コード例 #1
0
ファイル: n_j1.c プロジェクト: AgamAgarwal/minix
double
y1(double x)
{
	double z, s, c, ss, cc, u, v;
    /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
	if (!finite(x)) {
		if (!_IEEE) return (infnan(EDOM));
		else if (x < 0)
			return(zero/zero);
		else if (x > 0)
			return (0);
		else
			return(x);
	}
	if (x <= 0) {
		if (_IEEE && x == 0) return -one/zero;
		else if(x == 0) return(infnan(-ERANGE));
		else if(_IEEE) return (zero/zero);
		else return(infnan(EDOM));
	}
        if (x >= 2) {			 /* |x| >= 2.0 */
                s = sin(x);
                c = cos(x);
                ss = -s-c;
                cc = s-c;
		if (x < .5 * DBL_MAX) {	/* make sure x+x not overflow */
                    z = cos(x+x);
                    if ((s*c)>zero) cc = z/ss;
                    else            ss = z/cc;
                }
        /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
         * where x0 = x-3pi/4
         *      Better formula:
         *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
         *                      =  1/sqrt(2) * (sin(x) - cos(x))
         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
         *                      = -1/sqrt(2) * (cos(x) + sin(x))
         * To avoid cancellation, use
         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
         * to compute the worse one.
         */
                if (_IEEE && x>two_129) {
			z = (invsqrtpi*ss)/sqrt(x);
                } else {
                    u = pone(x); v = qone(x);
                    z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
                }
                return z;
        }
        if (x <= two_m54) {    /* x < 2**-54 */
            return (-tpi/x);
        }
        z = x*x;
        u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
        v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
        return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
}
コード例 #2
0
ファイル: n_log1p.c プロジェクト: AgamAgarwal/minix
double
log1p(double x)
{
	static const double zero=0.0, negone= -1.0, one=1.0,
		      half=1.0/2.0, small=1.0E-20;   /* 1+small == 1 */
	double z,s,t,c;
	int k;

#if !defined(__vax__)&&!defined(tahoe)
	if(x!=x) return(x);	/* x is NaN */
#endif	/* !defined(__vax__)&&!defined(tahoe) */

	if(finite(x)) {
	   if( x > negone ) {

	   /* argument reduction */
	      if(copysign(x,one)<small) return(x);
	      k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
	      if(z+t >= sqrt2 )
		  { k += 1 ; z *= half; t *= half; }
	      t += negone; x = z + t;
	      c = (t-x)+z ;		/* correction term for x */

 	   /* compute log(1+x)  */
              s = x/(2+x); t = x*x*half;
	      c += (k*ln2lo-c*x);
	      z = c+s*(t+__log__L(s*s));
	      x += (z - t) ;

	      return(k*ln2hi+x);
	   }
	/* end of if (x > negone) */

	    else {
#if defined(__vax__)||defined(tahoe)
		if ( x == negone )
		    return (infnan(-ERANGE));	/* -INF */
		else
		    return (infnan(EDOM));	/* NaN */
#else	/* defined(__vax__)||defined(tahoe) */
		/* x = -1, return -INF with signal */
		if ( x == negone ) return( negone/zero );

		/* negative argument for log, return NaN with signal */
	        else return ( zero / zero );
#endif	/* defined(__vax__)||defined(tahoe) */
	    }
	}
    /* end of if (finite(x)) */

    /* log(-INF) is NaN */
	else if(x<0)
	     return(zero/zero);

    /* log(+INF) is INF */
	else return(x);
}
コード例 #3
0
ファイル: n_jn.c プロジェクト: mikekmv/aeriebsd-src
double
yn(int n, double x)
{
	int i, sign;
	double a, b, temp;

    /* Y(n,NaN), Y(n, x < 0) is NaN */
	if (x <= 0 || isnan(x))
		if (_IEEE && x < 0) return zero/zero;
		else if (x < 0)     return (infnan(EDOM));
		else if (_IEEE)     return -one/zero;
		else		    return(infnan(-ERANGE));
	else if (!finite(x)) return(0);
	sign = 1;
	if (n<0){
		n = -n;
		sign = 1 - ((n&1)<<2);
	}
	if (n == 0) return(y0(x));
	if (n == 1) return(sign*y1(x));
	if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
    /* (x >> n**2)
     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
     *	    Let s=sin(x), c=cos(x),
     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
     *
     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
     *		----------------------------------
     *		   0	 s-c		 c+s
     *		   1	-s-c 		-c+s
     *		   2	-s+c		-c-s
     *		   3	 s+c		 c-s
     */
		switch (n&3) {
		    case 0: temp =  sin(x)-cos(x); break;
		    case 1: temp = -sin(x)-cos(x); break;
		    case 2: temp = -sin(x)+cos(x); break;
		    case 3: temp =  sin(x)+cos(x); break;
		}
		b = invsqrtpi*temp/sqrt(x);
	} else {
	    a = y0(x);
	    b = y1(x);
	/* quit if b is -inf */
	    for (i = 1; i < n && !finite(b); i++){
		temp = b;
		b = ((double)(i+i)/x)*b - a;
		a = temp;
	    }
	}
	if (!_IEEE && !finite(b))
		return (infnan(-sign * ERANGE));
	return ((sign > 0) ? b : -b);
}
コード例 #4
0
ファイル: n_lgamma.c プロジェクト: SylvestreG/bitrig
static double
large_lgam(double x)
{
	double z, p, x1;
	struct Double t, u, v;
	u = __log__D(x);
	u.a -= 1.0;
	if (x > 1e15) {
		v.a = x - 0.5;
		TRUNC(v.a);
		v.b = (x - v.a) - 0.5;
		t.a = u.a*v.a;
		t.b = x*u.b + v.b*u.a;
		if (_IEEE == 0 && !finite(t.a))
			return(infnan(ERANGE));
		return(t.a + t.b);
	}
	x1 = 1./x;
	z = x1*x1;
	p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));
					/* error in approximation = 2.8e-19 */

	p = p*x1;			/* error < 2.3e-18 absolute */
					/* 0 < p < 1/64 (at x = 5.5) */
	v.a = x = x - 0.5;
	TRUNC(v.a);			/* truncate v.a to 26 bits. */
	v.b = x - v.a;
	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
	t.b = v.b*u.a + x*u.b;
	t.b += p; t.b += lns2pi;	/* return t + lns2pi + p */
	return (t.a + t.b);
}
コード例 #5
0
ファイル: n_lgamma.c プロジェクト: SylvestreG/bitrig
__pure double
lgamma(double x)
{
	double r;

	int signgam = 1;
#if _IEEE
	endian = ((*(int *) &one)) ? 1 : 0;
#endif

	if (!finite(x))
		if (_IEEE)
			return (x+x);
		else return (infnan(EDOM));

	if (x > 6 + RIGHT) {
		r = large_lgam(x);
		return (r);
	} else if (x > 1e-16)
		return (small_lgam(x));
	else if (x > -1e-16) {
		if (x < 0) {
			signgam = -1;
			x = -x;
		}
		return (-log(x));
	} else
		return (neg_lgam(x));
}
コード例 #6
0
ファイル: lgamma.c プロジェクト: LambdaCalculus379/SLS-1.02
static double
neg(double arg)
{
	double t;

	arg = -arg;
     /*
      * to see if arg were a true integer, the old code used the
      * mathematically correct observation:
      * sin(n*pi) = 0 <=> n is an integer.
      * but in finite precision arithmetic, sin(n*PI) will NEVER
      * be zero simply because n*PI is a rational number.  hence
      *	it failed to work with our newer, more accurate sin()
      * which uses true pi to do the argument reduction...
      *	temp = sin(pi*arg);
      */
	t = floor(arg);
	if (arg - t  > 0.5e0)
	    t += 1.e0;				/* t := integer nearest arg */
#if defined(vax)||defined(tahoe)
	if (arg == t) {
	    return(infnan(ERANGE));		/* +INF */
	}
#endif	/* defined(vax)||defined(tahoe) */
	signgam = (int) (t - 2*floor(t/2));	/* signgam =  1 if t was odd, */
						/*            0 if t was even */
	signgam = signgam - 1 + signgam;	/* signgam =  1 if t was odd, */
						/*           -1 if t was even */
	t = arg - t;				/*  -0.5 <= t <= 0.5 */
	if (t < 0.e0) {
	    t = -t;
	    signgam = -signgam;
	}
	return(-log(arg*pos(arg)*sin(pi*t)/pi));
}
コード例 #7
0
ファイル: lgamma.c プロジェクト: HTshandou/newos
/* __pure double */
double
lgamma(double x)
{
	double r;

	signgam = 1;
	endian = ((*(int *) &one)) ? 1 : 0;

	if (!finite(x)) {
		if (_IEEE)
			return (x+x);
		else return (infnan(EDOM));
	}

	if (x > 6 + RIGHT) {
		r = large_lgam(x);
		return (r);
	} else if (x > 1e-16) {
		return (small_lgam(x));
	} else if (x > -1e-16) {
		if (x < 0)
			signgam = -1, x = -x;
		return (-log(x));
	} else {
		return (neg_lgam(x));
	}
}
コード例 #8
0
ファイル: n_lgamma.c プロジェクト: SylvestreG/bitrig
static double
neg_lgam(double x)
{
	int xi;
	double y, z, zero = 0.0;

	/* avoid destructive cancellation as much as possible */
	if (x > -170) {
		xi = x;
		if (xi == x)
			if (_IEEE)
				return(one/zero);
			else
				return(infnan(ERANGE));
		y = tgamma(x);
		if (y < 0) {
			y = -y;
			signgam = -1;
		}
		return (log(y));
	}
	z = floor(x + .5);
	if (z == x) {		/* convention: G(-(integer)) -> +Inf */
		if (_IEEE)
			return (one/zero);
		else
			return (infnan(ERANGE));
	}
	y = .5*ceil(x);
	if (y == ceil(y))
		signgam = -1;
	x = -x;
	z = fabs(x + z);	/* 0 < z <= .5 */
	if (z < .25)
		z = sin(M_PI*z);
	else
		z = cos(M_PI*(0.5-z));
	z = log(M_PI/(z*x));
	y = large_lgam(x);
	return (z - y);
}
コード例 #9
0
ファイル: n_atanh.c プロジェクト: SylvestreG/bitrig
double
atanh(double x)
{
	double z;
	z = copysign(0.5,x);
	x = copysign(x,1.0);
#if defined(__vax__)
	if (x == 1.0) {
	    return(copysign(1.0,z)*infnan(ERANGE));	/* sign(x)*INF */
	}
#endif	/* defined(__vax__) */
	x = x/(1.0-x);
	return( z*log1p(x+x) );
}
コード例 #10
0
ファイル: n_tgamma.c プロジェクト: mikekmv/aeriebsd-src
double
tgamma(double x)
{
	struct Double u;
#if _IEEE
	endian = (*(int *) &one) ? 1 : 0;
#endif

	if (x >= 6) {
		if(x > 171.63)
			if (_IEEE)
				return (x/zero);
			else
				return (infnan(ERANGE));
		u = large_gam(x);
		return(__exp__D(u.a, u.b));
	} else if (x >= 1.0 + LEFT + x0)
		return (small_gam(x));
	else if (x > 1.e-17)
		return (smaller_gam(x));
	else if (x > -1.e-17) {
		if (x == 0.0) {
			if (!_IEEE)
				return (infnan(ERANGE));
		} else {
			u.a = one - tiny;	/* raise inexact */
		}
		return (one/x);
	} else if (!finite(x)) {
		if (_IEEE)		/* x = NaN, -Inf */
			return (x - x);
		else
			return (infnan(EDOM));
	 } else
		return (neg_gam(x));
}
コード例 #11
0
ファイル: n_tgamma.c プロジェクト: mikekmv/aeriebsd-src
static double
neg_gam(double x)
{
	int sgn = 1;
	struct Double lg, lsine;
	double y, z;

	y = ceil(x);
	if (y == x)		/* Negative integer. */
		if (_IEEE)
			return ((x - x) / zero);
		else
			return (infnan(ERANGE));
	z = y - x;
	if (z > 0.5)
		z = one - z;
	y = 0.5 * y;
	if (y == ceil(y))
		sgn = -1;
	if (z < .25)
		z = sin(M_PI*z);
	else
		z = cos(M_PI*(0.5-z));
	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
	if (x < -170) {
		if (x < -190)
			return ((double)sgn*tiny*tiny);
		y = one - x;		/* exact: 128 < |x| < 255 */
		lg = large_gam(y);
		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
		lg.a -= lsine.a;		/* exact (opposite signs) */
		lg.b -= lsine.b;
		y = -(lg.a + lg.b);
		z = (y + lg.a) + lg.b;
		y = __exp__D(y, z);
		if (sgn < 0) y = -y;
		return (y);
	}
	y = one-x;
	if (one-y == x)
		y = tgamma(y);
	else		/* 1-x is inexact */
		y = -x*tgamma(-x);
	if (sgn < 0) y = -y;
	return (M_PI / (y*z));
}
コード例 #12
0
ファイル: log.c プロジェクト: HTshandou/newos
double
log(double x)
{
	int m, j;
	double F;
	double f;
	double g;
	double q;
	double u;
	double u2;
	double v;
	static double const zero = 0.0;
	static double const one = 1.0;
	volatile double u1;

	/* Catch special cases */
	if (x <= 0) {
		if (_IEEE && x == zero)	/* log(0) = -Inf */
			return (-one/zero);
		else if (_IEEE)		/* log(neg) = NaN */
			return (zero/zero);
		else if (x == zero)	/* NOT REACHED IF _IEEE */
			return (infnan(-ERANGE));
		else
			return (infnan(EDOM));
	} else if (!finite(x)) {
		if (_IEEE)		/* x = NaN, Inf */
			return (x+x);
		else
			return (infnan(ERANGE));
	}

	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
	/* y = F*(1 + f/F) for |f| <= 2^-8		*/

	m = logb(x);
	g = ldexp(x, -m);
	if (_IEEE && m == -1022) {
		j = logb(g), m += j;
		g = ldexp(g, -j);
	}
	j = N*(g-1) + .5;
	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
	f = g - F;

	/* Approximate expansion for log(1+f/F) ~= u + q */
	g = 1/(2*F+f);
	u = 2*f*g;
	v = u*u;
	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));

    /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
     * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
     *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
    */
	if (m | j)
		u1 = u + 513, u1 -= 513;

    /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
     * 		u1 = u to 24 bits.
    */
	else
		u1 = u, TRUNC(u1);
	u2 = (2.0*(f - F*u1) - u1*f) * g;
			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/

	/* log(x) = log(2^m*F*(1+f/F)) =				*/
	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
	/* (exact) + (tiny)						*/

	u1 += m*logF_head[N] + logF_head[j];		/* exact */
	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
	u2 += logF_tail[N]*m;
	return (u1 + u2);
}