コード例 #1
0
/* ----------------------------------------------------------------------- */
/* Subroutine */ int igraphdseupd_(logical *rvec, char *howmny, logical *
	select, doublereal *d__, doublereal *z__, integer *ldz, doublereal *
	sigma, char *bmat, integer *n, char *which, integer *nev, doublereal *
	tol, doublereal *resid, integer *ncv, doublereal *v, integer *ldv, 
	integer *iparam, integer *ipntr, doublereal *workd, doublereal *workl,
	 integer *lworkl, integer *info)
{
    /* System generated locals */
    integer v_dim1, v_offset, z_dim1, z_offset, i__1;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    integer igraphs_cmp(char *, char *, ftnlen, ftnlen);
    /* Subroutine */ int igraphs_copy(char *, char *, ftnlen, ftnlen);
    double igraphpow_dd(doublereal *, doublereal *);

    /* Local variables */
    static integer j, k, ih, jj, iq, np, iw;
    extern /* Subroutine */ int igraphdger_(integer *, integer *, doublereal *
	    , doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    static integer ibd, ihb, ihd, ldh;
    extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
    static integer ldq, irz;
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, 
	    doublereal *, integer *), igraphdcopy_(integer *, doublereal *, 
	    integer *, doublereal *, integer *), igraphdvout_(integer *, 
	    integer *, doublereal *, integer *, char *), igraphivout_(
	    integer *, integer *, integer *, integer *, char *), 
	    igraphdgeqr2_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *);
    static integer mode;
    static doublereal eps23;
    extern /* Subroutine */ int igraphdorm2r_(char *, char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *);
    static integer ierr;
    static doublereal temp;
    static integer next;
    static char type__[6];
    extern doublereal igraphdlamch_(char *);
    static integer ritz;
    extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    igraphdsgets_(integer *, char *, integer *, integer *, doublereal 
	    *, doublereal *, doublereal *);
    static doublereal temp1;
    extern /* Subroutine */ int igraphdsteqr_(char *, integer *, doublereal *,
	     doublereal *, doublereal *, integer *, doublereal *, integer *), igraphdsesrt_(char *, logical *, integer *, doublereal *,
	     integer *, doublereal *, integer *), igraphdsortr_(char *
	    , logical *, integer *, doublereal *, doublereal *);
    static logical reord;
    static integer nconv;
    static doublereal rnorm, bnorm2;
    static integer bounds, msglvl, ishift, numcnv, leftptr, rghtptr;


/*     %----------------------------------------------------% */
/*     | Include files for debugging and timing information | */
/*     %----------------------------------------------------% */


/* \SCCS Information: @(#) */
/* FILE: debug.h   SID: 2.3   DATE OF SID: 11/16/95   RELEASE: 2 */

/*     %---------------------------------% */
/*     | See debug.doc for documentation | */
/*     %---------------------------------% */

/*     %------------------% */
/*     | Scalar Arguments | */
/*     %------------------% */

/*     %--------------------------------% */
/*     | See stat.doc for documentation | */
/*     %--------------------------------% */

/* \SCCS Information: @(#) */
/* FILE: stat.h   SID: 2.2   DATE OF SID: 11/16/95   RELEASE: 2 */



/*     %-----------------% */
/*     | Array Arguments | */
/*     %-----------------% */


/*     %------------% */
/*     | Parameters | */
/*     %------------% */


/*     %---------------% */
/*     | Local Scalars | */
/*     %---------------% */


/*     %----------------------% */
/*     | External Subroutines | */
/*     %----------------------% */


/*     %--------------------% */
/*     | External Functions | */
/*     %--------------------% */


/*     %---------------------% */
/*     | Intrinsic Functions | */
/*     %---------------------% */


/*     %-----------------------% */
/*     | Executable Statements | */
/*     %-----------------------% */

/*     %------------------------% */
/*     | Set default parameters | */
/*     %------------------------% */

    /* Parameter adjustments */
    --workd;
    --resid;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --d__;
    --select;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --iparam;
    --ipntr;
    --workl;

    /* Function Body */
    msglvl = debug_1.mseupd;
    mode = iparam[7];
    nconv = iparam[5];
    *info = 0;

/*     %--------------% */
/*     | Quick return | */
/*     %--------------% */

    if (nconv == 0) {
	goto L9000;
    }
    ierr = 0;

    if (nconv <= 0) {
	ierr = -14;
    }
    if (*n <= 0) {
	ierr = -1;
    }
    if (*nev <= 0) {
	ierr = -2;
    }
    if (*ncv <= *nev || *ncv > *n) {
	ierr = -3;
    }
    if (igraphs_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && igraphs_cmp(which, "SM", (
	    ftnlen)2, (ftnlen)2) != 0 && igraphs_cmp(which, "LA", (ftnlen)2, (
	    ftnlen)2) != 0 && igraphs_cmp(which, "SA", (ftnlen)2, (ftnlen)2) != 0 &&
	     igraphs_cmp(which, "BE", (ftnlen)2, (ftnlen)2) != 0) {
	ierr = -5;
    }
    if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G') {
	ierr = -6;
    }
    if (*(unsigned char *)howmny != 'A' && *(unsigned char *)howmny != 'P' && 
	    *(unsigned char *)howmny != 'S' && *rvec) {
	ierr = -15;
    }
    if (*rvec && *(unsigned char *)howmny == 'S') {
	ierr = -16;
    }

/* Computing 2nd power */
    i__1 = *ncv;
    if (*rvec && *lworkl < i__1 * i__1 + (*ncv << 3)) {
	ierr = -7;
    }

    if (mode == 1 || mode == 2) {
	igraphs_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6);
    } else if (mode == 3) {
	igraphs_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6);
    } else if (mode == 4) {
	igraphs_copy(type__, "BUCKLE", (ftnlen)6, (ftnlen)6);
    } else if (mode == 5) {
	igraphs_copy(type__, "CAYLEY", (ftnlen)6, (ftnlen)6);
    } else {
	ierr = -10;
    }
    if (mode == 1 && *(unsigned char *)bmat == 'G') {
	ierr = -11;
    }
    if (*nev == 1 && igraphs_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {
	ierr = -12;
    }

/*     %------------% */
/*     | Error Exit | */
/*     %------------% */

    if (ierr != 0) {
	*info = ierr;
	goto L9000;
    }

/*     %-------------------------------------------------------% */
/*     | Pointer into WORKL for address of H, RITZ, BOUNDS, Q  | */
/*     | etc... and the remaining workspace.                   | */
/*     | Also update pointer to be used on output.             | */
/*     | Memory is laid out as follows:                        | */
/*     | workl(1:2*ncv) := generated tridiagonal matrix H      | */
/*     |       The subdiagonal is stored in workl(2:ncv).      | */
/*     |       The dead spot is workl(1) but upon exiting      | */
/*     |       dsaupd  stores the B-norm of the last residual   | */
/*     |       vector in workl(1). We use this !!!             | */
/*     | workl(2*ncv+1:2*ncv+ncv) := ritz values               | */
/*     |       The wanted values are in the first NCONV spots. | */
/*     | workl(3*ncv+1:3*ncv+ncv) := computed Ritz estimates   | */
/*     |       The wanted values are in the first NCONV spots. | */
/*     | NOTE: workl(1:4*ncv) is set by dsaupd  and is not      | */
/*     |       modified by dseupd .                             | */
/*     %-------------------------------------------------------% */

/*     %-------------------------------------------------------% */
/*     | The following is used and set by dseupd .              | */
/*     | workl(4*ncv+1:4*ncv+ncv) := used as workspace during  | */
/*     |       computation of the eigenvectors of H. Stores    | */
/*     |       the diagonal of H. Upon EXIT contains the NCV   | */
/*     |       Ritz values of the original system. The first   | */
/*     |       NCONV spots have the wanted values. If MODE =   | */
/*     |       1 or 2 then will equal workl(2*ncv+1:3*ncv).    | */
/*     | workl(5*ncv+1:5*ncv+ncv) := used as workspace during  | */
/*     |       computation of the eigenvectors of H. Stores    | */
/*     |       the subdiagonal of H. Upon EXIT contains the    | */
/*     |       NCV corresponding Ritz estimates of the         | */
/*     |       original system. The first NCONV spots have the | */
/*     |       wanted values. If MODE = 1,2 then will equal    | */
/*     |       workl(3*ncv+1:4*ncv).                           | */
/*     | workl(6*ncv+1:6*ncv+ncv*ncv) := orthogonal Q that is  | */
/*     |       the eigenvector matrix for H as returned by     | */
/*     |       dsteqr . Not referenced if RVEC = .False.        | */
/*     |       Ordering follows that of workl(4*ncv+1:5*ncv)   | */
/*     | workl(6*ncv+ncv*ncv+1:6*ncv+ncv*ncv+2*ncv) :=         | */
/*     |       Workspace. Needed by dsteqr  and by dseupd .      | */
/*     | GRAND total of NCV*(NCV+8) locations.                 | */
/*     %-------------------------------------------------------% */


    ih = ipntr[5];
    ritz = ipntr[6];
    bounds = ipntr[7];
    ldh = *ncv;
    ldq = *ncv;
    ihd = bounds + ldh;
    ihb = ihd + ldh;
    iq = ihb + ldh;
    iw = iq + ldh * *ncv;
    next = iw + (*ncv << 1);
    ipntr[4] = next;
    ipntr[8] = ihd;
    ipntr[9] = ihb;
    ipntr[10] = iq;

/*     %----------------------------------------% */
/*     | irz points to the Ritz values computed | */
/*     |     by _seigt before exiting _saup2.   | */
/*     | ibd points to the Ritz estimates       | */
/*     |     computed by _seigt before exiting  | */
/*     |     _saup2.                            | */
/*     %----------------------------------------% */

    irz = ipntr[11] + *ncv;
    ibd = irz + *ncv;


/*     %---------------------------------% */
/*     | Set machine dependent constant. | */
/*     %---------------------------------% */

    eps23 = igraphdlamch_("Epsilon-Machine");
    eps23 = igraphpow_dd(&eps23, &c_b21);

/*     %---------------------------------------% */
/*     | RNORM is B-norm of the RESID(1:N).    | */
/*     | BNORM2 is the 2 norm of B*RESID(1:N). | */
/*     | Upon exit of dsaupd  WORKD(1:N) has    | */
/*     | B*RESID(1:N).                         | */
/*     %---------------------------------------% */

    rnorm = workl[ih];
    if (*(unsigned char *)bmat == 'I') {
	bnorm2 = rnorm;
    } else if (*(unsigned char *)bmat == 'G') {
	bnorm2 = igraphdnrm2_(n, &workd[1], &c__1);
    }

    if (msglvl > 2) {
	igraphdvout_(&debug_1.logfil, ncv, &workl[irz], &debug_1.ndigit, 
		"_seupd: Ritz values passed in from _SAUPD.");
	igraphdvout_(&debug_1.logfil, ncv, &workl[ibd], &debug_1.ndigit, 
		"_seupd: Ritz estimates passed in from _SAUPD.");
    }

    if (*rvec) {

	reord = FALSE_;

/*        %---------------------------------------------------% */
/*        | Use the temporary bounds array to store indices   | */
/*        | These will be used to mark the select array later | */
/*        %---------------------------------------------------% */

	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
	    workl[bounds + j - 1] = (doublereal) j;
	    select[j] = FALSE_;
/* L10: */
	}

/*        %-------------------------------------% */
/*        | Select the wanted Ritz values.      | */
/*        | Sort the Ritz values so that the    | */
/*        | wanted ones appear at the tailing   | */
/*        | NEV positions of workl(irr) and     | */
/*        | workl(iri).  Move the corresponding | */
/*        | error estimates in workl(bound)     | */
/*        | accordingly.                        | */
/*        %-------------------------------------% */

	np = *ncv - *nev;
	ishift = 0;
	igraphdsgets_(&ishift, which, nev, &np, &workl[irz], &workl[bounds], &
		workl[1]);

	if (msglvl > 2) {
	    igraphdvout_(&debug_1.logfil, ncv, &workl[irz], &debug_1.ndigit, 
		    "_seupd: Ritz values after calling _SGETS.");
	    igraphdvout_(&debug_1.logfil, ncv, &workl[bounds], &
		    debug_1.ndigit, "_seupd: Ritz value indices after callin"
		    "g _SGETS.");
	}

/*        %-----------------------------------------------------% */
/*        | Record indices of the converged wanted Ritz values  | */
/*        | Mark the select array for possible reordering       | */
/*        %-----------------------------------------------------% */

	numcnv = 0;
	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    d__2 = eps23, d__3 = (d__1 = workl[irz + *ncv - j], abs(d__1));
	    temp1 = max(d__2,d__3);
	    jj = (integer) workl[bounds + *ncv - j];
	    if (numcnv < nconv && workl[ibd + jj - 1] <= *tol * temp1) {
		select[jj] = TRUE_;
		++numcnv;
		if (jj > *nev) {
		    reord = TRUE_;
		}
	    }
/* L11: */
	}

/*        %-----------------------------------------------------------% */
/*        | Check the count (numcnv) of converged Ritz values with    | */
/*        | the number (nconv) reported by _saupd.  If these two      | */
/*        | are different then there has probably been an error       | */
/*        | caused by incorrect passing of the _saupd data.           | */
/*        %-----------------------------------------------------------% */

	if (msglvl > 2) {
	    igraphivout_(&debug_1.logfil, &c__1, &numcnv, &debug_1.ndigit, 
		    "_seupd: Number of specified eigenvalues");
	    igraphivout_(&debug_1.logfil, &c__1, &nconv, &debug_1.ndigit, 
		    "_seupd: Number of \"converged\" eigenvalues")
		    ;
	}

	if (numcnv != nconv) {
	    *info = -17;
	    goto L9000;
	}

/*        %-----------------------------------------------------------% */
/*        | Call LAPACK routine _steqr to compute the eigenvalues and | */
/*        | eigenvectors of the final symmetric tridiagonal matrix H. | */
/*        | Initialize the eigenvector matrix Q to the identity.      | */
/*        %-----------------------------------------------------------% */

	i__1 = *ncv - 1;
	igraphdcopy_(&i__1, &workl[ih + 1], &c__1, &workl[ihb], &c__1);
	igraphdcopy_(ncv, &workl[ih + ldh], &c__1, &workl[ihd], &c__1);

	igraphdsteqr_("Identity", ncv, &workl[ihd], &workl[ihb], &workl[iq], &
		ldq, &workl[iw], &ierr);

	if (ierr != 0) {
	    *info = -8;
	    goto L9000;
	}

	if (msglvl > 1) {
	    igraphdcopy_(ncv, &workl[iq + *ncv - 1], &ldq, &workl[iw], &c__1);
	    igraphdvout_(&debug_1.logfil, ncv, &workl[ihd], &debug_1.ndigit, 
		    "_seupd: NCV Ritz values of the final H matrix");
	    igraphdvout_(&debug_1.logfil, ncv, &workl[iw], &debug_1.ndigit, 
		    "_seupd: last row of the eigenvector matrix for H");
	}

	if (reord) {

/*           %---------------------------------------------% */
/*           | Reordered the eigenvalues and eigenvectors  | */
/*           | computed by _steqr so that the "converged"  | */
/*           | eigenvalues appear in the first NCONV       | */
/*           | positions of workl(ihd), and the associated | */
/*           | eigenvectors appear in the first NCONV      | */
/*           | columns.                                    | */
/*           %---------------------------------------------% */

	    leftptr = 1;
	    rghtptr = *ncv;

	    if (*ncv == 1) {
		goto L30;
	    }

L20:
	    if (select[leftptr]) {

/*              %-------------------------------------------% */
/*              | Search, from the left, for the first Ritz | */
/*              | value that has not converged.             | */
/*              %-------------------------------------------% */

		++leftptr;

	    } else if (! select[rghtptr]) {

/*              %----------------------------------------------% */
/*              | Search, from the right, the first Ritz value | */
/*              | that has converged.                          | */
/*              %----------------------------------------------% */

		--rghtptr;

	    } else {

/*              %----------------------------------------------% */
/*              | Swap the Ritz value on the left that has not | */
/*              | converged with the Ritz value on the right   | */
/*              | that has converged.  Swap the associated     | */
/*              | eigenvector of the tridiagonal matrix H as   | */
/*              | well.                                        | */
/*              %----------------------------------------------% */

		temp = workl[ihd + leftptr - 1];
		workl[ihd + leftptr - 1] = workl[ihd + rghtptr - 1];
		workl[ihd + rghtptr - 1] = temp;
		igraphdcopy_(ncv, &workl[iq + *ncv * (leftptr - 1)], &c__1, &
			workl[iw], &c__1);
		igraphdcopy_(ncv, &workl[iq + *ncv * (rghtptr - 1)], &c__1, &
			workl[iq + *ncv * (leftptr - 1)], &c__1);
		igraphdcopy_(ncv, &workl[iw], &c__1, &workl[iq + *ncv * (
			rghtptr - 1)], &c__1);
		++leftptr;
		--rghtptr;

	    }

	    if (leftptr < rghtptr) {
		goto L20;
	    }

L30:
	    ;
	}

	if (msglvl > 2) {
	    igraphdvout_(&debug_1.logfil, ncv, &workl[ihd], &debug_1.ndigit, 
		    "_seupd: The eigenvalues of H--reordered");
	}

/*        %----------------------------------------% */
/*        | Load the converged Ritz values into D. | */
/*        %----------------------------------------% */

	igraphdcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1);

    } else {

/*        %-----------------------------------------------------% */
/*        | Ritz vectors not required. Load Ritz values into D. | */
/*        %-----------------------------------------------------% */

	igraphdcopy_(&nconv, &workl[ritz], &c__1, &d__[1], &c__1);
	igraphdcopy_(ncv, &workl[ritz], &c__1, &workl[ihd], &c__1);

    }

/*     %------------------------------------------------------------------% */
/*     | Transform the Ritz values and possibly vectors and corresponding | */
/*     | Ritz estimates of OP to those of A*x=lambda*B*x. The Ritz values | */
/*     | (and corresponding data) are returned in ascending order.        | */
/*     %------------------------------------------------------------------% */

    if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) {

/*        %---------------------------------------------------------% */
/*        | Ascending sort of wanted Ritz values, vectors and error | */
/*        | bounds. Not necessary if only Ritz values are desired.  | */
/*        %---------------------------------------------------------% */

	if (*rvec) {
 	    igraphdsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq);
	} else {
	    igraphdcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1);
	}

    } else {

/*        %-------------------------------------------------------------% */
/*        | *  Make a copy of all the Ritz values.                      | */
/*        | *  Transform the Ritz values back to the original system.   | */
/*        |    For TYPE = 'SHIFTI' the transformation is                | */
/*        |             lambda = 1/theta + sigma                        | */
/*        |    For TYPE = 'BUCKLE' the transformation is                | */
/*        |             lambda = sigma * theta / ( theta - 1 )          | */
/*        |    For TYPE = 'CAYLEY' the transformation is                | */
/*        |             lambda = sigma * (theta + 1) / (theta - 1 )     | */
/*        |    where the theta are the Ritz values returned by dsaupd .  | */
/*        | NOTES:                                                      | */
/*        | *The Ritz vectors are not affected by the transformation.   | */
/*        |  They are only reordered.                                   | */
/*        %-------------------------------------------------------------% */

	igraphdcopy_(ncv, &workl[ihd], &c__1, &workl[iw], &c__1);
	if (igraphs_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = 1. / workl[ihd + k - 1] + *sigma;
/* L40: */
	    }
	} else if (igraphs_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = *sigma * workl[ihd + k - 1] / (workl[ihd 
			+ k - 1] - 1.);
/* L50: */
	    }
	} else if (igraphs_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = *sigma * (workl[ihd + k - 1] + 1.) / (
			workl[ihd + k - 1] - 1.);
/* L60: */
	    }
	}

/*        %-------------------------------------------------------------% */
/*        | *  Store the wanted NCONV lambda values into D.             | */
/*        | *  Sort the NCONV wanted lambda in WORKL(IHD:IHD+NCONV-1)   | */
/*        |    into ascending order and apply sort to the NCONV theta   | */
/*        |    values in the transformed system. We will need this to   | */
/*        |    compute Ritz estimates in the original system.           | */
/*        | *  Finally sort the lambda`s into ascending order and apply | */
/*        |    to Ritz vectors if wanted. Else just sort lambda`s into  | */
/*        |    ascending order.                                         | */
/*        | NOTES:                                                      | */
/*        | *workl(iw:iw+ncv-1) contain the theta ordered so that they  | */
/*        |  match the ordering of the lambda. We`ll use them again for | */
/*        |  Ritz vector purification.                                  | */
/*        %-------------------------------------------------------------% */

	igraphdcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1);
	igraphdsortr_("LA", &c_true, &nconv, &workl[ihd], &workl[iw]);
	if (*rvec) {
	    igraphdsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq);
	} else {
	    igraphdcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1);
	    d__1 = bnorm2 / rnorm;
	    igraphdscal_(ncv, &d__1, &workl[ihb], &c__1);
	    igraphdsortr_("LA", &c_true, &nconv, &d__[1], &workl[ihb]);
	}

    }

/*     %------------------------------------------------% */
/*     | Compute the Ritz vectors. Transform the wanted | */
/*     | eigenvectors of the symmetric tridiagonal H by | */
/*     | the Lanczos basis matrix V.                    | */
/*     %------------------------------------------------% */

    if (*rvec && *(unsigned char *)howmny == 'A') {

/*        %----------------------------------------------------------% */
/*        | Compute the QR factorization of the matrix representing  | */
/*        | the wanted invariant subspace located in the first NCONV | */
/*        | columns of workl(iq,ldq).                                | */
/*        %----------------------------------------------------------% */

	igraphdgeqr2_(ncv, &nconv, &workl[iq], &ldq, &workl[iw + *ncv], &
		workl[ihb], &ierr);

/*        %--------------------------------------------------------% */
/*        | * Postmultiply V by Q.                                 | */
/*        | * Copy the first NCONV columns of VQ into Z.           | */
/*        | The N by NCONV matrix Z is now a matrix representation | */
/*        | of the approximate invariant subspace associated with  | */
/*        | the Ritz values in workl(ihd).                         | */
/*        %--------------------------------------------------------% */

	igraphdorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[iq], &
		ldq, &workl[iw + *ncv], &v[v_offset], ldv, &workd[*n + 1], &
		ierr);
	igraphdlacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], 
		ldz);

/*        %-----------------------------------------------------% */
/*        | In order to compute the Ritz estimates for the Ritz | */
/*        | values in both systems, need the last row of the    | */
/*        | eigenvector matrix. Remember, it`s in factored form | */
/*        %-----------------------------------------------------% */

	i__1 = *ncv - 1;
	for (j = 1; j <= i__1; ++j) {
	    workl[ihb + j - 1] = 0.;
/* L65: */
	}
	workl[ihb + *ncv - 1] = 1.;
	igraphdorm2r_("Left", "Transpose", ncv, &c__1, &nconv, &workl[iq], &
		ldq, &workl[iw + *ncv], &workl[ihb], ncv, &temp, &ierr);

    } else if (*rvec && *(unsigned char *)howmny == 'S') {

/*     Not yet implemented. See remark 2 above. */

    }

    if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0 && *rvec) {

	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
	    workl[ihb + j - 1] = rnorm * (d__1 = workl[ihb + j - 1], abs(d__1)
		    );
/* L70: */
	}

    } else if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && *rvec) {

/*        %-------------------------------------------------% */
/*        | *  Determine Ritz estimates of the theta.       | */
/*        |    If RVEC = .true. then compute Ritz estimates | */
/*        |               of the theta.                     | */
/*        |    If RVEC = .false. then copy Ritz estimates   | */
/*        |              as computed by dsaupd .             | */
/*        | *  Determine Ritz estimates of the lambda.      | */
/*        %-------------------------------------------------% */

	igraphdscal_(ncv, &bnorm2, &workl[ihb], &c__1);
	if (igraphs_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
/* Computing 2nd power */
		d__2 = workl[iw + k - 1];
		workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1], abs(d__1)) / 
			(d__2 * d__2);
/* L80: */
	    }

	} else if (igraphs_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
/* Computing 2nd power */
		d__2 = workl[iw + k - 1] - 1.;
		workl[ihb + k - 1] = *sigma * (d__1 = workl[ihb + k - 1], abs(
			d__1)) / (d__2 * d__2);
/* L90: */
	    }

	} else if (igraphs_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1] / workl[iw + 
			k - 1] * (workl[iw + k - 1] - 1.), abs(d__1));
/* L100: */
	    }

	}

    }

    if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && msglvl > 1) {
	igraphdvout_(&debug_1.logfil, &nconv, &d__[1], &debug_1.ndigit, "_se"
		"upd: Untransformed converged Ritz values");
	igraphdvout_(&debug_1.logfil, &nconv, &workl[ihb], &debug_1.ndigit, 
		"_seupd: Ritz estimates of the untransformed Ritz values");
    } else if (msglvl > 1) {
	igraphdvout_(&debug_1.logfil, &nconv, &d__[1], &debug_1.ndigit, "_se"
		"upd: Converged Ritz values");
	igraphdvout_(&debug_1.logfil, &nconv, &workl[ihb], &debug_1.ndigit, 
		"_seupd: Associated Ritz estimates");
    }

/*     %-------------------------------------------------% */
/*     | Ritz vector purification step. Formally perform | */
/*     | one of inverse subspace iteration. Only used    | */
/*     | for MODE = 3,4,5. See reference 7               | */
/*     %-------------------------------------------------% */

    if (*rvec && (igraphs_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0 || igraphs_cmp(
	    type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0)) {

	i__1 = nconv - 1;
	for (k = 0; k <= i__1; ++k) {
	    workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / workl[iw + k];
/* L110: */
	}

    } else if (*rvec && igraphs_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {

	i__1 = nconv - 1;
	for (k = 0; k <= i__1; ++k) {
	    workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / (workl[iw + k] - 
		    1.);
/* L120: */
	}

    }

    if (igraphs_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0) {
	igraphdger_(n, &nconv, &c_b110, &resid[1], &c__1, &workl[iw], &c__1, &
		z__[z_offset], ldz);
    }

L9000:

    return 0;

/*     %---------------% */
/*     | End of dseupd | */
/*     %---------------% */

} /* igraphdseupd_ */
コード例 #2
0
ファイル: dseupd.c プロジェクト: abduld/igraph
   Subroutine */ int igraphdseupd_(logical *rvec, char *howmny, logical *select, 
	doublereal *d__, doublereal *z__, integer *ldz, doublereal *sigma, 
	char *bmat, integer *n, char *which, integer *nev, doublereal *tol, 
	doublereal *resid, integer *ncv, doublereal *v, integer *ldv, integer 
	*iparam, integer *ipntr, doublereal *workd, doublereal *workl, 
	integer *lworkl, integer *info)
{
    /* System generated locals */
    integer v_dim1, v_offset, z_dim1, z_offset, i__1;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    integer s_cmp(char *, char *, ftnlen, ftnlen);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double pow_dd(doublereal *, doublereal *);

    /* Local variables */
    integer j, k, ih, iq, iw;
    doublereal kv[2];
    integer ibd, ihb, ihd, ldh, ilg, ldq, ism, irz;
    extern /* Subroutine */ int igraphdger_(integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    integer mode;
    doublereal eps23;
    integer ierr;
    doublereal temp;
    integer next;
    char type__[6];
    integer ritz;
    extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    logical reord;
    extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer nconv;
    doublereal rnorm;
    extern /* Subroutine */ int igraphdvout_(integer *, integer *, doublereal *, 
	    integer *, char *, ftnlen), igraphivout_(integer *, integer *, integer *
	    , integer *, char *, ftnlen), igraphdgeqr2_(integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *);
    doublereal bnorm2;
    extern /* Subroutine */ int igraphdorm2r_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *);
    doublereal thres1, thres2;
    extern doublereal igraphdlamch_(char *);
    extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    integer logfil, ndigit, bounds, mseupd = 0;
    extern /* Subroutine */ int igraphdsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    integer msglvl, ktrord;
    extern /* Subroutine */ int igraphdsesrt_(char *, logical *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    igraphdsortr_(char *, logical *, integer *, doublereal *, doublereal *);
    doublereal tempbnd;
    integer leftptr, rghtptr;


/*     %----------------------------------------------------%   
       | Include files for debugging and timing information |   
       %----------------------------------------------------%   


       %------------------%   
       | Scalar Arguments |   
       %------------------%   


       %-----------------%   
       | Array Arguments |   
       %-----------------%   


       %------------%   
       | Parameters |   
       %------------%   


       %---------------%   
       | Local Scalars |   
       %---------------%   


       %--------------%   
       | Local Arrays |   
       %--------------%   


       %----------------------%   
       | External Subroutines |   
       %----------------------%   


       %--------------------%   
       | External Functions |   
       %--------------------%   


       %---------------------%   
       | Intrinsic Functions |   
       %---------------------%   


       %-----------------------%   
       | Executable Statements |   
       %-----------------------%   

       %------------------------%   
       | Set default parameters |   
       %------------------------%   

       Parameter adjustments */
    --workd;
    --resid;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --d__;
    --select;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --iparam;
    --ipntr;
    --workl;

    /* Function Body */
    msglvl = mseupd;
    mode = iparam[7];
    nconv = iparam[5];
    *info = 0;

/*     %--------------%   
       | Quick return |   
       %--------------% */

    if (nconv == 0) {
	goto L9000;
    }
    ierr = 0;

    if (nconv <= 0) {
	ierr = -14;
    }
    if (*n <= 0) {
	ierr = -1;
    }
    if (*nev <= 0) {
	ierr = -2;
    }
    if (*ncv <= *nev || *ncv > *n) {
	ierr = -3;
    }
    if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "SM", (
	    ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "LA", (ftnlen)2, (
	    ftnlen)2) != 0 && s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) != 0 &&
	     s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) != 0) {
	ierr = -5;
    }
    if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G') {
	ierr = -6;
    }
    if (*(unsigned char *)howmny != 'A' && *(unsigned char *)howmny != 'P' && 
	    *(unsigned char *)howmny != 'S' && *rvec) {
	ierr = -15;
    }
    if (*rvec && *(unsigned char *)howmny == 'S') {
	ierr = -16;
    }

/* Computing 2nd power */
    i__1 = *ncv;
    if (*rvec && *lworkl < i__1 * i__1 + (*ncv << 3)) {
	ierr = -7;
    }

    if (mode == 1 || mode == 2) {
	s_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6);
    } else if (mode == 3) {
	s_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6);
    } else if (mode == 4) {
	s_copy(type__, "BUCKLE", (ftnlen)6, (ftnlen)6);
    } else if (mode == 5) {
	s_copy(type__, "CAYLEY", (ftnlen)6, (ftnlen)6);
    } else {
	ierr = -10;
    }
    if (mode == 1 && *(unsigned char *)bmat == 'G') {
	ierr = -11;
    }
    if (*nev == 1 && s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {
	ierr = -12;
    }

/*     %------------%   
       | Error Exit |   
       %------------% */

    if (ierr != 0) {
	*info = ierr;
	goto L9000;
    }

/*     %-------------------------------------------------------%   
       | Pointer into WORKL for address of H, RITZ, BOUNDS, Q  |   
       | etc... and the remaining workspace.                   |   
       | Also update pointer to be used on output.             |   
       | Memory is laid out as follows:                        |   
       | workl(1:2*ncv) := generated tridiagonal matrix H      |   
       |       The subdiagonal is stored in workl(2:ncv).      |   
       |       The dead spot is workl(1) but upon exiting      |   
       |       dsaupd stores the B-norm of the last residual   |   
       |       vector in workl(1). We use this !!!             |   
       | workl(2*ncv+1:2*ncv+ncv) := ritz values               |   
       |       The wanted values are in the first NCONV spots. |   
       | workl(3*ncv+1:3*ncv+ncv) := computed Ritz estimates   |   
       |       The wanted values are in the first NCONV spots. |   
       | NOTE: workl(1:4*ncv) is set by dsaupd and is not      |   
       |       modified by dseupd.                             |   
       %-------------------------------------------------------%   

       %-------------------------------------------------------%   
       | The following is used and set by dseupd.              |   
       | workl(4*ncv+1:4*ncv+ncv) := used as workspace during  |   
       |       computation of the eigenvectors of H. Stores    |   
       |       the diagonal of H. Upon EXIT contains the NCV   |   
       |       Ritz values of the original system. The first   |   
       |       NCONV spots have the wanted values. If MODE =   |   
       |       1 or 2 then will equal workl(2*ncv+1:3*ncv).    |   
       | workl(5*ncv+1:5*ncv+ncv) := used as workspace during  |   
       |       computation of the eigenvectors of H. Stores    |   
       |       the subdiagonal of H. Upon EXIT contains the    |   
       |       NCV corresponding Ritz estimates of the         |   
       |       original system. The first NCONV spots have the |   
       |       wanted values. If MODE = 1,2 then will equal    |   
       |       workl(3*ncv+1:4*ncv).                           |   
       | workl(6*ncv+1:6*ncv+ncv*ncv) := orthogonal Q that is  |   
       |       the eigenvector matrix for H as returned by     |   
       |       dsteqr. Not referenced if RVEC = .False.        |   
       |       Ordering follows that of workl(4*ncv+1:5*ncv)   |   
       | workl(6*ncv+ncv*ncv+1:6*ncv+ncv*ncv+2*ncv) :=         |   
       |       Workspace. Needed by dsteqr and by dseupd.      |   
       | GRAND total of NCV*(NCV+8) locations.                 |   
       %-------------------------------------------------------% */


    ih = ipntr[5];
    ritz = ipntr[6];
    bounds = ipntr[7];
    ldh = *ncv;
    ldq = *ncv;
    ihd = bounds + ldh;
    ihb = ihd + ldh;
    iq = ihb + ldh;
    iw = iq + ldh * *ncv;
    next = iw + (*ncv << 1);
    ipntr[4] = next;
    ipntr[8] = ihd;
    ipntr[9] = ihb;
    ipntr[10] = iq;

/*     %----------------------------------------%   
       | irz points to the Ritz values computed |   
       |     by _seigt before exiting _saup2.   |   
       | ibd points to the Ritz estimates       |   
       |     computed by _seigt before exiting  |   
       |     _saup2.                            |   
       %----------------------------------------% */

    irz = ipntr[11] + *ncv;
    ibd = irz + *ncv;


/*     %---------------------------------%   
       | Set machine dependent constant. |   
       %---------------------------------% */

    eps23 = igraphdlamch_("Epsilon-Machine");
    eps23 = pow_dd(&eps23, &c_b21);

/*     %---------------------------------------%   
       | RNORM is B-norm of the RESID(1:N).    |   
       | BNORM2 is the 2 norm of B*RESID(1:N). |   
       | Upon exit of dsaupd WORKD(1:N) has    |   
       | B*RESID(1:N).                         |   
       %---------------------------------------% */

    rnorm = workl[ih];
    if (*(unsigned char *)bmat == 'I') {
	bnorm2 = rnorm;
    } else if (*(unsigned char *)bmat == 'G') {
	bnorm2 = igraphdnrm2_(n, &workd[1], &c__1);
    }

    if (*rvec) {

/*        %------------------------------------------------%   
          | Get the converged Ritz value on the boundary.  |   
          | This value will be used to dermine whether we  |   
          | need to reorder the eigenvalues and            |   
          | eigenvectors comupted by _steqr, and is        |   
          | referred to as the "threshold" value.          |   
          |                                                |   
          | A Ritz value gamma is said to be a wanted      |   
          | one, if                                        |   
          | abs(gamma) .ge. threshold, when WHICH = 'LM';  |   
          | abs(gamma) .le. threshold, when WHICH = 'SM';  |   
          | gamma      .ge. threshold, when WHICH = 'LA';  |   
          | gamma      .le. threshold, when WHICH = 'SA';  |   
          | gamma .le. thres1 .or. gamma .ge. thres2       |   
          |                            when WHICH = 'BE';  |   
          |                                                |   
          | Note: converged Ritz values and associated     |   
          | Ritz estimates have been placed in the first   |   
          | NCONV locations in workl(ritz) and             |   
          | workl(bounds) respectively. They have been     |   
          | sorted (in _saup2) according to the WHICH      |   
          | selection criterion. (Except in the case       |   
          | WHICH = 'BE', they are sorted in an increasing |   
          | order.)                                        |   
          %------------------------------------------------% */

	if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(which, 
		"SM", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(which, "LA", (
		ftnlen)2, (ftnlen)2) == 0 || s_cmp(which, "SA", (ftnlen)2, (
		ftnlen)2) == 0) {

	    thres1 = workl[ritz];

	    if (msglvl > 2) {
		igraphdvout_(&logfil, &c__1, &thres1, &ndigit, "_seupd: Threshold "
			"eigenvalue used for re-ordering", (ftnlen)49);
	    }

	} else if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {

/*            %------------------------------------------------%   
              | Ritz values returned from _saup2 have been     |   
              | sorted in increasing order.  Thus two          |   
              | "threshold" values (one for the small end, one |   
              | for the large end) are in the middle.          |   
              %------------------------------------------------% */

	    ism = max(*nev,nconv) / 2;
	    ilg = ism + 1;
	    thres1 = workl[ism];
	    thres2 = workl[ilg];

	    if (msglvl > 2) {
		kv[0] = thres1;
		kv[1] = thres2;
		igraphdvout_(&logfil, &c__2, kv, &ndigit, "_seupd: Threshold eigen"
			"values used for re-ordering", (ftnlen)50);
	    }

	}

/*        %----------------------------------------------------------%   
          | Check to see if all converged Ritz values appear within  |   
          | the first NCONV diagonal elements returned from _seigt.  |   
          | This is done in the following way:                       |   
          |                                                          |   
          | 1) For each Ritz value obtained from _seigt, compare it  |   
          |    with the threshold Ritz value computed above to       |   
          |    determine whether it is a wanted one.                 |   
          |                                                          |   
          | 2) If it is wanted, then check the corresponding Ritz    |   
          |    estimate to see if it has converged.  If it has, set  |   
          |    correponding entry in the logical array SELECT to     |   
          |    .TRUE..                                               |   
          |                                                          |   
          | If SELECT(j) = .TRUE. and j > NCONV, then there is a     |   
          | converged Ritz value that does not appear at the top of  |   
          | the diagonal matrix computed by _seigt in _saup2.        |   
          | Reordering is needed.                                    |   
          %----------------------------------------------------------% */

	reord = FALSE_;
	ktrord = 0;
	i__1 = *ncv - 1;
	for (j = 0; j <= i__1; ++j) {
	    select[j + 1] = FALSE_;
	    if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0) {
		if ((d__1 = workl[irz + j], abs(d__1)) >= abs(thres1)) {
/* Computing MAX */
		    d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1));
		    tempbnd = max(d__2,d__3);
		    if (workl[ibd + j] <= *tol * tempbnd) {
			select[j + 1] = TRUE_;
		    }
		}
	    } else if (s_cmp(which, "SM", (ftnlen)2, (ftnlen)2) == 0) {
		if ((d__1 = workl[irz + j], abs(d__1)) <= abs(thres1)) {
/* Computing MAX */
		    d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1));
		    tempbnd = max(d__2,d__3);
		    if (workl[ibd + j] <= *tol * tempbnd) {
			select[j + 1] = TRUE_;
		    }
		}
	    } else if (s_cmp(which, "LA", (ftnlen)2, (ftnlen)2) == 0) {
		if (workl[irz + j] >= thres1) {
/* Computing MAX */
		    d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1));
		    tempbnd = max(d__2,d__3);
		    if (workl[ibd + j] <= *tol * tempbnd) {
			select[j + 1] = TRUE_;
		    }
		}
	    } else if (s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) == 0) {
		if (workl[irz + j] <= thres1) {
/* Computing MAX */
		    d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1));
		    tempbnd = max(d__2,d__3);
		    if (workl[ibd + j] <= *tol * tempbnd) {
			select[j + 1] = TRUE_;
		    }
		}
	    } else if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {
		if (workl[irz + j] <= thres1 || workl[irz + j] >= thres2) {
/* Computing MAX */
		    d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1));
		    tempbnd = max(d__2,d__3);
		    if (workl[ibd + j] <= *tol * tempbnd) {
			select[j + 1] = TRUE_;
		    }
		}
	    }
	    if (j + 1 > nconv) {
		reord = select[j + 1] || reord;
	    }
	    if (select[j + 1]) {
		++ktrord;
	    }
/* L10: */
	}
/*        %-------------------------------------------%   
          | If KTRORD .ne. NCONV, something is wrong. |   
          %-------------------------------------------% */

	if (msglvl > 2) {
	    igraphivout_(&logfil, &c__1, &ktrord, &ndigit, "_seupd: Number of spec"
		    "ified eigenvalues", (ftnlen)39);
	    igraphivout_(&logfil, &c__1, &nconv, &ndigit, "_seupd: Number of \"con"
		    "verged\" eigenvalues", (ftnlen)41);
	}

/*        %-----------------------------------------------------------%   
          | Call LAPACK routine _steqr to compute the eigenvalues and |   
          | eigenvectors of the final symmetric tridiagonal matrix H. |   
          | Initialize the eigenvector matrix Q to the identity.      |   
          %-----------------------------------------------------------% */

	i__1 = *ncv - 1;
	igraphdcopy_(&i__1, &workl[ih + 1], &c__1, &workl[ihb], &c__1);
	igraphdcopy_(ncv, &workl[ih + ldh], &c__1, &workl[ihd], &c__1);

	igraphdsteqr_("Identity", ncv, &workl[ihd], &workl[ihb], &workl[iq], &ldq, &
		workl[iw], &ierr);

	if (ierr != 0) {
	    *info = -8;
	    goto L9000;
	}

	if (msglvl > 1) {
	    igraphdcopy_(ncv, &workl[iq + *ncv - 1], &ldq, &workl[iw], &c__1);
	    igraphdvout_(&logfil, ncv, &workl[ihd], &ndigit, "_seupd: NCV Ritz val"
		    "ues of the final H matrix", (ftnlen)45);
	    igraphdvout_(&logfil, ncv, &workl[iw], &ndigit, "_seupd: last row of t"
		    "he eigenvector matrix for H", (ftnlen)48);
	}

	if (reord) {

/*           %---------------------------------------------%   
             | Reordered the eigenvalues and eigenvectors  |   
             | computed by _steqr so that the "converged"  |   
             | eigenvalues appear in the first NCONV       |   
             | positions of workl(ihd), and the associated |   
             | eigenvectors appear in the first NCONV      |   
             | columns.                                    |   
             %---------------------------------------------% */

	    leftptr = 1;
	    rghtptr = *ncv;

	    if (*ncv == 1) {
		goto L30;
	    }

L20:
	    if (select[leftptr]) {

/*              %-------------------------------------------%   
                | Search, from the left, for the first Ritz |   
                | value that has not converged.             |   
                %-------------------------------------------% */

		++leftptr;

	    } else if (! select[rghtptr]) {

/*              %----------------------------------------------%   
                | Search, from the right, the first Ritz value |   
                | that has converged.                          |   
                %----------------------------------------------% */

		--rghtptr;

	    } else {

/*              %----------------------------------------------%   
                | Swap the Ritz value on the left that has not |   
                | converged with the Ritz value on the right   |   
                | that has converged.  Swap the associated     |   
                | eigenvector of the tridiagonal matrix H as   |   
                | well.                                        |   
                %----------------------------------------------% */

		temp = workl[ihd + leftptr - 1];
		workl[ihd + leftptr - 1] = workl[ihd + rghtptr - 1];
		workl[ihd + rghtptr - 1] = temp;
		igraphdcopy_(ncv, &workl[iq + *ncv * (leftptr - 1)], &c__1, &workl[
			iw], &c__1);
		igraphdcopy_(ncv, &workl[iq + *ncv * (rghtptr - 1)], &c__1, &workl[
			iq + *ncv * (leftptr - 1)], &c__1);
		igraphdcopy_(ncv, &workl[iw], &c__1, &workl[iq + *ncv * (rghtptr - 
			1)], &c__1);
		++leftptr;
		--rghtptr;

	    }

	    if (leftptr < rghtptr) {
		goto L20;
	    }

L30:
	    ;
	}

	if (msglvl > 2) {
	    igraphdvout_(&logfil, ncv, &workl[ihd], &ndigit, "_seupd: The eigenval"
		    "ues of H--reordered", (ftnlen)39);
	}

/*        %----------------------------------------%   
          | Load the converged Ritz values into D. |   
          %----------------------------------------% */

	igraphdcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1);

    } else {

/*        %-----------------------------------------------------%   
          | Ritz vectors not required. Load Ritz values into D. |   
          %-----------------------------------------------------% */

	igraphdcopy_(&nconv, &workl[ritz], &c__1, &d__[1], &c__1);
	igraphdcopy_(ncv, &workl[ritz], &c__1, &workl[ihd], &c__1);

    }

/*     %------------------------------------------------------------------%   
       | Transform the Ritz values and possibly vectors and corresponding |   
       | Ritz estimates of OP to those of A*x=lambda*B*x. The Ritz values |   
       | (and corresponding data) are returned in ascending order.        |   
       %------------------------------------------------------------------% */

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) {

/*        %---------------------------------------------------------%   
          | Ascending sort of wanted Ritz values, vectors and error |   
          | bounds. Not necessary if only Ritz values are desired.  |   
          %---------------------------------------------------------% */

	if (*rvec) {
	    igraphdsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq);
	} else {
	    igraphdcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1);
	}

    } else {

/*        %-------------------------------------------------------------%   
          | *  Make a copy of all the Ritz values.                      |   
          | *  Transform the Ritz values back to the original system.   |   
          |    For TYPE = 'SHIFTI' the transformation is                |   
          |             lambda = 1/theta + sigma                        |   
          |    For TYPE = 'BUCKLE' the transformation is                |   
          |             lambda = sigma * theta / ( theta - 1 )          |   
          |    For TYPE = 'CAYLEY' the transformation is                |   
          |             lambda = sigma * (theta + 1) / (theta - 1 )     |   
          |    where the theta are the Ritz values returned by dsaupd.  |   
          | NOTES:                                                      |   
          | *The Ritz vectors are not affected by the transformation.   |   
          |  They are only reordered.                                   |   
          %-------------------------------------------------------------% */

	igraphdcopy_(ncv, &workl[ihd], &c__1, &workl[iw], &c__1);
	if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = 1. / workl[ihd + k - 1] + *sigma;
/* L40: */
	    }
	} else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = *sigma * workl[ihd + k - 1] / (workl[ihd 
			+ k - 1] - 1.);
/* L50: */
	    }
	} else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = *sigma * (workl[ihd + k - 1] + 1.) / (
			workl[ihd + k - 1] - 1.);
/* L60: */
	    }
	}

/*        %-------------------------------------------------------------%   
          | *  Store the wanted NCONV lambda values into D.             |   
          | *  Sort the NCONV wanted lambda in WORKL(IHD:IHD+NCONV-1)   |   
          |    into ascending order and apply sort to the NCONV theta   |   
          |    values in the transformed system. We'll need this to     |   
          |    compute Ritz estimates in the original system.           |   
          | *  Finally sort the lambda's into ascending order and apply |   
          |    to Ritz vectors if wanted. Else just sort lambda's into  |   
          |    ascending order.                                         |   
          | NOTES:                                                      |   
          | *workl(iw:iw+ncv-1) contain the theta ordered so that they  |   
          |  match the ordering of the lambda. We'll use them again for |   
          |  Ritz vector purification.                                  |   
          %-------------------------------------------------------------% */

	igraphdcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1);
	igraphdsortr_("LA", &c_true, &nconv, &workl[ihd], &workl[iw]);
	if (*rvec) {
	    igraphdsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq);
	} else {
	    igraphdcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1);
	    d__1 = bnorm2 / rnorm;
	    igraphdscal_(ncv, &d__1, &workl[ihb], &c__1);
	    igraphdsortr_("LA", &c_true, &nconv, &d__[1], &workl[ihb]);
	}

    }

/*     %------------------------------------------------%   
       | Compute the Ritz vectors. Transform the wanted |   
       | eigenvectors of the symmetric tridiagonal H by |   
       | the Lanczos basis matrix V.                    |   
       %------------------------------------------------% */

    if (*rvec && *(unsigned char *)howmny == 'A') {

/*        %----------------------------------------------------------%   
          | Compute the QR factorization of the matrix representing  |   
          | the wanted invariant subspace located in the first NCONV |   
          | columns of workl(iq,ldq).                                |   
          %----------------------------------------------------------% */

	igraphdgeqr2_(ncv, &nconv, &workl[iq], &ldq, &workl[iw + *ncv], &workl[ihb],
		 &ierr);


/*        %--------------------------------------------------------%   
          | * Postmultiply V by Q.                                 |   
          | * Copy the first NCONV columns of VQ into Z.           |   
          | The N by NCONV matrix Z is now a matrix representation |   
          | of the approximate invariant subspace associated with  |   
          | the Ritz values in workl(ihd).                         |   
          %--------------------------------------------------------% */

	igraphdorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[iq], &ldq, &
		workl[iw + *ncv], &v[v_offset], ldv, &workd[*n + 1], &ierr);
	igraphdlacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], ldz);

/*        %-----------------------------------------------------%   
          | In order to compute the Ritz estimates for the Ritz |   
          | values in both systems, need the last row of the    |   
          | eigenvector matrix. Remember, it's in factored form |   
          %-----------------------------------------------------% */

	i__1 = *ncv - 1;
	for (j = 1; j <= i__1; ++j) {
	    workl[ihb + j - 1] = 0.;
/* L65: */
	}
	workl[ihb + *ncv - 1] = 1.;
	igraphdorm2r_("Left", "Transpose", ncv, &c__1, &nconv, &workl[iq], &ldq, &
		workl[iw + *ncv], &workl[ihb], ncv, &temp, &ierr);

    } else if (*rvec && *(unsigned char *)howmny == 'S') {

/*     Not yet implemented. See remark 2 above. */

    }

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0 && *rvec) {

	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
	    workl[ihb + j - 1] = rnorm * (d__1 = workl[ihb + j - 1], abs(d__1)
		    );
/* L70: */
	}

    } else if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && *rvec) {

/*        %-------------------------------------------------%   
          | *  Determine Ritz estimates of the theta.       |   
          |    If RVEC = .true. then compute Ritz estimates |   
          |               of the theta.                     |   
          |    If RVEC = .false. then copy Ritz estimates   |   
          |              as computed by dsaupd.             |   
          | *  Determine Ritz estimates of the lambda.      |   
          %-------------------------------------------------% */

	igraphdscal_(ncv, &bnorm2, &workl[ihb], &c__1);
	if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
/* Computing 2nd power */
		d__2 = workl[iw + k - 1];
		workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1], abs(d__1)) / 
			(d__2 * d__2);
/* L80: */
	    }

	} else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
/* Computing 2nd power */
		d__2 = workl[iw + k - 1] - 1.;
		workl[ihb + k - 1] = *sigma * (d__1 = workl[ihb + k - 1], abs(
			d__1)) / (d__2 * d__2);
/* L90: */
	    }

	} else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1] / workl[iw + 
			k - 1] * (workl[iw + k - 1] - 1.), abs(d__1));
/* L100: */
	    }

	}

    }

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && msglvl > 1) {
	igraphdvout_(&logfil, &nconv, &d__[1], &ndigit, "_seupd: Untransformed con"
		"verged Ritz values", (ftnlen)43);
	igraphdvout_(&logfil, &nconv, &workl[ihb], &ndigit, "_seupd: Ritz estimate"
		"s of the untransformed Ritz values", (ftnlen)55);
    } else if (msglvl > 1) {
	igraphdvout_(&logfil, &nconv, &d__[1], &ndigit, "_seupd: Converged Ritz va"
		"lues", (ftnlen)29);
	igraphdvout_(&logfil, &nconv, &workl[ihb], &ndigit, "_seupd: Associated Ri"
		"tz estimates", (ftnlen)33);
    }

/*     %-------------------------------------------------%   
       | Ritz vector purification step. Formally perform |   
       | one of inverse subspace iteration. Only used    |   
       | for MODE = 3,4,5. See reference 7               |   
       %-------------------------------------------------% */

    if (*rvec && (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0 || s_cmp(
	    type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0)) {

	i__1 = nconv - 1;
	for (k = 0; k <= i__1; ++k) {
	    workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / workl[iw + k];
/* L110: */
	}

    } else if (*rvec && s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {

	i__1 = nconv - 1;
	for (k = 0; k <= i__1; ++k) {
	    workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / (workl[iw + k] - 
		    1.);
/* L120: */
	}

    }

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0) {
	igraphdger_(n, &nconv, &c_b119, &resid[1], &c__1, &workl[iw], &c__1, &z__[
		z_offset], ldz);
    }

L9000:

    return 0;

/*     %---------------%   
       | End of dseupd |   
       %---------------% */

} /* igraphdseupd_ */