void execVisualizerThread() { initVisualizer(); while(!visualizer_->wasStopped()) { render(1); } visualizer_.reset(); }
PclCameraTrajectoryVisualizerImpl(bool render_thread = true) { if(render_thread) { visualizer_thread_.reset(new boost::thread(boost::bind(&PclCameraTrajectoryVisualizerImpl::execVisualizerThread, this))); // wait for visualizer_ being created while(!visualizer_) { boost::this_thread::yield(); } } else { initVisualizer(); } }
int main(){ int i = 0; int mapCount = 0, clearMapCount = 0, dumpCount=0; int revFrameCount = 0; #ifdef USE_NORTH targetsGPS[maxTargets].lat = ADVANCED5LAT; targetsGPS[maxTargets].lon = ADVANCED5LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED6LAT; targetsGPS[maxTargets].lon = ADVANCED6LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED7LAT; targetsGPS[maxTargets].lon = ADVANCED7LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED8LAT; targetsGPS[maxTargets].lon = ADVANCED8LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED2LAT; targetsGPS[maxTargets].lon = ADVANCED2LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED1LAT; targetsGPS[maxTargets].lon = ADVANCED1LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED3LAT; targetsGPS[maxTargets].lon = ADVANCED3LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED12LAT; targetsGPS[maxTargets].lon = ADVANCED12LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED4LAT; targetsGPS[maxTargets].lon = ADVANCED4LON; maxTargets++; #else targetsGPS[maxTargets].lat = ADVANCED4LAT; targetsGPS[maxTargets].lon = ADVANCED4LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED1LAT; targetsGPS[maxTargets].lon = ADVANCED1LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED2LAT; targetsGPS[maxTargets].lon = ADVANCED2LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED3LAT; targetsGPS[maxTargets].lon = ADVANCED3LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED11LAT; targetsGPS[maxTargets].lon = ADVANCED11LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED8LAT; targetsGPS[maxTargets].lon = ADVANCED8LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED7LAT; targetsGPS[maxTargets].lon = ADVANCED7LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED6LAT; targetsGPS[maxTargets].lon = ADVANCED6LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED11LAT; targetsGPS[maxTargets].lon = ADVANCED11LON; maxTargets++; targetsGPS[maxTargets].lat = ADVANCED5LAT; targetsGPS[maxTargets].lon = ADVANCED5LON; maxTargets++; #endif maxTargetIndex=maxTargets-1; for(i=0;i<maxTargets;i++){// this is converting all GPS point data to XY data. targetListXY[i].x = GPSX(targetsGPS[i].lon, startLongitude); targetListXY[i].y = GPSY(targetsGPS[i].lat, startLatitude); } currentXY.x = GPSX(gpsvar.longitude,startLongitude);// converts current robot X location compared to start longitude currentXY.y = GPSY(gpsvar.latitude,startLatitude);// converts current robot Y location compared to start latitude targetXY = targetListXY[currentTargetIndex];//sets first target GPS point nextTargetIndex = (currentTargetIndex + 1)%maxTargets;//sets next target GPS point nextXY = targetListXY[nextTargetIndex];// ?? previousXY.x = GPSX(startLongitude, startLongitude);// why? previousXY.y = GPSY(startLatitude, startLatitude);//Why? initRoboteq(); /* Initialize roboteq */ initGuide();//what is guide? #ifdef USE_VISION // if USE_vision is defined, then initialize vision. initVision(); #endif //USE_VISION #ifdef USE_GPS// if USE_GPS is defined, then initialize GPS. initGPS(); initParser(); #endif //USE_GPS #ifdef USE_LIDAR// if USE_LIDAR is defined, then initialize LIDAR. initObjects(); initSICK(); #endif //USE_LIDAR #ifdef DEBUG_VISUALIZER// if defined, then use visualizer. initVisualizer(); #endif //DEBUG_VISUALIZER #ifdef USE_MAP//////>>>>>>>>>>>???? initMap(0,0,0); #endif //USE_MAP #ifdef DUMP_GPS// dump GPS data into file FILE *fp; fp = fopen("gpsdump.txt", "w"); #endif // DUMP_GPS while(1){ double dir = 1.0; double speed = 0.0, turn = 0.0; static double turnBoost = 0.750;//Multiplier for turn. Adjust to smooth jerky motions. Usually < 1.0 static int lSpeed = 0, rSpeed = 0;//Wheel Speed Variables if (joystick() != 0) {// is joystick is connected if (joy0.buttons & LB_BTN) {// deadman switch, but what does joy0.buttons do????????????????????????????????? speed = -joy0.axis[1]; //Up is negative on joystick negate so positive when going forward turn = joy0.axis[0]; lSpeed = (int)((speed + turnBoost*turn)*maxSpeed);//send left motor speed rSpeed = (int)((speed - turnBoost*turn)*maxSpeed);//send right motor speed }else{ //stop the robot rSpeed=lSpeed=0; } if(((joy0.buttons & B_BTN)||autoOn)&& (saveImage==0)){//what is the single & ??????????????????? saveImage =DEBOUNCE_FOR_SAVE_IMAGE;//save each image the camera takes, save image is an int declared in vision_nav.h }else{ if (saveImage) saveImage--; // turn off if button wasn't pressed? } if(joy0.buttons & RB_BTN){//turn on autonmous mode if start??? button is pressed autoOn = 1; mode=1; } if(joy0.buttons & Y_BTN){ // turn off autonomous mode autoOn = 0; mode =0; } lastButtons = joy0.buttons;//is this just updating buttons? } else{ // printf("No Joystick Found!\n"); rSpeed=lSpeed=0; } // // printf("3: %f %f\n",BASIC3LAT,BASIC3LON); // printf("4: %f %f\n",BASIC4LAT,BASIC4LON); // printf("5: %f %f\n",BASIC5LAT,BASIC5LON); // getchar(); #ifdef AUTO_SWAP//what is this if((currentTargetIndex>1&&targetIndexMem!=currentTargetIndex)||!autoOn||!mode==3){ startTime=currentTime=(float)(clock()/CLOCKS_PER_SEC); targetIndexMem = currentTargetIndex; }else{ currentTime=(float)(clock()/CLOCKS_PER_SEC); } totalTime = currentTime-startTime; if(totalTime>=SWAPTIME&&autoOn){ swap(); targetIndexMem = 0; } #endif //AUTO_SWAP #ifdef USE_GPS readGPS(); currentXY.x = GPSX(gpsvar.longitude,startLongitude); currentXY.y = GPSY(gpsvar.latitude,startLatitude); robotTheta = ADJUST_RADIANS(DEG2RAD(gpsvar.course)); #else currentXY.x = 0.0; currentXY.y = 0.0; robotTheta = 0.0; #endif //USE_GPS if(autoOn&&!flagPointSet){//this whole thing????? flagXY.x=currentXY.x+FLAG_X_ADJUST; flagXY.y=currentXY.y; flagPointSet=1; startAutoTime=currentAutoTime=(float)(clock()/CLOCKS_PER_SEC); } if(autoOn){ currentAutoTime=(float)(clock()/CLOCKS_PER_SEC); totalAutoTime = currentAutoTime-startAutoTime; if(totalAutoTime>=MODE2DELAY){ mode1TimeUp=1;//what is mode1 time up? } printf("TIMEING\n"); } // if(currentTargetIndex <= OPEN_FIELD_INDEX || currentTargetIndex >= maxTargetIndex){ if(currentTargetIndex <= OPEN_FIELD_INDEX){//if you are on your last target, then set approaching thresh, and dest thresh to larger values? //OPEN_FIELD_INDEX is set to 0 above...? approachingThresh=4.0; destinationThresh=3.0; }else{//otherwise set your thresholds to a bit closer. // destinationThresh=1.0; destinationThresh=0.75; approachingThresh=2.5; } //mode1 = lane tracking and obstacle avoidance. mode 2 = vision, lane tracking, but guide to gps. its not primary focus. //mode3= gps mode in open field, but vision is toned down to not get distracted by random grass. //mode 4= flag tracking if(guide(currentXY, targetXY, previousXY, nextXY, robotTheta, robotWidth, 1)&& !allTargetsReached){//If target reached and and not all targets reached printf("REACHED TARGET\n"); initGuide();// reset PID control stuff. problably resets all control variables. previousXY = targetXY;//update last target if(currentTargetIndex == maxTargetIndex){ //seeing if you are done with all targets. allTargetsReached = 1; }else{//otherwise update all the target information currentTargetIndex = (currentTargetIndex + 1); nextTargetIndex = (currentTargetIndex + 1)% maxTargets; targetXY = targetListXY[currentTargetIndex]; nextXY = targetListXY[nextTargetIndex]; } } if((autoOn&&(currentTargetIndex == 0&&!approachingTarget&&!mode1TimeUp))||allTargetsReached){ //if autonomous, and on first target, and not not approaching target, and not mode 1 time up, or reached last target. mode =1;//wtf is mode distanceMultiplier = 50;//wthis is how heavily to rely on vision } else if((autoOn&¤tTargetIndex == 0&&mode1TimeUp)||(autoOn&&approachingTarget&&(currentTargetIndex<=OPEN_FIELD_INDEX||currentTargetIndex>=maxTargetIndex-END_LANE_INDEX))){ mode =2; distanceMultiplier = 50; } else if((autoOn&¤tTargetIndex!=0)){ mode =3; distanceMultiplier = 12; } flagPointDistance = D((currentXY.x-flagXY.x),(currentXY.y-flagXY.y));// basically the distance formula, but to what? what flags GPS point? if(allTargetsReached&&flagPointDistance<FLAG_DIST_THRESH){ mode =4;// what is mode } #ifdef FLAG_TESTING /*FLAG TESTING*/ mode=4; #endif //FLAG_TESTING /*Current Target Heading PID Control Adjustment*/ cvar.lookAhead = 0.00;//? cvar.kP = 0.20; cvar.kI = 0.000; cvar.kD = 0.15; turn = cvar.turn; int bestVisGpsMask = 99; int h = 0; double minVisGpsTurn = 9999; for(h=0;h<11;h++){ if(fabs((cvar.turn-turn_angle[h]))<minVisGpsTurn){ minVisGpsTurn=fabs((cvar.turn-turn_angle[h])); bestVisGpsMask = h; } } bestGpsMask = bestVisGpsMask; // printf("bvg: %d \n", bestVisGpsMask); // printf("vgt: %f cv3: %f\n", minVisGpsTurn,cvar3.turn); #ifdef USE_VISION // double visTurnBoost = 0.50; double visTurnBoost = 1.0; if(imageProc(mode) == -1) break; if(mode==1||mode==2){ turn = turn_angle[bestmask]; turn *= visTurnBoost; }else if(mode==3 && fabs(turn_angle[bestmask])>0.70){ turn = turn_angle[bestmask]; turn *= visTurnBoost; } #endif //USE_VISION #ifdef USE_LIDAR updateSick(); // findObjects(); #endif //USE_LIDAR #ifdef USE_COMBINED_BUFFER//?????????? #define WORSTTHRESH 10 #define BESTTHRESH 3 if(mode==4){ #ifdef USE_NORTH turn = (0.5*turn_angle[bestBlueMask]+0.5*turn_angle[bestRedMask]); #else turn = (0.65*turn_angle[bestBlueMask]+0.35*turn_angle[bestRedMask]); #endif turn *= 0.75; } combinedTargDist = cvar.targdist; if(((approachingTarget||inLastTarget)&¤tTargetIndex>OPEN_FIELD_INDEX &¤tTargetIndex<maxTargetIndex-END_LANE_INDEX)||(MAG(howbad[worstmask]-howbad[bestmask]))<BESTTHRESH||mode==4){ getCombinedBufferAngles(0,0);//Don't Use Vision Radar Data }else{ getCombinedBufferAngles(0,1);//Use Vision Radar Data } if(combinedBufferAngles.left != 0 || combinedBufferAngles.right !=0){ if(mode == 1 || mode==2 || mode==3 || mode==4){ // if(mode == 1 || mode==2 || mode==3){ // if(mode==2 || mode==3){ // if(mode==3){ if(fabs(combinedBufferAngles.right)==fabs(combinedBufferAngles.left)){ double revTurn; double revDistLeft, revDistRight; int revIdx; if(fabs(turn)<0.10) dir = -1.0; if(fabs(combinedBufferAngles.left)>1.25) dir = -1.0; if(dir<0){ revIdx = 540-RAD2DEG(combinedBufferAngles.left)*4; revIdx = MIN(revIdx,1080); revIdx = MAX(revIdx,0); revDistLeft = LMSdata[revIdx]; revIdx = 540-RAD2DEG(combinedBufferAngles.right)*4; revIdx = MIN(revIdx,1080); revIdx = MAX(revIdx,0); revDistRight = LMSdata[revIdx]; if(revDistLeft>=revDistRight){ revTurn = combinedBufferAngles.left; }else { revTurn = combinedBufferAngles.right; } turn = revTurn; }else{ turn = turn_angle[bestmask]; } } else if(fabs(combinedBufferAngles.right-turn)<fabs(combinedBufferAngles.left-turn)){ // } else if(turn<=0){ turn = combinedBufferAngles.right; }else { turn = combinedBufferAngles.left; } } } #endif //USE_COMBINED_BUFFER if(dir<0||revFrameCount!=0){ dir = -1.0; revFrameCount = (revFrameCount+1)%REVFRAMES; } // turn *= dir; turn = SIGN(turn) * MIN(fabs(turn), 1.0); speed = 1.0/(1.0+1.0*fabs(turn))*dir; speed = SIGN(speed) * MIN(fabs(speed), 1.0); if(!autoOn){ maxSpeed = 60; targetIndexMem = 0; }else if(dir<0){ maxSpeed = 30; }else if(mode<=2||(mode==3 && fabs(turn_angle[bestmask])>0.25)){ maxSpeed = 60 - 25*fabs(turn); // maxSpeed = 70 - 35*fabs(turn); // maxSpeed = 90 - 50*fabs(turn); // maxSpeed = 100 - 65*fabs(turn); }else if(mode==4){ maxSpeed = 45-20*fabs(turn); }else{ maxSpeed = 85 - 50*fabs(turn); // maxSpeed = 100 - 65*fabs(turn); // maxSpeed = 110 - 70*fabs(turn); // maxSpeed = 120 - 85*fabs(turn); } if(autoOn){ lSpeed = (speed + turnBoost*turn) * maxSpeed; rSpeed = (speed - turnBoost*turn) * maxSpeed; } #ifdef DEBUG_MAIN printf("s:%.4f t: %.4f m: %d vt:%f dir:%f tmr: %f\n", speed, turn, mode, turn_angle[bestmask], flagPointDistance, totalAutoTime); #endif //DEBUG_MAIN #ifdef DUMP_GPS if(dumpCount==0){ if (fp != NULL) { fprintf(fp, "%f %f %f %f %f\n",gpsvar.latitude,gpsvar.longitude, gpsvar.course, gpsvar.speed, gpsvar.time); } } dumpCount = dumpCount+1%DUMPGPSDELAY; #endif //DUMP_GPS #ifdef DEBUG_TARGET debugTarget(); #endif //DEBUG_TARGET #ifdef DEBUG_GUIDE debugGuide(); #endif //DEBUG_GUIDE #ifdef DEBUG_GPS debugGPS(); #endif //DEBUG_GPS #ifdef DEBUG_LIDAR debugSICK(); #endif //DEBUG_LIDAR #ifdef DEBUG_BUFFER debugCombinedBufferAngles(); #endif //DEBUG_BUFFE #ifdef DEBUG_VISUALIZER robotX = currentXY.x; robotY = currentXY.y; robotTheta = robotTheta;//redundant I know.... targetX = targetXY.x; targetY = targetXY.y; // should probably pass the above to the function... paintPathPlanner(robotX,robotY,robotTheta); showPlot(); #endif //VISUALIZER #ifdef USE_MAP if(mapCount==0){ // mapRobot(currentXY.x,currentXY.y,robotTheta); if(clearMapCount==0) clearMapSection(currentXY.x,currentXY.y,robotTheta); else clearMapCount = (clearMapCount+1)%CLEARMAPDELAY; mapVSICK(currentXY.x,currentXY.y,robotTheta); // mapVSICK(0,0,0); #ifdef USE_LIDAR mapSICK(currentXY.x,currentXY.y,robotTheta); #endif showMap(); // printf("MAPPING\n"); } mapCount= (mapCount+1)%MAPDELAY; #endif //USE_MAP sendSpeed(lSpeed,rSpeed); Sleep(5); } #ifdef DUMP_GPS fclose(fp); #endif return 0; }
/** \brief The machine learning classifier, results are stored in the ClusterData structs. * \param[in] cloud_in A pointer to the input point cloud. * \param[in/out] clusters_data An array of information holders for each cluster */ void applyObjectClassification (const pcl::PointCloud<PointType>::Ptr cloud_in, boost::shared_ptr<std::vector<ClusterData> > &clusters_data) { // Set up the machine learnin class pcl::SVMTrain ml_svm_training; // To train the classifier pcl::SVMClassify ml_svm_classify; // To classify std::vector<pcl::SVMData> featuresSet; // Create the input vector for the SVM class std::vector<std::vector<double> > predictionOut; // Prediction output vector // If the input model_filename exists, it starts the classification. // Otherwise it starts a new machine learning training. if (global_data.model.size() > 0) { if (!ml_svm_classify.loadClassifierModel (global_data.model.data())) return; pcl::console::print_highlight (stderr, "Loaded "); pcl::console::print_value (stderr, "%s ", global_data.model.data()); // Copy the input vector for the SVM classification for (size_t c_it = 0; c_it < clusters_data->size (); ++c_it) featuresSet.push_back ( (*clusters_data) [c_it].features); ml_svm_classify.setInputTrainingSet (featuresSet); // Set input clusters set ml_svm_classify.saveNormClassProblem ("data_input"); //Save clusters features ml_svm_classify.setProbabilityEstimates (1); // Estimates the probabilities ml_svm_classify.classification (); } else { // Currently: analyze on voxels of 0.08 x 0.08 x 0.08 meter with slight alteration based on cluster aggressiveness float resolution = 0.08 * global_data.scale / pow (0.5 + global_data.cagg, 2); // Create the viewer pcl::visualization::PCLVisualizer viewer ("cluster viewer"); // Output classifier model name global_data.model.assign (global_data.cloud_name.data()); global_data.model.append (".model"); std::vector<bool> lab_cluster;// save whether a cluster is labelled std::vector<int> pt_clst_pos; // used to memorize in the total cloud, the point affiliation to the original cluster // fill the vector (1 = labelled, 0 = unlabelled) lab_cluster.resize ( (std::size_t) clusters_data->size ()); for (size_t c_it = 0; c_it < clusters_data->size (); ++c_it) { if ( (*clusters_data) [c_it].is_isolated) { (*clusters_data) [c_it].features.label = 0; lab_cluster[c_it] = 1; } else lab_cluster[c_it] = 0; } // Build a cloud with unlabelled clusters pcl::PointCloud<PointType>::Ptr fragm_cloud (new pcl::PointCloud<PointType>); // Initialize the viewer initVisualizer (viewer); PointType picked_point; // changed whether a mouse click occours. It saves the selected cluster index viewer.registerPointPickingCallback (&pp_callback, (void *) &picked_point); // Create a cloud with unlabelled clusters for (size_t c_it = 0; c_it < clusters_data->size (); ++c_it) if (!lab_cluster[c_it]) { pcl::PointCloud<PointType>::Ptr cluster (new pcl::PointCloud<PointType>); pcl::copyPointCloud (*cloud_in, * (*clusters_data) [c_it].indices, *cluster); // Downsample cluster pcl::VoxelGrid<PointType> sor; sor.setInputCloud (cluster); sor.setLeafSize (resolution, resolution, resolution); sor.filter (*cluster); // Copy cluster into a global cloud fragm_cloud->operator+= (*cluster); // Fill a vector to memorize the original affiliation of a point to the cluster for (int clust_pt = 0; clust_pt < cluster->size(); clust_pt++) pt_clst_pos.push_back (c_it); // Add cluster to the viewer std::stringstream cluster_name; cluster_name << "cluster" << c_it; pcl::visualization::PointCloudColorHandlerGenericField<PointType> rgb (cluster, "intensity");// Get color handler for the cluster cloud viewer.addPointCloud<PointType> (cluster, rgb, cluster_name.str().data()); } // Create a tree for point searching in the total cloud pcl::KdTreeFLANN<pcl::PointXYZI> tree_; tree_.setInputCloud (fragm_cloud); // Visualize the whole cloud int selected = -1; // save the picked cluster bool stop = 0; while (!viewer.wasStopped()) { viewer.registerKeyboardCallback (keyboardEventOccurred, (void*) &stop); boost::this_thread::sleep (boost::posix_time::microseconds (100000)); viewer.spinOnce (500); if (picked_point.x != 0.0f || picked_point.y != 0.0f || picked_point.z != 0.0f) // if a point is clicked { std::vector<int> pointIdxNKNSearch (1); std::vector<float> pointNKNSquaredDistance (1); pcl::PointCloud<PointType>::Ptr cluster (new pcl::PointCloud<PointType>); tree_.nearestKSearch (picked_point, 1, pointIdxNKNSearch, pointNKNSquaredDistance); selected = pt_clst_pos[pointIdxNKNSearch[0]]; viewer.removePointCloud("cluster"); pcl::copyPointCloud (*cloud_in, * (*clusters_data) [selected].indices, *cluster); pcl::visualization::PointCloudColorHandlerGenericField<PointType> rgb (cluster, "intensity"); viewer.addPointCloud<PointType> (cluster, rgb, "cluster"); picked_point.x = 0.0f; picked_point.y = 0.0f; picked_point.z = 0.0f; } if(selected != -1 && stop) { std::stringstream cluster_name; cluster_name << "cluster" << selected; lab_cluster[ selected ] = 1; // cluster is marked as labelled (*clusters_data) [ selected ].features.label = 1; // the cluster is set as a noise viewer.removePointCloud(cluster_name.str().data()); viewer.removePointCloud("cluster"); stop = 0; selected = -1; } } // Close the viewer viewer.close(); // The remaining unlabelled clusters are marked as "good" for (int c_it = 0; c_it < lab_cluster.size(); c_it++) { if (!lab_cluster[c_it]) (*clusters_data) [c_it].features.label = 0; // Mark remaining clusters as good } // Copy the input vector for the SVM classification for (size_t c_it = 0; c_it < clusters_data->size (); ++c_it) featuresSet.push_back ( (*clusters_data) [c_it].features); // Setting the training classifier pcl::SVMParam trainParam; trainParam.probability = 1; // Estimates the probabilities trainParam.C = 512; // Initial C value of the classifier trainParam.gamma = 2; // Initial gamma value of the classifier ml_svm_training.setInputTrainingSet (featuresSet); // Set input training set ml_svm_training.setParameters (trainParam); ml_svm_training.trainClassifier(); // Train the classifier ml_svm_training.saveClassifierModel (global_data.model.data()); // Save classifier model pcl::console::print_highlight (stderr, "Saved "); pcl::console::print_value (stderr, "%s ", global_data.model.data()); ml_svm_training.saveTrainingSet ("data_input"); // Save clusters features normalized // Test the current classification ml_svm_classify.loadClassifierModel (global_data.model.data()); ml_svm_classify.setInputTrainingSet (featuresSet); ml_svm_classify.setProbabilityEstimates (1); ml_svm_classify.classificationTest (); } ml_svm_classify.saveClassificationResult ("prediction"); // save prediction in outputtext file ml_svm_classify.getClassificationResult (predictionOut); // Get labels order std::vector<int> labels; ml_svm_classify.getLabel (labels); // Store the boolean output inside clusters_data for (size_t c_it = 0; c_it < clusters_data->size (); ++c_it) switch ( (int) predictionOut[c_it][0]) { case 0: (*clusters_data) [c_it].is_good = true; break; case 1: (*clusters_data) [c_it].is_ghost = true; break; case 2: (*clusters_data) [c_it].is_tree = true; break; } // Store the percentage output inside cluster_data for (size_t lab = 0; lab < labels.size (); lab++) switch (labels[lab]) { case 0: for (size_t c_it = 0; c_it < clusters_data->size (); ++c_it) { (*clusters_data) [c_it].is_good_prob = predictionOut[c_it][lab + 1]; } break; case 1: for (size_t c_it = 0; c_it < clusters_data->size (); ++c_it) { (*clusters_data) [c_it].is_ghost_prob = predictionOut[c_it][lab + 1]; } break; case 2: for (size_t c_it = 0; c_it < clusters_data->size (); ++c_it) { (*clusters_data) [c_it].is_tree_prob = predictionOut[c_it][lab + 1]; } break; } };