コード例 #1
0
ファイル: erlxsl.c プロジェクト: chinnurtb/erlxsl
/*
This function is called from erlang:port_call/3. It works a lot like the control call-back,
but uses the external term format for input and output.
- command is an integer, obtained from the call from erlang (the second argument to erlang:port_call/3).
- buf and len provide the arguments to the call (the third argument to erlang:port_call/3). They're decoded using ei.
- rbuf points to a return buffer, rlen bytes long.

The return data (written to *rbuf) should be a valid erlang term in the external term format. This is converted to an
erlang term and returned by erlang:port_call/3 to the caller. If more space than rlen bytes is needed to return data,
*rbuf can be set to memory allocated with driver_alloc. This memory will be freed automatically after call has returned.
The return value (of this callback function) is the number of bytes returned in *rbuf. If ERL_DRV_ERROR_GENERAL is returned
(or in fact, anything < 0), erlang:port_call/3 will throw a BAD_ARG.

THIS IMPLEMENTATION of the callback handles two kinds of commands, INIT_COMMAND and ENGINE_COMMAND. An INIT_COMMAND should
only be issued once during the lifecycle of the driver, *before* any data is sent to the port using port_command/port_control.
The INIT_COMMAND causes the driver to load the specified shared library and call a predefined entry point (see the
erlxsl_driver header file for details) to initialize an XslEngine structure.

TODO: document ENGINE_COMMAND.
TODO: locking during ENGINE_COMMAND calls
TODO: support the transform command here as well - small binaries (which we can't/won't share/refcount) can be passed and copied...
*/
static int
call(ErlDrvData drv_data, unsigned int command, char *buf,
    int len, char **rbuf, int rlen, unsigned int *flags) {

    int i;
    int type;
    int size;
    int index = 0;
    int rindex = 0;
    /*int arity;
     *
    char cmd[MAXATOMLEN];*/
    char *data;
    DriverState state;
    DriverHandle *d = (DriverHandle*)drv_data;

    ei_decode_version(buf, &index, &i);
    if (command == INIT_COMMAND) {
        ei_get_type(buf, &index, &type, &size);
        INFO("ei_get_type %s of size = %i\n", ((char*)&type), size);
        // TODO: pull options tuple instead
        data = ALLOC(size + 1);
        ei_decode_string(buf, &index, data);
        INFO("Driver received data %s\n", data);
        state = init_provider(d, data);
    } else if (command == ENGINE_COMMAND) {
        DriverContext *ctx = ALLOC(sizeof(DriverContext));
        // ErlDrvPort port = (ErlDrvPort)d->port;
        // XslEngine *engine = (XslEngine*)d->engine;
        // ErlDrvTermData callee_pid = driver_caller(port);
        Command *cmd = init_command(NULL, ctx, NULL, init_iov(Text, 0, NULL));

        state = decode_ei_cmd(cmd, buf, &index);
        if (state == Success) {
            XslEngine *engine = (XslEngine*)d->engine;
            if (engine->command != NULL) {
                EngineState enstate = engine->command(cmd);
                if (enstate == Ok) {
                    state = Success;
                }
            }
        }
        /*ei_get_type(buf, &index, &type, &size);
        INFO("ei_get_type %s of size = %i\n", ((char*)&type), size);
        data = ALLOC(size + 1);
        ei_decode_string(buf, &index, data);*/
    } else {
        state = UnknownCommand;
    }

    ei_encode_version(*rbuf, &rindex);
    if (state == InitOk) {
        INFO("Provider configured with library %s\n", d->loader->name);
#ifdef _DRV_SASL_LOGGING
        // TODO: pull the logging_port and install it....
#endif
        ei_encode_atom(*rbuf, &rindex, "configured");
    } else if (state == Success) {
        ei_encode_tuple_header(*rbuf, &rindex, 2);
        ei_encode_atom(*rbuf, &rindex, "ok");
        if (state == OutOfMemory) {
            ei_encode_string(*rbuf, &rindex, heap_space_exhausted);
        } else if (state == UnknownCommand) {
            ei_encode_string(*rbuf, &rindex, unknown_command);
        } else {
            const char *err = (d->loader)->error_message;
            ei_encode_string_len(*rbuf, &rindex, err, strlen(err));
        }
    } else {
        ei_encode_tuple_header(*rbuf, &rindex, 2);
        ei_encode_atom(*rbuf, &rindex, "error");
        if (state == OutOfMemory) {
            ei_encode_string(*rbuf, &rindex, heap_space_exhausted);
        } else if (state == UnknownCommand) {
            ei_encode_string(*rbuf, &rindex, unknown_command);
        } else {
            const char *err = (d->loader)->error_message;
            ei_encode_string_len(*rbuf, &rindex, err, strlen(err));
        }
    }
    DRV_FREE(data);
    return(rindex);
};
コード例 #2
0
sk_sp<GrTextureProxy> GrYUVProvider::refAsTextureProxy(GrContext* ctx, const GrSurfaceDesc& desc,
                                                       const SkColorSpace* srcColorSpace,
                                                       const SkColorSpace* dstColorSpace) {
    SkYUVPlanesCache::Info yuvInfo;
    void* planes[3];

    sk_sp<SkCachedData>  dataStorage = init_provider(this, &yuvInfo, planes);
    if (!dataStorage) {
        return nullptr;
    }

    sk_sp<GrTextureProxy> yuvTextureProxies[3];
    for (int i = 0; i < 3; i++) {
        int componentWidth  = yuvInfo.fSizeInfo.fSizes[i].fWidth;
        int componentHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight;
        // If the sizes of the components are not all the same we choose to create exact-match
        // textures for the smaller onces rather than add a texture domain to the draw.
        // TODO: revisit this decision to imporve texture reuse?
        SkBackingFit fit =
                (componentWidth  != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) ||
                (componentHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight)
                    ? SkBackingFit::kExact : SkBackingFit::kApprox;

        SkImageInfo imageInfo = SkImageInfo::MakeA8(componentWidth, componentHeight);
        SkPixmap pixmap(imageInfo, planes[i], yuvInfo.fSizeInfo.fWidthBytes[i]);
        SkCachedData* dataStoragePtr = dataStorage.get();
        // We grab a ref to cached yuv data. When the SkImage we create below goes away it will call
        // the YUVGen_DataReleaseProc which will release this ref.
        // DDL TODO: Currently we end up creating a lazy proxy that will hold onto a ref to the
        // SkImage in its lambda. This means that we'll keep the ref on the YUV data around for the
        // life time of the proxy and not just upload. For non-DDL draws we should look into
        // releasing this SkImage after uploads (by deleting the lambda after instantiation).
        dataStoragePtr->ref();
        sk_sp<SkImage> yuvImage = SkImage::MakeFromRaster(pixmap, YUVGen_DataReleaseProc,
                                                          dataStoragePtr);

        auto proxyProvider = ctx->contextPriv().proxyProvider();
        yuvTextureProxies[i] = proxyProvider->createTextureProxy(yuvImage, kNone_GrSurfaceFlags,
                                                                 kTopLeft_GrSurfaceOrigin,
                                                                 1, SkBudgeted::kYes, fit);
    }

    // We never want to perform color-space conversion during the decode. However, if the proxy
    // config is sRGB then we must use a sRGB color space.
    sk_sp<SkColorSpace> colorSpace;
    if (GrPixelConfigIsSRGB(desc.fConfig)) {
        colorSpace = SkColorSpace::MakeSRGB();
    }
    // TODO: investigate preallocating mip maps here
    sk_sp<GrRenderTargetContext> renderTargetContext(ctx->makeDeferredRenderTargetContext(
            SkBackingFit::kExact, desc.fWidth, desc.fHeight, desc.fConfig, std::move(colorSpace),
            desc.fSampleCnt, GrMipMapped::kNo, kTopLeft_GrSurfaceOrigin));
    if (!renderTargetContext) {
        return nullptr;
    }

    GrPaint paint;
    auto yuvToRgbProcessor =
            GrYUVtoRGBEffect::Make(std::move(yuvTextureProxies[0]),
                                   std::move(yuvTextureProxies[1]),
                                   std::move(yuvTextureProxies[2]),
                                   yuvInfo.fSizeInfo.fSizes, yuvInfo.fColorSpace, false);
    paint.addColorFragmentProcessor(std::move(yuvToRgbProcessor));

    // If we're decoding an sRGB image, the result of our linear math on the YUV planes is already
    // in sRGB. (The encoding is just math on bytes, with no concept of color spaces.) So, we need
    // to output the results of that math directly to the buffer that we will then consider sRGB.
    // If we have sRGB write control, we can just tell the HW not to do the Linear -> sRGB step.
    // Otherwise, we do our shader math to go from YUV -> sRGB, manually convert sRGB -> Linear,
    // then let the HW convert Linear -> sRGB.
    if (GrPixelConfigIsSRGB(desc.fConfig)) {
        if (ctx->caps()->srgbWriteControl()) {
            paint.setDisableOutputConversionToSRGB(true);
        } else {
            paint.addColorFragmentProcessor(GrSRGBEffect::Make(GrSRGBEffect::Mode::kSRGBToLinear,
                                                               GrSRGBEffect::Alpha::kOpaque));
        }
    }

    // If the caller expects the pixels in a different color space than the one from the image,
    // apply a color conversion to do this.
    std::unique_ptr<GrFragmentProcessor> colorConversionProcessor =
            GrNonlinearColorSpaceXformEffect::Make(srcColorSpace, dstColorSpace);
    if (colorConversionProcessor) {
        paint.addColorFragmentProcessor(std::move(colorConversionProcessor));
    }

    paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
    const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth,
                                     yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);

    renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), r);

    return renderTargetContext->asTextureProxyRef();
}