% | Search, from the right, the first Ritz value | | that has converged. | %----------------------------------------------% */ --rghtptr; } else { /* %----------------------------------------------% | Swap the Ritz value on the left that has not | | converged with the Ritz value on the right | | that has converged. Swap the associated | | eigenvector of the tridiagonal matrix H as | | well. | %----------------------------------------------% */ temp = workl[ihd + leftptr - 1]; workl[ihd + leftptr - 1] = workl[ihd + rghtptr - 1]; workl[ihd + rghtptr - 1] = temp; igraphdcopy_(ncv, &workl[iq + *ncv * (leftptr - 1)], &c__1, &workl[ iw], &c__1); igraphdcopy_(ncv, &workl[iq + *ncv * (rghtptr - 1)], &c__1, &workl[ iq + *ncv * (leftptr - 1)], &c__1); igraphdcopy_(ncv, &workl[iw], &c__1, &workl[iq + *ncv * (rghtptr - 1)], &c__1); ++leftptr; --rghtptr; } if (leftptr < rghtptr) { goto L20; } L30: ; } if (msglvl > 2) { igraphdvout_(&logfil, ncv, &workl[ihd], &ndigit, "_seupd: The eigenval" "ues of H--reordered", (ftnlen)39); } /* %----------------------------------------% | Load the converged Ritz values into D. | %----------------------------------------% */ igraphdcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1); } else { /* %-----------------------------------------------------% | Ritz vectors not required. Load Ritz values into D. | %-----------------------------------------------------% */ igraphdcopy_(&nconv, &workl[ritz], &c__1, &d__[1], &c__1); igraphdcopy_(ncv, &workl[ritz], &c__1, &workl[ihd], &c__1); } /* %------------------------------------------------------------------% | Transform the Ritz values and possibly vectors and corresponding | | Ritz estimates of OP to those of A*x=lambda*B*x. The Ritz values | | (and corresponding data) are returned in ascending order. | %------------------------------------------------------------------% */ if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) { /* %---------------------------------------------------------% | Ascending sort of wanted Ritz values, vectors and error | | bounds. Not necessary if only Ritz values are desired. | %---------------------------------------------------------% */ if (*rvec) { igraphdsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq); } else { igraphdcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1); } } else { /* %-------------------------------------------------------------% | * Make a copy of all the Ritz values. | | * Transform the Ritz values back to the original system. | | For TYPE = 'SHIFTI' the transformation is | | lambda = 1/theta + sigma | | For TYPE = 'BUCKLE' the transformation is | | lambda = sigma * theta / ( theta - 1 ) | | For TYPE = 'CAYLEY' the transformation is | | lambda = sigma * (theta + 1) / (theta - 1 ) | | where the theta are the Ritz values returned by dsaupd. | | NOTES: | | *The Ritz vectors are not affected by the transformation. | | They are only reordered. | %-------------------------------------------------------------% */ igraphdcopy_(ncv, &workl[ihd], &c__1, &workl[iw], &c__1); if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihd + k - 1] = 1. / workl[ihd + k - 1] + *sigma; /* L40: */ } } else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihd + k - 1] = *sigma * workl[ihd + k - 1] / (workl[ihd + k - 1] - 1.); /* L50: */ } } else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihd + k - 1] = *sigma * (workl[ihd + k - 1] + 1.) / ( workl[ihd + k - 1] - 1.); /* L60: */ } } /* %-------------------------------------------------------------% | * Store the wanted NCONV lambda values into D. | | * Sort the NCONV wanted lambda in WORKL(IHD:IHD+NCONV-1) | | into ascending order and apply sort to the NCONV theta | | values in the transformed system. We'll need this to | | compute Ritz estimates in the original system. | | * Finally sort the lambda's into ascending order and apply | | to Ritz vectors if wanted. Else just sort lambda's into | | ascending order. | | NOTES: | | *workl(iw:iw+ncv-1) contain the theta ordered so that they | | match the ordering of the lambda. We'll use them again for | | Ritz vector purification. | %-------------------------------------------------------------% */ igraphdcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1); igraphdsortr_("LA", &c_true, &nconv, &workl[ihd], &workl[iw]); if (*rvec) { igraphdsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq); } else { igraphdcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1); d__1 = bnorm2 / rnorm; igraphdscal_(ncv, &d__1, &workl[ihb], &c__1); igraphdsortr_("LA", &c_true, &nconv, &d__[1], &workl[ihb]); } } /* %------------------------------------------------% | Compute the Ritz vectors. Transform the wanted | | eigenvectors of the symmetric tridiagonal H by | | the Lanczos basis matrix V. | %------------------------------------------------% */ if (*rvec && *(unsigned char *)howmny == 'A') { /* %----------------------------------------------------------% | Compute the QR factorization of the matrix representing | | the wanted invariant subspace located in the first NCONV | | columns of workl(iq,ldq). | %----------------------------------------------------------% */ igraphdgeqr2_(ncv, &nconv, &workl[iq], &ldq, &workl[iw + *ncv], &workl[ihb], &ierr); /* %--------------------------------------------------------% | * Postmultiply V by Q. | | * Copy the first NCONV columns of VQ into Z. | | The N by NCONV matrix Z is now a matrix representation | | of the approximate invariant subspace associated with | | the Ritz values in workl(ihd). | %--------------------------------------------------------% */ igraphdorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[iq], &ldq, & workl[iw + *ncv], &v[v_offset], ldv, &workd[*n + 1], &ierr); igraphdlacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], ldz); /* %-----------------------------------------------------% | In order to compute the Ritz estimates for the Ritz | | values in both systems, need the last row of the | | eigenvector matrix. Remember, it's in factored form | %-----------------------------------------------------% */ i__1 = *ncv - 1; for (j = 1; j <= i__1; ++j) { workl[ihb + j - 1] = 0.; /* L65: */ } workl[ihb + *ncv - 1] = 1.; igraphdorm2r_("Left", "Transpose", ncv, &c__1, &nconv, &workl[iq], &ldq, & workl[iw + *ncv], &workl[ihb], ncv, &temp, &ierr); } else if (*rvec && *(unsigned char *)howmny == 'S') { /* Not yet implemented. See remark 2 above. */ } if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0 && *rvec) { i__1 = *ncv; for (j = 1; j <= i__1; ++j) { workl[ihb + j - 1] = rnorm * (d__1 = workl[ihb + j - 1], abs(d__1) ); /* L70: */ } } else if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && *rvec) { /* %-------------------------------------------------% | * Determine Ritz estimates of the theta. | | If RVEC = .true. then compute Ritz estimates | | of the theta. | | If RVEC = .false. then copy Ritz estimates | | as computed by dsaupd. | | * Determine Ritz estimates of the lambda. | %-------------------------------------------------% */ igraphdscal_(ncv, &bnorm2, &workl[ihb], &c__1); if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { /* Computing 2nd power */ d__2 = workl[iw + k - 1]; workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1], abs(d__1)) / (d__2 * d__2); /* L80: */ } } else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { /* Computing 2nd power */ d__2 = workl[iw + k - 1] - 1.; workl[ihb + k - 1] = *sigma * (d__1 = workl[ihb + k - 1], abs( d__1)) / (d__2 * d__2); /* L90: */ } } else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1] / workl[iw + k - 1] * (workl[iw + k - 1] - 1.), abs(d__1)); /* L100: */ } } } if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && msglvl > 1) { igraphdvout_(&logfil, &nconv, &d__[1], &ndigit, "_seupd: Untransformed con" "verged Ritz values", (ftnlen)43); igraphdvout_(&logfil, &nconv, &workl[ihb], &ndigit, "_seupd: Ritz estimate" "s of the untransformed Ritz values", (ftnlen)55); } else if (msglvl > 1) { igraphdvout_(&logfil, &nconv, &d__[1], &ndigit, "_seupd: Converged Ritz va" "lues", (ftnlen)29); igraphdvout_(&logfil, &nconv, &workl[ihb], &ndigit, "_seupd: Associated Ri" "tz estimates", (ftnlen)33); } /* %-------------------------------------------------% | Ritz vector purification step. Formally perform | | one of inverse subspace iteration. Only used | | for MODE = 3,4,5. See reference 7 | %-------------------------------------------------% */ if (*rvec && (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0 || s_cmp( type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0)) { i__1 = nconv - 1; for (k = 0; k <= i__1; ++k) { workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / workl[iw + k]; /* L110: */ } } else if (*rvec && s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) { i__1 = nconv - 1; for (k = 0; k <= i__1; ++k) { workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / (workl[iw + k] - 1.); /* L120: */ } } if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0) { igraphdger_(n, &nconv, &c_b119, &resid[1], &c__1, &workl[iw], &c__1, &z__[ z_offset], ldz); } L9000: return 0; /* %---------------% | End of dseupd | %---------------% */ } /* igraphdseupd_ */
/* Subroutine */ int igraphdtrsen_(char *job, char *compq, logical *select, integer *n, doublereal *t, integer *ldt, doublereal *q, integer *ldq, doublereal *wr, doublereal *wi, integer *m, doublereal *s, doublereal *sep, doublereal *work, integer *lwork, integer *iwork, integer * liwork, integer *info) { /* System generated locals */ integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer k, n1, n2, kk, nn, ks; doublereal est; integer kase; logical pair; integer ierr; logical swap; doublereal scale; extern logical igraphlsame_(char *, char *); integer isave[3], lwmin; logical wantq, wants; doublereal rnorm; extern /* Subroutine */ int igraphdlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal igraphdlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), igraphxerbla_(char *, integer *, ftnlen); logical wantbh; extern /* Subroutine */ int igraphdtrexc_(char *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *); integer liwmin; logical wantsp, lquery; extern /* Subroutine */ int igraphdtrsyl_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); /* -- LAPACK routine (version 3.3.1) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -- April 2011 -- Purpose ======= DTRSEN reorders the real Schur factorization of a real matrix A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix T, and the leading columns of Q form an orthonormal basis of the corresponding right invariant subspace. Optionally the routine computes the reciprocal condition numbers of the cluster of eigenvalues and/or the invariant subspace. T must be in Schur canonical form (as returned by DHSEQR), that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elemnts equal and its off-diagonal elements of opposite sign. Arguments ========= JOB (input) CHARACTER*1 Specifies whether condition numbers are required for the cluster of eigenvalues (S) or the invariant subspace (SEP): = 'N': none; = 'E': for eigenvalues only (S); = 'V': for invariant subspace only (SEP); = 'B': for both eigenvalues and invariant subspace (S and SEP). COMPQ (input) CHARACTER*1 = 'V': update the matrix Q of Schur vectors; = 'N': do not update Q. SELECT (input) LOGICAL array, dimension (N) SELECT specifies the eigenvalues in the selected cluster. To select a real eigenvalue w(j), SELECT(j) must be set to .TRUE.. To select a complex conjugate pair of eigenvalues w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, either SELECT(j) or SELECT(j+1) or both must be set to .TRUE.; a complex conjugate pair of eigenvalues must be either both included in the cluster or both excluded. N (input) INTEGER The order of the matrix T. N >= 0. T (input/output) DOUBLE PRECISION array, dimension (LDT,N) On entry, the upper quasi-triangular matrix T, in Schur canonical form. On exit, T is overwritten by the reordered matrix T, again in Schur canonical form, with the selected eigenvalues in the leading diagonal blocks. LDT (input) INTEGER The leading dimension of the array T. LDT >= max(1,N). Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) On entry, if COMPQ = 'V', the matrix Q of Schur vectors. On exit, if COMPQ = 'V', Q has been postmultiplied by the orthogonal transformation matrix which reorders T; the leading M columns of Q form an orthonormal basis for the specified invariant subspace. If COMPQ = 'N', Q is not referenced. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= 1; and if COMPQ = 'V', LDQ >= N. WR (output) DOUBLE PRECISION array, dimension (N) WI (output) DOUBLE PRECISION array, dimension (N) The real and imaginary parts, respectively, of the reordered eigenvalues of T. The eigenvalues are stored in the same order as on the diagonal of T, with WR(i) = T(i,i) and, if T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and WI(i+1) = -WI(i). Note that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering. M (output) INTEGER The dimension of the specified invariant subspace. 0 < = M <= N. S (output) DOUBLE PRECISION If JOB = 'E' or 'B', S is a lower bound on the reciprocal condition number for the selected cluster of eigenvalues. S cannot underestimate the true reciprocal condition number by more than a factor of sqrt(N). If M = 0 or N, S = 1. If JOB = 'N' or 'V', S is not referenced. SEP (output) DOUBLE PRECISION If JOB = 'V' or 'B', SEP is the estimated reciprocal condition number of the specified invariant subspace. If M = 0 or N, SEP = norm(T). If JOB = 'N' or 'E', SEP is not referenced. WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If JOB = 'N', LWORK >= max(1,N); if JOB = 'E', LWORK >= max(1,M*(N-M)); if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of the array IWORK. If JOB = 'N' or 'E', LIWORK >= 1; if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)). If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the IWORK array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value = 1: reordering of T failed because some eigenvalues are too close to separate (the problem is very ill-conditioned); T may have been partially reordered, and WR and WI contain the eigenvalues in the same order as in T; S and SEP (if requested) are set to zero. Further Details =============== DTRSEN first collects the selected eigenvalues by computing an orthogonal transformation Z to move them to the top left corner of T. In other words, the selected eigenvalues are the eigenvalues of T11 in: Z**T * T * Z = ( T11 T12 ) n1 ( 0 T22 ) n2 n1 n2 where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns of Z span the specified invariant subspace of T. If T has been obtained from the real Schur factorization of a matrix A = Q*T*Q**T, then the reordered real Schur factorization of A is given by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span the corresponding invariant subspace of A. The reciprocal condition number of the average of the eigenvalues of T11 may be returned in S. S lies between 0 (very badly conditioned) and 1 (very well conditioned). It is computed as follows. First we compute R so that P = ( I R ) n1 ( 0 0 ) n2 n1 n2 is the projector on the invariant subspace associated with T11. R is the solution of the Sylvester equation: T11*R - R*T22 = T12. Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote the two-norm of M. Then S is computed as the lower bound (1 + F-norm(R)**2)**(-1/2) on the reciprocal of 2-norm(P), the true reciprocal condition number. S cannot underestimate 1 / 2-norm(P) by more than a factor of sqrt(N). An approximate error bound for the computed average of the eigenvalues of T11 is EPS * norm(T) / S where EPS is the machine precision. The reciprocal condition number of the right invariant subspace spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. SEP is defined as the separation of T11 and T22: sep( T11, T22 ) = sigma-min( C ) where sigma-min(C) is the smallest singular value of the n1*n2-by-n1*n2 matrix C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) I(m) is an m by m identity matrix, and kprod denotes the Kronecker product. We estimate sigma-min(C) by the reciprocal of an estimate of the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2). When SEP is small, small changes in T can cause large changes in the invariant subspace. An approximate bound on the maximum angular error in the computed right invariant subspace is EPS * norm(T) / SEP ===================================================================== Decode and test the input parameters Parameter adjustments */ --select; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --wr; --wi; --work; --iwork; /* Function Body */ wantbh = igraphlsame_(job, "B"); wants = igraphlsame_(job, "E") || wantbh; wantsp = igraphlsame_(job, "V") || wantbh; wantq = igraphlsame_(compq, "V"); *info = 0; lquery = *lwork == -1; if (! igraphlsame_(job, "N") && ! wants && ! wantsp) { *info = -1; } else if (! igraphlsame_(compq, "N") && ! wantq) { *info = -2; } else if (*n < 0) { *info = -4; } else if (*ldt < max(1,*n)) { *info = -6; } else if (*ldq < 1 || wantq && *ldq < *n) { *info = -8; } else { /* Set M to the dimension of the specified invariant subspace, and test LWORK and LIWORK. */ *m = 0; pair = FALSE_; i__1 = *n; for (k = 1; k <= i__1; ++k) { if (pair) { pair = FALSE_; } else { if (k < *n) { if (t[k + 1 + k * t_dim1] == 0.) { if (select[k]) { ++(*m); } } else { pair = TRUE_; if (select[k] || select[k + 1]) { *m += 2; } } } else { if (select[*n]) { ++(*m); } } } /* L10: */ } n1 = *m; n2 = *n - *m; nn = n1 * n2; if (wantsp) { /* Computing MAX */ i__1 = 1, i__2 = nn << 1; lwmin = max(i__1,i__2); liwmin = max(1,nn); } else if (igraphlsame_(job, "N")) { lwmin = max(1,*n); liwmin = 1; } else if (igraphlsame_(job, "E")) { lwmin = max(1,nn); liwmin = 1; } if (*lwork < lwmin && ! lquery) { *info = -15; } else if (*liwork < liwmin && ! lquery) { *info = -17; } } if (*info == 0) { work[1] = (doublereal) lwmin; iwork[1] = liwmin; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DTRSEN", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible. */ if (*m == *n || *m == 0) { if (wants) { *s = 1.; } if (wantsp) { *sep = igraphdlange_("1", n, n, &t[t_offset], ldt, &work[1]); } goto L40; } /* Collect the selected blocks at the top-left corner of T. */ ks = 0; pair = FALSE_; i__1 = *n; for (k = 1; k <= i__1; ++k) { if (pair) { pair = FALSE_; } else { swap = select[k]; if (k < *n) { if (t[k + 1 + k * t_dim1] != 0.) { pair = TRUE_; swap = swap || select[k + 1]; } } if (swap) { ++ks; /* Swap the K-th block to position KS. */ ierr = 0; kk = k; if (k != ks) { igraphdtrexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, & kk, &ks, &work[1], &ierr); } if (ierr == 1 || ierr == 2) { /* Blocks too close to swap: exit. */ *info = 1; if (wants) { *s = 0.; } if (wantsp) { *sep = 0.; } goto L40; } if (pair) { ++ks; } } } /* L20: */ } if (wants) { /* Solve Sylvester equation for R: T11*R - R*T22 = scale*T12 */ igraphdlacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1); igraphdtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr); /* Estimate the reciprocal of the condition number of the cluster of eigenvalues. */ rnorm = igraphdlange_("F", &n1, &n2, &work[1], &n1, &work[1]); if (rnorm == 0.) { *s = 1.; } else { *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm)); } } if (wantsp) { /* Estimate sep(T11,T22). */ est = 0.; kase = 0; L30: igraphdlacn2_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase, isave); if (kase != 0) { if (kase == 1) { /* Solve T11*R - R*T22 = scale*X. */ igraphdtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, & ierr); } else { /* Solve T11**T*R - R*T22**T = scale*X. */ igraphdtrsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, & ierr); } goto L30; } *sep = scale / est; } L40: /* Store the output eigenvalues in WR and WI. */ i__1 = *n; for (k = 1; k <= i__1; ++k) { wr[k] = t[k + k * t_dim1]; wi[k] = 0.; /* L50: */ } i__1 = *n - 1; for (k = 1; k <= i__1; ++k) { if (t[k + 1 + k * t_dim1] != 0.) { wi[k] = sqrt((d__1 = t[k + (k + 1) * t_dim1], abs(d__1))) * sqrt(( d__2 = t[k + 1 + k * t_dim1], abs(d__2))); wi[k + 1] = -wi[k]; } /* L60: */ } work[1] = (doublereal) lwmin; iwork[1] = liwmin; return 0; /* End of DTRSEN */ } /* igraphdtrsen_ */