/** * hdm_probe - probe function of USB device driver * @interface: Interface of the attached USB device * @id: Pointer to the USB ID table. * * This allocates and initializes the device instance, adds the new * entry to the internal list, scans the USB descriptors and registers * the interface with the core. * Additionally, the DCI objects are created and the hardware is sync'd. * * Return 0 on success. In case of an error a negative number is returned. */ static int hdm_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_host_interface *usb_iface_desc = interface->cur_altsetting; struct usb_device *usb_dev = interface_to_usbdev(interface); struct device *dev = &usb_dev->dev; struct most_dev *mdev = kzalloc(sizeof(*mdev), GFP_KERNEL); unsigned int i; unsigned int num_endpoints; struct most_channel_capability *tmp_cap; struct usb_endpoint_descriptor *ep_desc; int ret = 0; if (!mdev) goto err_out_of_memory; usb_set_intfdata(interface, mdev); num_endpoints = usb_iface_desc->desc.bNumEndpoints; mutex_init(&mdev->io_mutex); INIT_WORK(&mdev->poll_work_obj, wq_netinfo); timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0); mdev->usb_device = usb_dev; mdev->link_stat_timer.expires = jiffies + (2 * HZ); mdev->iface.mod = hdm_usb_fops.owner; mdev->iface.driver_dev = &interface->dev; mdev->iface.interface = ITYPE_USB; mdev->iface.configure = hdm_configure_channel; mdev->iface.request_netinfo = hdm_request_netinfo; mdev->iface.enqueue = hdm_enqueue; mdev->iface.poison_channel = hdm_poison_channel; mdev->iface.dma_alloc = hdm_dma_alloc; mdev->iface.dma_free = hdm_dma_free; mdev->iface.description = mdev->description; mdev->iface.num_channels = num_endpoints; snprintf(mdev->description, sizeof(mdev->description), "%d-%s:%d.%d", usb_dev->bus->busnum, usb_dev->devpath, usb_dev->config->desc.bConfigurationValue, usb_iface_desc->desc.bInterfaceNumber); mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL); if (!mdev->conf) goto err_free_mdev; mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL); if (!mdev->cap) goto err_free_conf; mdev->iface.channel_vector = mdev->cap; mdev->ep_address = kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL); if (!mdev->ep_address) goto err_free_cap; mdev->busy_urbs = kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL); if (!mdev->busy_urbs) goto err_free_ep_address; tmp_cap = mdev->cap; for (i = 0; i < num_endpoints; i++) { ep_desc = &usb_iface_desc->endpoint[i].desc; mdev->ep_address[i] = ep_desc->bEndpointAddress; mdev->padding_active[i] = false; mdev->is_channel_healthy[i] = true; snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x", mdev->ep_address[i]); tmp_cap->name_suffix = &mdev->suffix[i][0]; tmp_cap->buffer_size_packet = MAX_BUF_SIZE; tmp_cap->buffer_size_streaming = MAX_BUF_SIZE; tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE; tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE; tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC | MOST_CH_ISOC | MOST_CH_SYNC; if (usb_endpoint_dir_in(ep_desc)) tmp_cap->direction = MOST_CH_RX; else tmp_cap->direction = MOST_CH_TX; tmp_cap++; init_usb_anchor(&mdev->busy_urbs[i]); spin_lock_init(&mdev->channel_lock[i]); } dev_notice(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n", le16_to_cpu(usb_dev->descriptor.idVendor), le16_to_cpu(usb_dev->descriptor.idProduct), usb_dev->bus->busnum, usb_dev->devnum); dev_notice(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n", usb_dev->bus->busnum, usb_dev->devpath, usb_dev->config->desc.bConfigurationValue, usb_iface_desc->desc.bInterfaceNumber); ret = most_register_interface(&mdev->iface); if (ret) goto err_free_busy_urbs; mutex_lock(&mdev->io_mutex); if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 || le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 || le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) { mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL); if (!mdev->dci) { mutex_unlock(&mdev->io_mutex); most_deregister_interface(&mdev->iface); ret = -ENOMEM; goto err_free_busy_urbs; } mdev->dci->dev.init_name = "dci"; mdev->dci->dev.parent = &mdev->iface.dev; mdev->dci->dev.groups = dci_attr_groups; mdev->dci->dev.release = release_dci; if (device_register(&mdev->dci->dev)) { mutex_unlock(&mdev->io_mutex); most_deregister_interface(&mdev->iface); ret = -ENOMEM; goto err_free_dci; } mdev->dci->usb_device = mdev->usb_device; } mutex_unlock(&mdev->io_mutex); return 0; err_free_dci: kfree(mdev->dci); err_free_busy_urbs: kfree(mdev->busy_urbs); err_free_ep_address: kfree(mdev->ep_address); err_free_cap: kfree(mdev->cap); err_free_conf: kfree(mdev->conf); err_free_mdev: kfree(mdev); err_out_of_memory: if (ret == 0 || ret == -ENOMEM) { ret = -ENOMEM; dev_err(dev, "out of memory\n"); } return ret; }
static int redrat3_dev_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct device *dev = &intf->dev; struct usb_host_interface *uhi; struct redrat3_dev *rr3; struct usb_endpoint_descriptor *ep; struct usb_endpoint_descriptor *ep_narrow = NULL; struct usb_endpoint_descriptor *ep_wide = NULL; struct usb_endpoint_descriptor *ep_out = NULL; u8 addr, attrs; int pipe, i; int retval = -ENOMEM; uhi = intf->cur_altsetting; /* find our bulk-in and bulk-out endpoints */ for (i = 0; i < uhi->desc.bNumEndpoints; ++i) { ep = &uhi->endpoint[i].desc; addr = ep->bEndpointAddress; attrs = ep->bmAttributes; if (((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) && ((attrs & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK)) { dev_dbg(dev, "found bulk-in endpoint at 0x%02x\n", ep->bEndpointAddress); /* data comes in on 0x82, 0x81 is for learning */ if (ep->bEndpointAddress == RR3_NARROW_IN_EP_ADDR) ep_narrow = ep; if (ep->bEndpointAddress == RR3_WIDE_IN_EP_ADDR) ep_wide = ep; } if ((ep_out == NULL) && ((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) && ((attrs & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK)) { dev_dbg(dev, "found bulk-out endpoint at 0x%02x\n", ep->bEndpointAddress); ep_out = ep; } } if (!ep_narrow || !ep_out || !ep_wide) { dev_err(dev, "Couldn't find all endpoints\n"); retval = -ENODEV; goto no_endpoints; } /* allocate memory for our device state and initialize it */ rr3 = kzalloc(sizeof(*rr3), GFP_KERNEL); if (!rr3) goto no_endpoints; rr3->dev = &intf->dev; rr3->ep_narrow = ep_narrow; rr3->ep_out = ep_out; rr3->udev = udev; /* set up bulk-in endpoint */ rr3->narrow_urb = usb_alloc_urb(0, GFP_KERNEL); if (!rr3->narrow_urb) goto redrat_free; rr3->wide_urb = usb_alloc_urb(0, GFP_KERNEL); if (!rr3->wide_urb) goto redrat_free; rr3->bulk_in_buf = usb_alloc_coherent(udev, le16_to_cpu(ep_narrow->wMaxPacketSize), GFP_KERNEL, &rr3->dma_in); if (!rr3->bulk_in_buf) goto redrat_free; pipe = usb_rcvbulkpipe(udev, ep_narrow->bEndpointAddress); usb_fill_bulk_urb(rr3->narrow_urb, udev, pipe, rr3->bulk_in_buf, le16_to_cpu(ep_narrow->wMaxPacketSize), redrat3_handle_async, rr3); rr3->narrow_urb->transfer_dma = rr3->dma_in; rr3->narrow_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; pipe = usb_rcvbulkpipe(udev, ep_wide->bEndpointAddress); usb_fill_bulk_urb(rr3->wide_urb, udev, pipe, rr3->bulk_in_buf, le16_to_cpu(ep_narrow->wMaxPacketSize), redrat3_handle_async, rr3); rr3->wide_urb->transfer_dma = rr3->dma_in; rr3->wide_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; redrat3_reset(rr3); redrat3_get_firmware_rev(rr3); /* default.. will get overridden by any sends with a freq defined */ rr3->carrier = 38000; atomic_set(&rr3->flash, 0); rr3->flash_urb = usb_alloc_urb(0, GFP_KERNEL); if (!rr3->flash_urb) goto redrat_free; /* learn urb */ rr3->learn_urb = usb_alloc_urb(0, GFP_KERNEL); if (!rr3->learn_urb) goto redrat_free; /* setup packet is 'c0 b2 0000 0000 0001' */ rr3->learn_control.bRequestType = 0xc0; rr3->learn_control.bRequest = RR3_MODSIG_CAPTURE; rr3->learn_control.wLength = cpu_to_le16(1); usb_fill_control_urb(rr3->learn_urb, udev, usb_rcvctrlpipe(udev, 0), (unsigned char *)&rr3->learn_control, &rr3->learn_buf, sizeof(rr3->learn_buf), redrat3_learn_complete, rr3); /* setup packet is 'c0 b9 0000 0000 0001' */ rr3->flash_control.bRequestType = 0xc0; rr3->flash_control.bRequest = RR3_BLINK_LED; rr3->flash_control.wLength = cpu_to_le16(1); usb_fill_control_urb(rr3->flash_urb, udev, usb_rcvctrlpipe(udev, 0), (unsigned char *)&rr3->flash_control, &rr3->flash_in_buf, sizeof(rr3->flash_in_buf), redrat3_led_complete, rr3); /* led control */ rr3->led.name = "redrat3:red:feedback"; rr3->led.default_trigger = "rc-feedback"; rr3->led.brightness_set = redrat3_brightness_set; retval = led_classdev_register(&intf->dev, &rr3->led); if (retval) goto redrat_free; rr3->rc = redrat3_init_rc_dev(rr3); if (!rr3->rc) { retval = -ENOMEM; goto led_free; } /* might be all we need to do? */ retval = redrat3_enable_detector(rr3); if (retval < 0) goto led_free; /* we can register the device now, as it is ready */ usb_set_intfdata(intf, rr3); return 0; led_free: led_classdev_unregister(&rr3->led); redrat_free: redrat3_delete(rr3, rr3->udev); no_endpoints: return retval; }
static int ksb_usb_probe(struct usb_interface *ifc, const struct usb_device_id *id) { __u8 ifc_num; struct usb_host_interface *ifc_desc; struct usb_endpoint_descriptor *ep_desc; int i; struct ks_bridge *ksb; ifc_num = ifc->cur_altsetting->desc.bInterfaceNumber; switch (id->idProduct) { case 0x9008: if (ifc_num != 0) return -ENODEV; ksb = __ksb[BOOT_BRIDGE_INDEX]; break; case 0x9048: case 0x904C: if (ifc_num != 2) return -ENODEV; ksb = __ksb[EFS_BRIDGE_INDEX]; break; default: return -ENODEV; } if (!ksb) { pr_err("ksb is not initialized"); return -ENODEV; } ksb->udev = usb_get_dev(interface_to_usbdev(ifc)); ksb->ifc = ifc; ifc_desc = ifc->cur_altsetting; for (i = 0; i < ifc_desc->desc.bNumEndpoints; i++) { ep_desc = &ifc_desc->endpoint[i].desc; if (!ksb->in_epAddr && usb_endpoint_is_bulk_in(ep_desc)) ksb->in_epAddr = ep_desc->bEndpointAddress; if (!ksb->out_epAddr && usb_endpoint_is_bulk_out(ep_desc)) ksb->out_epAddr = ep_desc->bEndpointAddress; } if (!(ksb->in_epAddr && ksb->out_epAddr)) { pr_err("could not find bulk in and bulk out endpoints"); usb_put_dev(ksb->udev); ksb->ifc = NULL; return -ENODEV; } ksb->in_pipe = usb_rcvbulkpipe(ksb->udev, ksb->in_epAddr); ksb->out_pipe = usb_sndbulkpipe(ksb->udev, ksb->out_epAddr); usb_set_intfdata(ifc, ksb); set_bit(USB_DEV_CONNECTED, &ksb->flags); dbg_log_event(ksb, "PID-ATT", id->idProduct, 0); ksb->fs_dev = (struct miscdevice *)id->driver_info; misc_register(ksb->fs_dev); usb_enable_autosuspend(ksb->udev); pr_debug("usb dev connected"); return 0; }
/* * drv_init() - a device potentially for us * * notes: drv_init() is called when the bus driver has located a card for us * to support. We accept the new device by returning 0. */ static int r871xu_drv_init(struct usb_interface *pusb_intf, const struct usb_device_id *pdid) { uint status; struct _adapter *padapter = NULL; struct dvobj_priv *pdvobjpriv; struct net_device *pnetdev; struct usb_device *udev; printk(KERN_INFO "r8712u: DriverVersion: %s\n", DRVER); /* In this probe function, O.S. will provide the usb interface pointer * to driver. We have to increase the reference count of the usb device * structure by using the usb_get_dev function. */ udev = interface_to_usbdev(pusb_intf); usb_get_dev(udev); pintf = pusb_intf; /* step 1. */ pnetdev = r8712_init_netdev(); if (!pnetdev) goto error; padapter = netdev_priv(pnetdev); disable_ht_for_spec_devid(pdid, padapter); pdvobjpriv = &padapter->dvobjpriv; pdvobjpriv->padapter = padapter; padapter->dvobjpriv.pusbdev = udev; padapter->pusb_intf = pusb_intf; usb_set_intfdata(pusb_intf, pnetdev); SET_NETDEV_DEV(pnetdev, &pusb_intf->dev); /* step 2. */ padapter->dvobj_init = &r8712_usb_dvobj_init; padapter->dvobj_deinit = &r8712_usb_dvobj_deinit; padapter->halpriv.hal_bus_init = &r8712_usb_hal_bus_init; padapter->dvobjpriv.inirp_init = &r8712_usb_inirp_init; padapter->dvobjpriv.inirp_deinit = &r8712_usb_inirp_deinit; /* step 3. * initialize the dvobj_priv */ if (padapter->dvobj_init == NULL) goto error; else { status = padapter->dvobj_init(padapter); if (status != _SUCCESS) goto error; } /* step 4. */ status = r8712_init_drv_sw(padapter); if (status == _FAIL) goto error; /* step 5. read efuse/eeprom data and get mac_addr */ { int i, offset; u8 mac[6]; u8 tmpU1b, AutoloadFail, eeprom_CustomerID; u8 *pdata = padapter->eeprompriv.efuse_eeprom_data; tmpU1b = r8712_read8(padapter, EE_9346CR);/*CR9346*/ /* To check system boot selection.*/ printk(KERN_INFO "r8712u: Boot from %s: Autoload %s\n", (tmpU1b & _9356SEL) ? "EEPROM" : "EFUSE", (tmpU1b & _EEPROM_EN) ? "OK" : "Failed"); /* To check autoload success or not.*/ if (tmpU1b & _EEPROM_EN) { AutoloadFail = true; /* The following operations prevent Efuse leakage by * turning on 2.5V. */ tmpU1b = r8712_read8(padapter, EFUSE_TEST+3); r8712_write8(padapter, EFUSE_TEST + 3, tmpU1b | 0x80); msleep(20); r8712_write8(padapter, EFUSE_TEST + 3, (tmpU1b & (~BIT(7)))); /* Retrieve Chip version. * Recognize IC version by Reg0x4 BIT15. */ tmpU1b = (u8)((r8712_read32(padapter, PMC_FSM) >> 15) & 0x1F); if (tmpU1b == 0x3) padapter->registrypriv.chip_version = RTL8712_3rdCUT; else padapter->registrypriv.chip_version = (tmpU1b >> 1) + 1; switch (padapter->registrypriv.chip_version) { case RTL8712_1stCUT: case RTL8712_2ndCUT: case RTL8712_3rdCUT: break; default: padapter->registrypriv.chip_version = RTL8712_2ndCUT; break; } for (i = 0, offset = 0; i < 128; i += 8, offset++) r8712_efuse_pg_packet_read(padapter, offset, &pdata[i]); if (r8712_initmac) { /* Users specify the mac address */ int jj, kk; for (jj = 0, kk = 0; jj < ETH_ALEN; jj++, kk += 3) mac[jj] = key_2char2num(r8712_initmac[kk], r8712_initmac[kk + 1]); } else { /* Use the mac address stored in the Efuse * offset = 0x12 for usb in efuse */ memcpy(mac, &pdata[0x12], ETH_ALEN); } eeprom_CustomerID = pdata[0x52]; switch (eeprom_CustomerID) { case EEPROM_CID_ALPHA: padapter->eeprompriv.CustomerID = RT_CID_819x_ALPHA; break; case EEPROM_CID_CAMEO: padapter->eeprompriv.CustomerID = RT_CID_819x_CAMEO; break; case EEPROM_CID_SITECOM: padapter->eeprompriv.CustomerID = RT_CID_819x_Sitecom; break; case EEPROM_CID_COREGA: padapter->eeprompriv.CustomerID = RT_CID_COREGA; break; case EEPROM_CID_Senao: padapter->eeprompriv.CustomerID = RT_CID_819x_Senao; break; case EEPROM_CID_EDIMAX_BELKIN: padapter->eeprompriv.CustomerID = RT_CID_819x_Edimax_Belkin; break; case EEPROM_CID_SERCOMM_BELKIN: padapter->eeprompriv.CustomerID = RT_CID_819x_Sercomm_Belkin; break; case EEPROM_CID_WNC_COREGA: padapter->eeprompriv.CustomerID = RT_CID_819x_WNC_COREGA; break; case EEPROM_CID_WHQL: break; case EEPROM_CID_NetCore: padapter->eeprompriv.CustomerID = RT_CID_819x_Netcore; break; case EEPROM_CID_CAMEO1: padapter->eeprompriv.CustomerID = RT_CID_819x_CAMEO1; break; case EEPROM_CID_CLEVO: padapter->eeprompriv.CustomerID = RT_CID_819x_CLEVO; break; default: padapter->eeprompriv.CustomerID = RT_CID_DEFAULT; break; } printk(KERN_INFO "r8712u: CustomerID = 0x%.4x\n", padapter->eeprompriv.CustomerID); /* Led mode */ switch (padapter->eeprompriv.CustomerID) { case RT_CID_DEFAULT: case RT_CID_819x_ALPHA: case RT_CID_819x_CAMEO: padapter->ledpriv.LedStrategy = SW_LED_MODE1; padapter->ledpriv.bRegUseLed = true; break; case RT_CID_819x_Sitecom: padapter->ledpriv.LedStrategy = SW_LED_MODE2; padapter->ledpriv.bRegUseLed = true; break; case RT_CID_COREGA: case RT_CID_819x_Senao: padapter->ledpriv.LedStrategy = SW_LED_MODE3; padapter->ledpriv.bRegUseLed = true; break; case RT_CID_819x_Edimax_Belkin: padapter->ledpriv.LedStrategy = SW_LED_MODE4; padapter->ledpriv.bRegUseLed = true; break; case RT_CID_819x_Sercomm_Belkin: padapter->ledpriv.LedStrategy = SW_LED_MODE5; padapter->ledpriv.bRegUseLed = true; break; case RT_CID_819x_WNC_COREGA: padapter->ledpriv.LedStrategy = SW_LED_MODE6; padapter->ledpriv.bRegUseLed = true; break; default: padapter->ledpriv.LedStrategy = SW_LED_MODE0; padapter->ledpriv.bRegUseLed = false; break; } } else
int usbnet_probe (struct usb_interface *udev, const struct usb_device_id *prod) { struct usbnet *dev; struct net_device *net; struct usb_host_interface *interface; struct driver_info *info; struct usb_device *xdev; int status; const char *name; struct usb_driver *driver = to_usb_driver(udev->dev.driver); /* usbnet already took usb runtime pm, so have to enable the feature * for usb interface, otherwise usb_autopm_get_interface may return * failure if USB_SUSPEND(RUNTIME_PM) is enabled. */ if (!driver->supports_autosuspend) { driver->supports_autosuspend = 1; pm_runtime_enable(&udev->dev); } name = udev->dev.driver->name; info = (struct driver_info *) prod->driver_info; if (!info) { dev_dbg (&udev->dev, "blacklisted by %s\n", name); return -ENODEV; } xdev = interface_to_usbdev (udev); interface = udev->cur_altsetting; usb_get_dev (xdev); status = -ENOMEM; // set up our own records net = alloc_etherdev(sizeof(*dev)); if (!net) { dbg ("can't kmalloc dev"); goto out; } /* netdev_printk() needs this so do it as early as possible */ SET_NETDEV_DEV(net, &udev->dev); dev = netdev_priv(net); dev->udev = xdev; dev->intf = udev; dev->driver_info = info; dev->driver_name = name; dev->msg_enable = netif_msg_init (msg_level, NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK); skb_queue_head_init (&dev->rxq); skb_queue_head_init (&dev->txq); skb_queue_head_init (&dev->done); skb_queue_head_init(&dev->rxq_pause); dev->bh.func = usbnet_bh; dev->bh.data = (unsigned long) dev; INIT_WORK (&dev->kevent, kevent); init_usb_anchor(&dev->deferred); dev->delay.function = usbnet_bh; dev->delay.data = (unsigned long) dev; init_timer (&dev->delay); mutex_init (&dev->phy_mutex); dev->net = net; strcpy (net->name, "usb%d"); memcpy (net->dev_addr, node_id, sizeof node_id); /* rx and tx sides can use different message sizes; * bind() should set rx_urb_size in that case. */ dev->hard_mtu = net->mtu + net->hard_header_len; #if 0 // dma_supported() is deeply broken on almost all architectures // possible with some EHCI controllers if (dma_supported (&udev->dev, DMA_BIT_MASK(64))) net->features |= NETIF_F_HIGHDMA; #endif net->netdev_ops = &usbnet_netdev_ops; net->watchdog_timeo = TX_TIMEOUT_JIFFIES; net->ethtool_ops = &usbnet_ethtool_ops; // allow device-specific bind/init procedures // NOTE net->name still not usable ... if (info->bind) { status = info->bind (dev, udev); if (status < 0) goto out1; // heuristic: "usb%d" for links we know are two-host, // else "eth%d" when there's reasonable doubt. userspace // can rename the link if it knows better. if ((dev->driver_info->flags & FLAG_ETHER) != 0 && ((dev->driver_info->flags & FLAG_POINTTOPOINT) == 0 || (net->dev_addr [0] & 0x02) == 0)) strcpy (net->name, "eth%d"); /* WLAN devices should always be named "wlan%d" */ if ((dev->driver_info->flags & FLAG_WLAN) != 0) strcpy(net->name, "wlan%d"); /* WWAN devices should always be named "wwan%d" */ if ((dev->driver_info->flags & FLAG_WWAN) != 0) strcpy(net->name, "wwan%d"); /* RMNET devices should always be named "rmnet%d" */ if ((dev->driver_info->flags & FLAG_RMNET) != 0) strcpy(net->name, "rmnet%d"); /* maybe the remote can't receive an Ethernet MTU */ if (net->mtu > (dev->hard_mtu - net->hard_header_len)) net->mtu = dev->hard_mtu - net->hard_header_len; } else if (!info->in || !info->out) status = usbnet_get_endpoints (dev, udev); else { dev->in = usb_rcvbulkpipe (xdev, info->in); dev->out = usb_sndbulkpipe (xdev, info->out); if (!(info->flags & FLAG_NO_SETINT)) status = usb_set_interface (xdev, interface->desc.bInterfaceNumber, interface->desc.bAlternateSetting); else status = 0; } if (status >= 0 && dev->status) status = init_status (dev, udev); if (status < 0) goto out3; if (!dev->rx_urb_size) dev->rx_urb_size = dev->hard_mtu; dev->maxpacket = usb_maxpacket (dev->udev, dev->out, 1); if ((dev->driver_info->flags & FLAG_WLAN) != 0) SET_NETDEV_DEVTYPE(net, &wlan_type); if ((dev->driver_info->flags & FLAG_WWAN) != 0) SET_NETDEV_DEVTYPE(net, &wwan_type); status = register_netdev (net); if (status) goto out3; netif_info(dev, probe, dev->net, "register '%s' at usb-%s-%s, %s, %pM\n", udev->dev.driver->name, xdev->bus->bus_name, xdev->devpath, dev->driver_info->description, net->dev_addr); // ok, it's ready to go. usb_set_intfdata (udev, dev); netif_device_attach (net); if (dev->driver_info->flags & FLAG_LINK_INTR) netif_carrier_off(net); return 0; out3: if (info->unbind) info->unbind (dev, udev); out1: free_netdev(net); out: usb_put_dev(xdev); return status; }
int ctrl_bridge_probe(struct usb_interface *ifc, struct usb_host_endpoint *int_in, int id) { struct ctrl_bridge *dev; struct usb_device *udev; struct usb_endpoint_descriptor *ep; u16 wMaxPacketSize; int retval = 0; int interval; udev = interface_to_usbdev(ifc); dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { dev_err(&ifc->dev, "%s: unable to allocate dev\n", __func__); return -ENOMEM; } dev->pdev = platform_device_alloc(ctrl_bridge_names[id], id); if (!dev->pdev) { dev_err(&ifc->dev, "%s: unable to allocate platform device\n", __func__); retval = -ENOMEM; goto nomem; } dev->udev = udev; dev->int_pipe = usb_rcvintpipe(udev, int_in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); dev->intf = ifc; init_usb_anchor(&dev->tx_submitted); init_usb_anchor(&dev->tx_deferred); ep = &dev->intf->cur_altsetting->endpoint[0].desc; dev->inturb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->inturb) { dev_err(&ifc->dev, "%s: error allocating int urb\n", __func__); retval = -ENOMEM; goto pdev_del; } wMaxPacketSize = le16_to_cpu(ep->wMaxPacketSize); dev->intbuf = kmalloc(wMaxPacketSize, GFP_KERNEL); if (!dev->intbuf) { dev_err(&ifc->dev, "%s: error allocating int buffer\n", __func__); retval = -ENOMEM; goto free_inturb; } interval = (udev->speed == USB_SPEED_HIGH) ? HS_INTERVAL : FS_LS_INTERVAL; usb_fill_int_urb(dev->inturb, udev, dev->int_pipe, dev->intbuf, wMaxPacketSize, notification_available_cb, dev, interval); dev->readurb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->readurb) { dev_err(&ifc->dev, "%s: error allocating read urb\n", __func__); retval = -ENOMEM; goto free_intbuf; } dev->readbuf = kmalloc(DEFAULT_READ_URB_LENGTH, GFP_KERNEL); if (!dev->readbuf) { dev_err(&ifc->dev, "%s: error allocating read buffer\n", __func__); retval = -ENOMEM; goto free_rurb; } dev->in_ctlreq = kmalloc(sizeof(*dev->in_ctlreq), GFP_KERNEL); if (!dev->in_ctlreq) { dev_err(&ifc->dev, "%s:error allocating setup packet buffer\n", __func__); retval = -ENOMEM; goto free_rbuf; } dev->in_ctlreq->bRequestType = (USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE); dev->in_ctlreq->bRequest = USB_CDC_GET_ENCAPSULATED_RESPONSE; dev->in_ctlreq->wValue = 0; dev->in_ctlreq->wIndex = dev->intf->cur_altsetting->desc.bInterfaceNumber; dev->in_ctlreq->wLength = cpu_to_le16(DEFAULT_READ_URB_LENGTH); __dev[id] = dev; platform_device_add(dev->pdev); ch_id++; return ctrl_bridge_start_read(dev); free_rbuf: kfree(dev->readbuf); free_rurb: usb_free_urb(dev->readurb); free_intbuf: kfree(dev->intbuf); free_inturb: usb_free_urb(dev->inturb); pdev_del: platform_device_unregister(dev->pdev); nomem: kfree(dev); return retval; }
static int ar9170_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct ar9170_usb *aru; struct ar9170 *ar; struct usb_device *udev; int err; aru = ar9170_alloc(sizeof(*aru)); if (IS_ERR(aru)) { err = PTR_ERR(aru); goto out; } udev = interface_to_usbdev(intf); usb_get_dev(udev); aru->udev = udev; aru->intf = intf; ar = &aru->common; aru->req_one_stage_fw = ar9170_requires_one_stage(id); usb_set_intfdata(intf, aru); SET_IEEE80211_DEV(ar->hw, &intf->dev); init_usb_anchor(&aru->rx_submitted); init_usb_anchor(&aru->tx_pending); init_usb_anchor(&aru->tx_submitted); init_completion(&aru->cmd_wait); spin_lock_init(&aru->tx_urb_lock); aru->tx_pending_urbs = 0; atomic_set(&aru->tx_submitted_urbs, 0); aru->common.stop = ar9170_usb_stop; aru->common.flush = ar9170_usb_flush; aru->common.open = ar9170_usb_open; aru->common.tx = ar9170_usb_tx; aru->common.exec_cmd = ar9170_usb_exec_cmd; aru->common.callback_cmd = ar9170_usb_callback_cmd; #ifdef CONFIG_PM udev->reset_resume = 1; #endif /* CONFIG_PM */ err = ar9170_usb_reset(aru); if (err) goto err_freehw; err = ar9170_usb_request_firmware(aru); if (err) goto err_freehw; err = ar9170_usb_init_device(aru); if (err) goto err_freefw; err = ar9170_usb_open(ar); if (err) goto err_unrx; err = ar9170_register(ar, &udev->dev); ar9170_usb_stop(ar); if (err) goto err_unrx; return 0; err_unrx: ar9170_usb_cancel_urbs(aru); err_freefw: release_firmware(aru->init_values); release_firmware(aru->firmware); err_freehw: usb_set_intfdata(intf, NULL); usb_put_dev(udev); ieee80211_free_hw(ar->hw); out: return err; }
/** * ld_usb_open */ static int ld_usb_open(struct inode *inode, struct file *file) { struct ld_usb *dev; int subminor; int retval; struct usb_interface *interface; nonseekable_open(inode, file); subminor = iminor(inode); interface = usb_find_interface(&ld_usb_driver, subminor); if (!interface) { err("%s - error, can't find device for minor %d\n", __FUNCTION__, subminor); return -ENODEV; } dev = usb_get_intfdata(interface); if (!dev) return -ENODEV; /* lock this device */ if (down_interruptible(&dev->sem)) return -ERESTARTSYS; /* allow opening only once */ if (dev->open_count) { retval = -EBUSY; goto unlock_exit; } dev->open_count = 1; /* initialize in direction */ dev->ring_head = 0; dev->ring_tail = 0; dev->buffer_overflow = 0; usb_fill_int_urb(dev->interrupt_in_urb, interface_to_usbdev(interface), usb_rcvintpipe(interface_to_usbdev(interface), dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, dev->interrupt_in_endpoint_size, ld_usb_interrupt_in_callback, dev, dev->interrupt_in_interval); dev->interrupt_in_running = 1; dev->interrupt_in_done = 0; retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL); if (retval) { dev_err(&interface->dev, "Couldn't submit interrupt_in_urb %d\n", retval); dev->interrupt_in_running = 0; dev->open_count = 0; goto unlock_exit; } /* save device in the file's private structure */ file->private_data = dev; unlock_exit: up(&dev->sem); return retval; }
/** * ld_usb_write */ static ssize_t ld_usb_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct ld_usb *dev; size_t bytes_to_write; int retval = 0; dev = file->private_data; /* verify that we actually have some data to write */ if (count == 0) goto exit; /* lock this object */ if (down_interruptible(&dev->sem)) { retval = -ERESTARTSYS; goto exit; } /* verify that the device wasn't unplugged */ if (dev->intf == NULL) { retval = -ENODEV; err("No device or device unplugged %d\n", retval); goto unlock_exit; } /* wait until previous transfer is finished */ if (dev->interrupt_out_busy) { if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto unlock_exit; } retval = wait_event_interruptible(dev->write_wait, !dev->interrupt_out_busy); if (retval < 0) { goto unlock_exit; } } /* write the data into interrupt_out_buffer from userspace */ bytes_to_write = min(count, write_buffer_size*dev->interrupt_out_endpoint_size); if (bytes_to_write < count) dev_warn(&dev->intf->dev, "Write buffer overflow, %zd bytes dropped\n",count-bytes_to_write); dbg_info(&dev->intf->dev, "%s: count = %zd, bytes_to_write = %zd\n", __FUNCTION__, count, bytes_to_write); if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write)) { retval = -EFAULT; goto unlock_exit; } if (dev->interrupt_out_endpoint == NULL) { /* try HID_REQ_SET_REPORT=9 on control_endpoint instead of interrupt_out_endpoint */ retval = usb_control_msg(interface_to_usbdev(dev->intf), usb_sndctrlpipe(interface_to_usbdev(dev->intf), 0), 9, USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT, 1 << 8, 0, dev->interrupt_out_buffer, bytes_to_write, USB_CTRL_SET_TIMEOUT * HZ); if (retval < 0) err("Couldn't submit HID_REQ_SET_REPORT %d\n", retval); goto unlock_exit; } /* send off the urb */ usb_fill_int_urb(dev->interrupt_out_urb, interface_to_usbdev(dev->intf), usb_sndintpipe(interface_to_usbdev(dev->intf), dev->interrupt_out_endpoint->bEndpointAddress), dev->interrupt_out_buffer, bytes_to_write, ld_usb_interrupt_out_callback, dev, dev->interrupt_out_interval); dev->interrupt_out_busy = 1; wmb(); retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL); if (retval) { dev->interrupt_out_busy = 0; err("Couldn't submit interrupt_out_urb %d\n", retval); goto unlock_exit; } retval = bytes_to_write; unlock_exit: /* unlock the device */ up(&dev->sem); exit: return retval; }
/* * ultracam_probe() * * This procedure queries device descriptor and accepts the interface * if it looks like our camera. * * History: * 12-Nov-2000 Reworked to comply with new probe() signature. * 23-Jan-2001 Added compatibility with 2.2.x kernels. */ static int ultracam_probe(struct usb_interface *intf, const struct usb_device_id *devid) { struct usb_device *dev = interface_to_usbdev(intf); struct uvd *uvd = NULL; int ix, i, nas; int actInterface=-1, inactInterface=-1, maxPS=0; unsigned char video_ep = 0; if (debug >= 1) dev_info(&intf->dev, "ultracam_probe\n"); /* We don't handle multi-config cameras */ if (dev->descriptor.bNumConfigurations != 1) return -ENODEV; dev_info(&intf->dev, "IBM Ultra camera found (rev. 0x%04x)\n", le16_to_cpu(dev->descriptor.bcdDevice)); /* Validate found interface: must have one ISO endpoint */ nas = intf->num_altsetting; if (debug > 0) dev_info(&intf->dev, "Number of alternate settings=%d.\n", nas); if (nas < 8) { err("Too few alternate settings for this camera!"); return -ENODEV; } /* Validate all alternate settings */ for (ix=0; ix < nas; ix++) { const struct usb_host_interface *interface; const struct usb_endpoint_descriptor *endpoint; interface = &intf->altsetting[ix]; i = interface->desc.bAlternateSetting; if (interface->desc.bNumEndpoints != 1) { err("Interface %d. has %u. endpoints!", interface->desc.bInterfaceNumber, (unsigned)(interface->desc.bNumEndpoints)); return -ENODEV; } endpoint = &interface->endpoint[0].desc; if (video_ep == 0) video_ep = endpoint->bEndpointAddress; else if (video_ep != endpoint->bEndpointAddress) { err("Alternate settings have different endpoint addresses!"); return -ENODEV; } if ((endpoint->bmAttributes & 0x03) != 0x01) { err("Interface %d. has non-ISO endpoint!", interface->desc.bInterfaceNumber); return -ENODEV; } if ((endpoint->bEndpointAddress & 0x80) == 0) { err("Interface %d. has ISO OUT endpoint!", interface->desc.bInterfaceNumber); return -ENODEV; } if (le16_to_cpu(endpoint->wMaxPacketSize) == 0) { if (inactInterface < 0) inactInterface = i; else { err("More than one inactive alt. setting!"); return -ENODEV; } } else { if (actInterface < 0) { actInterface = i; maxPS = le16_to_cpu(endpoint->wMaxPacketSize); if (debug > 0) dev_info(&intf->dev, "Active setting=%d. " "maxPS=%d.\n", i, maxPS); } else { /* Got another active alt. setting */ if (maxPS < le16_to_cpu(endpoint->wMaxPacketSize)) { /* This one is better! */ actInterface = i; maxPS = le16_to_cpu(endpoint->wMaxPacketSize); if (debug > 0) { dev_info(&intf->dev, "Even better ctive " "setting=%d. " "maxPS=%d.\n", i, maxPS); } } } } } if ((maxPS <= 0) || (actInterface < 0) || (inactInterface < 0)) { err("Failed to recognize the camera!"); return -ENODEV; } uvd = usbvideo_AllocateDevice(cams); if (uvd != NULL) { /* Here uvd is a fully allocated uvd object */ uvd->flags = flags; uvd->debug = debug; uvd->dev = dev; uvd->iface = intf->altsetting->desc.bInterfaceNumber; uvd->ifaceAltInactive = inactInterface; uvd->ifaceAltActive = actInterface; uvd->video_endp = video_ep; uvd->iso_packet_len = maxPS; uvd->paletteBits = 1L << VIDEO_PALETTE_RGB24; uvd->defaultPalette = VIDEO_PALETTE_RGB24; uvd->canvas = VIDEOSIZE(640, 480); /* FIXME */ uvd->videosize = uvd->canvas; /* ultracam_size_to_videosize(size);*/ /* Initialize ibmcam-specific data */ assert(ULTRACAM_T(uvd) != NULL); ULTRACAM_T(uvd)->camera_model = 0; /* Not used yet */ ULTRACAM_T(uvd)->initialized = 0; ultracam_configure_video(uvd); i = usbvideo_RegisterVideoDevice(uvd); if (i != 0) { err("usbvideo_RegisterVideoDevice() failed."); uvd = NULL; } } if (uvd) { usb_set_intfdata (intf, uvd); return 0; } return -EIO; }
static int chaoskey_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct usb_host_interface *altsetting = interface->cur_altsetting; int i; int in_ep = -1; struct chaoskey *dev; int result = -ENOMEM; int size; usb_dbg(interface, "probe %s-%s", udev->product, udev->serial); /* Find the first bulk IN endpoint and its packet size */ for (i = 0; i < altsetting->desc.bNumEndpoints; i++) { if (usb_endpoint_is_bulk_in(&altsetting->endpoint[i].desc)) { in_ep = usb_endpoint_num(&altsetting->endpoint[i].desc); size = usb_endpoint_maxp(&altsetting->endpoint[i].desc); break; } } /* Validate endpoint and size */ if (in_ep == -1) { usb_dbg(interface, "no IN endpoint found"); return -ENODEV; } if (size <= 0) { usb_dbg(interface, "invalid size (%d)", size); return -ENODEV; } if (size > CHAOSKEY_BUF_LEN) { usb_dbg(interface, "size reduced from %d to %d\n", size, CHAOSKEY_BUF_LEN); size = CHAOSKEY_BUF_LEN; } /* Looks good, allocate and initialize */ dev = kzalloc(sizeof(struct chaoskey), GFP_KERNEL); if (dev == NULL) goto out; dev->buf = kmalloc(size, GFP_KERNEL); if (dev->buf == NULL) goto out; dev->urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->urb) goto out; usb_fill_bulk_urb(dev->urb, udev, usb_rcvbulkpipe(udev, in_ep), dev->buf, size, chaos_read_callback, dev); /* Construct a name using the product and serial values. Each * device needs a unique name for the hwrng code */ if (udev->product && udev->serial) { dev->name = kmalloc(strlen(udev->product) + 1 + strlen(udev->serial) + 1, GFP_KERNEL); if (dev->name == NULL) goto out; strcpy(dev->name, udev->product); strcat(dev->name, "-"); strcat(dev->name, udev->serial); } dev->interface = interface; dev->in_ep = in_ep; if (udev->descriptor.idVendor != ALEA_VENDOR_ID) dev->reads_started = 1; dev->size = size; dev->present = 1; init_waitqueue_head(&dev->wait_q); mutex_init(&dev->lock); mutex_init(&dev->rng_lock); usb_set_intfdata(interface, dev); result = usb_register_dev(interface, &chaoskey_class); if (result) { usb_err(interface, "Unable to allocate minor number."); goto out; } dev->hwrng.name = dev->name ? dev->name : chaoskey_driver.name; dev->hwrng.read = chaoskey_rng_read; /* Set the 'quality' metric. Quality is measured in units of * 1/1024's of a bit ("mills"). This should be set to 1024, * but there is a bug in the hwrng core which masks it with * 1023. * * The patch that has been merged to the crypto development * tree for that bug limits the value to 1024 at most, so by * setting this to 1024 + 1023, we get 1023 before the fix is * merged and 1024 afterwards. We'll patch this driver once * both bits of code are in the same tree. */ dev->hwrng.quality = 1024 + 1023; dev->hwrng_registered = (hwrng_register(&dev->hwrng) == 0); if (!dev->hwrng_registered) usb_err(interface, "Unable to register with hwrng"); usb_enable_autosuspend(udev); usb_dbg(interface, "chaoskey probe success, size %d", dev->size); return 0; out: usb_set_intfdata(interface, NULL); chaoskey_free(dev); return result; }
static int usb_pwc_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct pwc_device *pdev = NULL; int vendor_id, product_id, type_id; int rc; int features = 0; int compression = 0; int my_power_save = power_save; char serial_number[30], *name; vendor_id = le16_to_cpu(udev->descriptor.idVendor); product_id = le16_to_cpu(udev->descriptor.idProduct); /* Check if we can handle this device */ PWC_DEBUG_PROBE("probe() called [%04X %04X], if %d\n", vendor_id, product_id, intf->altsetting->desc.bInterfaceNumber); /* the interfaces are probed one by one. We are only interested in the video interface (0) now. Interface 1 is the Audio Control, and interface 2 Audio itself. */ if (intf->altsetting->desc.bInterfaceNumber > 0) return -ENODEV; if (vendor_id == 0x0471) { switch (product_id) { case 0x0302: PWC_INFO("Philips PCA645VC USB webcam detected.\n"); name = "Philips 645 webcam"; type_id = 645; break; case 0x0303: PWC_INFO("Philips PCA646VC USB webcam detected.\n"); name = "Philips 646 webcam"; type_id = 646; break; case 0x0304: PWC_INFO("Askey VC010 type 2 USB webcam detected.\n"); name = "Askey VC010 webcam"; type_id = 646; break; case 0x0307: PWC_INFO("Philips PCVC675K (Vesta) USB webcam detected.\n"); name = "Philips 675 webcam"; type_id = 675; break; case 0x0308: PWC_INFO("Philips PCVC680K (Vesta Pro) USB webcam detected.\n"); name = "Philips 680 webcam"; type_id = 680; break; case 0x030C: PWC_INFO("Philips PCVC690K (Vesta Pro Scan) USB webcam detected.\n"); name = "Philips 690 webcam"; type_id = 690; break; case 0x0310: PWC_INFO("Philips PCVC730K (ToUCam Fun)/PCVC830 (ToUCam II) USB webcam detected.\n"); name = "Philips 730 webcam"; type_id = 730; break; case 0x0311: PWC_INFO("Philips PCVC740K (ToUCam Pro)/PCVC840 (ToUCam II) USB webcam detected.\n"); name = "Philips 740 webcam"; type_id = 740; break; case 0x0312: PWC_INFO("Philips PCVC750K (ToUCam Pro Scan) USB webcam detected.\n"); name = "Philips 750 webcam"; type_id = 750; break; case 0x0313: PWC_INFO("Philips PCVC720K/40 (ToUCam XS) USB webcam detected.\n"); name = "Philips 720K/40 webcam"; type_id = 720; break; case 0x0329: PWC_INFO("Philips SPC 900NC USB webcam detected.\n"); name = "Philips SPC 900NC webcam"; type_id = 740; break; default: return -ENODEV; break; } } else if (vendor_id == 0x069A) { switch(product_id) { case 0x0001: PWC_INFO("Askey VC010 type 1 USB webcam detected.\n"); name = "Askey VC010 webcam"; type_id = 645; break; default: return -ENODEV; break; } } else if (vendor_id == 0x046d) { switch(product_id) { case 0x08b0: PWC_INFO("Logitech QuickCam Pro 3000 USB webcam detected.\n"); name = "Logitech QuickCam Pro 3000"; type_id = 740; /* CCD sensor */ break; case 0x08b1: PWC_INFO("Logitech QuickCam Notebook Pro USB webcam detected.\n"); name = "Logitech QuickCam Notebook Pro"; type_id = 740; /* CCD sensor */ break; case 0x08b2: PWC_INFO("Logitech QuickCam 4000 Pro USB webcam detected.\n"); name = "Logitech QuickCam Pro 4000"; type_id = 740; /* CCD sensor */ if (my_power_save == -1) my_power_save = 1; break; case 0x08b3: PWC_INFO("Logitech QuickCam Zoom USB webcam detected.\n"); name = "Logitech QuickCam Zoom"; type_id = 740; /* CCD sensor */ break; case 0x08B4: PWC_INFO("Logitech QuickCam Zoom (new model) USB webcam detected.\n"); name = "Logitech QuickCam Zoom"; type_id = 740; /* CCD sensor */ if (my_power_save == -1) my_power_save = 1; break; case 0x08b5: PWC_INFO("Logitech QuickCam Orbit/Sphere USB webcam detected.\n"); name = "Logitech QuickCam Orbit"; type_id = 740; /* CCD sensor */ if (my_power_save == -1) my_power_save = 1; features |= FEATURE_MOTOR_PANTILT; break; case 0x08b6: PWC_INFO("Logitech/Cisco VT Camera webcam detected.\n"); name = "Cisco VT Camera"; type_id = 740; /* CCD sensor */ break; case 0x08b7: PWC_INFO("Logitech ViewPort AV 100 webcam detected.\n"); name = "Logitech ViewPort AV 100"; type_id = 740; /* CCD sensor */ break; case 0x08b8: /* Where this released? */ PWC_INFO("Logitech QuickCam detected (reserved ID).\n"); name = "Logitech QuickCam (res.)"; type_id = 730; /* Assuming CMOS */ break; default: return -ENODEV; break; } } else if (vendor_id == 0x055d) { /* I don't know the difference between the C10 and the C30; I suppose the difference is the sensor, but both cameras work equally well with a type_id of 675 */ switch(product_id) { case 0x9000: PWC_INFO("Samsung MPC-C10 USB webcam detected.\n"); name = "Samsung MPC-C10"; type_id = 675; break; case 0x9001: PWC_INFO("Samsung MPC-C30 USB webcam detected.\n"); name = "Samsung MPC-C30"; type_id = 675; break; case 0x9002: PWC_INFO("Samsung SNC-35E (v3.0) USB webcam detected.\n"); name = "Samsung MPC-C30"; type_id = 740; break; default: return -ENODEV; break; } } else if (vendor_id == 0x041e) { switch(product_id) { case 0x400c: PWC_INFO("Creative Labs Webcam 5 detected.\n"); name = "Creative Labs Webcam 5"; type_id = 730; if (my_power_save == -1) my_power_save = 1; break; case 0x4011: PWC_INFO("Creative Labs Webcam Pro Ex detected.\n"); name = "Creative Labs Webcam Pro Ex"; type_id = 740; break; default: return -ENODEV; break; } } else if (vendor_id == 0x04cc) { switch(product_id) { case 0x8116: PWC_INFO("Sotec Afina Eye USB webcam detected.\n"); name = "Sotec Afina Eye"; type_id = 730; break; default: return -ENODEV; break; } } else if (vendor_id == 0x06be) { switch(product_id) { case 0x8116: /* This is essentially the same cam as the Sotec Afina Eye */ PWC_INFO("AME Co. Afina Eye USB webcam detected.\n"); name = "AME Co. Afina Eye"; type_id = 750; break; default: return -ENODEV; break; } } else if (vendor_id == 0x0d81) { switch(product_id) { case 0x1900: PWC_INFO("Visionite VCS-UC300 USB webcam detected.\n"); name = "Visionite VCS-UC300"; type_id = 740; /* CCD sensor */ break; case 0x1910: PWC_INFO("Visionite VCS-UM100 USB webcam detected.\n"); name = "Visionite VCS-UM100"; type_id = 730; /* CMOS sensor */ break; default: return -ENODEV; break; } } else return -ENODEV; /* Not any of the know types; but the list keeps growing. */ if (my_power_save == -1) my_power_save = 0; memset(serial_number, 0, 30); usb_string(udev, udev->descriptor.iSerialNumber, serial_number, 29); PWC_DEBUG_PROBE("Device serial number is %s\n", serial_number); if (udev->descriptor.bNumConfigurations > 1) PWC_WARNING("Warning: more than 1 configuration available.\n"); /* Allocate structure, initialize pointers, mutexes, etc. and link it to the usb_device */ pdev = kzalloc(sizeof(struct pwc_device), GFP_KERNEL); if (pdev == NULL) { PWC_ERROR("Oops, could not allocate memory for pwc_device.\n"); return -ENOMEM; } pdev->type = type_id; pdev->features = features; pwc_construct(pdev); /* set min/max sizes correct */ mutex_init(&pdev->capt_file_lock); mutex_init(&pdev->udevlock); spin_lock_init(&pdev->queued_bufs_lock); INIT_LIST_HEAD(&pdev->queued_bufs); pdev->udev = udev; pdev->power_save = my_power_save; /* Init videobuf2 queue structure */ memset(&pdev->vb_queue, 0, sizeof(pdev->vb_queue)); pdev->vb_queue.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; pdev->vb_queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ; pdev->vb_queue.drv_priv = pdev; pdev->vb_queue.buf_struct_size = sizeof(struct pwc_frame_buf); pdev->vb_queue.ops = &pwc_vb_queue_ops; pdev->vb_queue.mem_ops = &vb2_vmalloc_memops; vb2_queue_init(&pdev->vb_queue); /* Init video_device structure */ memcpy(&pdev->vdev, &pwc_template, sizeof(pwc_template)); strcpy(pdev->vdev.name, name); set_bit(V4L2_FL_USE_FH_PRIO, &pdev->vdev.flags); video_set_drvdata(&pdev->vdev, pdev); pdev->release = le16_to_cpu(udev->descriptor.bcdDevice); PWC_DEBUG_PROBE("Release: %04x\n", pdev->release); /* Allocate USB command buffers */ pdev->ctrl_buf = kmalloc(sizeof(pdev->cmd_buf), GFP_KERNEL); if (!pdev->ctrl_buf) { PWC_ERROR("Oops, could not allocate memory for pwc_device.\n"); rc = -ENOMEM; goto err_free_mem; } #ifdef CONFIG_USB_PWC_DEBUG /* Query sensor type */ if (pwc_get_cmos_sensor(pdev, &rc) >= 0) { PWC_DEBUG_OPEN("This %s camera is equipped with a %s (%d).\n", pdev->vdev.name, pwc_sensor_type_to_string(rc), rc); } #endif /* Set the leds off */ pwc_set_leds(pdev, 0, 0); /* Setup intial videomode */ rc = pwc_set_video_mode(pdev, MAX_WIDTH, MAX_HEIGHT, V4L2_PIX_FMT_YUV420, 30, &compression, 1); if (rc) goto err_free_mem; /* Register controls (and read default values from camera */ rc = pwc_init_controls(pdev); if (rc) { PWC_ERROR("Failed to register v4l2 controls (%d).\n", rc); goto err_free_mem; } /* And powerdown the camera until streaming starts */ pwc_camera_power(pdev, 0); /* Register the v4l2_device structure */ pdev->v4l2_dev.release = pwc_video_release; rc = v4l2_device_register(&intf->dev, &pdev->v4l2_dev); if (rc) { PWC_ERROR("Failed to register v4l2-device (%d).\n", rc); goto err_free_controls; } pdev->v4l2_dev.ctrl_handler = &pdev->ctrl_handler; pdev->vdev.v4l2_dev = &pdev->v4l2_dev; rc = video_register_device(&pdev->vdev, VFL_TYPE_GRABBER, -1); if (rc < 0) { PWC_ERROR("Failed to register as video device (%d).\n", rc); goto err_unregister_v4l2_dev; } PWC_INFO("Registered as %s.\n", video_device_node_name(&pdev->vdev)); #ifdef CONFIG_USB_PWC_INPUT_EVDEV /* register webcam snapshot button input device */ pdev->button_dev = input_allocate_device(); if (!pdev->button_dev) { PWC_ERROR("Err, insufficient memory for webcam snapshot button device."); rc = -ENOMEM; goto err_video_unreg; } usb_make_path(udev, pdev->button_phys, sizeof(pdev->button_phys)); strlcat(pdev->button_phys, "/input0", sizeof(pdev->button_phys)); pdev->button_dev->name = "PWC snapshot button"; pdev->button_dev->phys = pdev->button_phys; usb_to_input_id(pdev->udev, &pdev->button_dev->id); pdev->button_dev->dev.parent = &pdev->udev->dev; pdev->button_dev->evbit[0] = BIT_MASK(EV_KEY); pdev->button_dev->keybit[BIT_WORD(KEY_CAMERA)] = BIT_MASK(KEY_CAMERA); rc = input_register_device(pdev->button_dev); if (rc) { input_free_device(pdev->button_dev); pdev->button_dev = NULL; goto err_video_unreg; } #endif return 0; err_video_unreg: video_unregister_device(&pdev->vdev); err_unregister_v4l2_dev: v4l2_device_unregister(&pdev->v4l2_dev); err_free_controls: v4l2_ctrl_handler_free(&pdev->ctrl_handler); err_free_mem: kfree(pdev->ctrl_buf); kfree(pdev); return rc; }
static int brcmf_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { int ep; struct usb_endpoint_descriptor *endpoint; int ret = 0; struct usb_device *usb = interface_to_usbdev(intf); int num_of_eps; u8 endpoint_num; brcmf_dbg(TRACE, "enter\n"); usbdev_probe_info.usb = usb; usbdev_probe_info.intf = intf; if (id != NULL) { usbdev_probe_info.vid = id->idVendor; usbdev_probe_info.pid = id->idProduct; } usb_set_intfdata(intf, &usbdev_probe_info); /* Check that the device supports only one configuration */ if (usb->descriptor.bNumConfigurations != 1) { ret = -1; goto fail; } if (usb->descriptor.bDeviceClass != USB_CLASS_VENDOR_SPEC) { ret = -1; goto fail; } /* * Only the BDC interface configuration is supported: * Device class: USB_CLASS_VENDOR_SPEC * if0 class: USB_CLASS_VENDOR_SPEC * if0/ep0: control * if0/ep1: bulk in * if0/ep2: bulk out (ok if swapped with bulk in) */ if (CONFIGDESC(usb)->bNumInterfaces != 1) { ret = -1; goto fail; } /* Check interface */ if (IFDESC(usb, CONTROL_IF).bInterfaceClass != USB_CLASS_VENDOR_SPEC || IFDESC(usb, CONTROL_IF).bInterfaceSubClass != 2 || IFDESC(usb, CONTROL_IF).bInterfaceProtocol != 0xff) { brcmf_dbg(ERROR, "invalid control interface: class %d, subclass %d, proto %d\n", IFDESC(usb, CONTROL_IF).bInterfaceClass, IFDESC(usb, CONTROL_IF).bInterfaceSubClass, IFDESC(usb, CONTROL_IF).bInterfaceProtocol); ret = -1; goto fail; } /* Check control endpoint */ endpoint = &IFEPDESC(usb, CONTROL_IF, 0); if ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) { brcmf_dbg(ERROR, "invalid control endpoint %d\n", endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK); ret = -1; goto fail; } endpoint_num = endpoint->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; usbdev_probe_info.intr_pipe = usb_rcvintpipe(usb, endpoint_num); usbdev_probe_info.rx_pipe = 0; usbdev_probe_info.rx_pipe2 = 0; usbdev_probe_info.tx_pipe = 0; num_of_eps = IFDESC(usb, BULK_IF).bNumEndpoints - 1; /* Check data endpoints and get pipes */ for (ep = 1; ep <= num_of_eps; ep++) { endpoint = &IFEPDESC(usb, BULK_IF, ep); if ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) { brcmf_dbg(ERROR, "invalid data endpoint %d\n", ep); ret = -1; goto fail; } endpoint_num = endpoint->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; if ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { if (!usbdev_probe_info.rx_pipe) { usbdev_probe_info.rx_pipe = usb_rcvbulkpipe(usb, endpoint_num); } else { usbdev_probe_info.rx_pipe2 = usb_rcvbulkpipe(usb, endpoint_num); } } else { usbdev_probe_info.tx_pipe = usb_sndbulkpipe(usb, endpoint_num); } } /* Allocate interrupt URB and data buffer */ /* RNDIS says 8-byte intr, our old drivers used 4-byte */ if (IFEPDESC(usb, CONTROL_IF, 0).wMaxPacketSize == cpu_to_le16(16)) usbdev_probe_info.intr_size = 8; else usbdev_probe_info.intr_size = 4; usbdev_probe_info.interval = IFEPDESC(usb, CONTROL_IF, 0).bInterval; usbdev_probe_info.device_speed = usb->speed; if (usb->speed == USB_SPEED_HIGH) brcmf_dbg(INFO, "Broadcom high speed USB wireless device detected\n"); else brcmf_dbg(INFO, "Broadcom full speed USB wireless device detected\n"); ret = brcmf_usb_probe_cb(&usb->dev, "", USB_BUS, 0); if (ret) goto fail; /* Success */ return 0; fail: brcmf_dbg(ERROR, "failed with errno %d\n", ret); usb_set_intfdata(intf, NULL); return ret; }
/** * iowarrior_probe * * Called by the usb core when a new device is connected that it thinks * this driver might be interested in. */ static int iowarrior_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct iowarrior *dev = NULL; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; int i; int retval = -ENOMEM; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(struct iowarrior), GFP_KERNEL); if (dev == NULL) { dev_err(&interface->dev, "Out of memory\n"); return retval; } mutex_init(&dev->mutex); atomic_set(&dev->intr_idx, 0); atomic_set(&dev->read_idx, 0); spin_lock_init(&dev->intr_idx_lock); atomic_set(&dev->overflow_flag, 0); init_waitqueue_head(&dev->read_wait); atomic_set(&dev->write_busy, 0); init_waitqueue_head(&dev->write_wait); dev->udev = udev; dev->interface = interface; iface_desc = interface->cur_altsetting; dev->product_id = le16_to_cpu(udev->descriptor.idProduct); /* set up the endpoint information */ for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (usb_endpoint_is_int_in(endpoint)) dev->int_in_endpoint = endpoint; if (usb_endpoint_is_int_out(endpoint)) /* this one will match for the IOWarrior56 only */ dev->int_out_endpoint = endpoint; } /* we have to check the report_size often, so remember it in the endianess suitable for our machine */ dev->report_size = le16_to_cpu(dev->int_in_endpoint->wMaxPacketSize); if ((dev->interface->cur_altsetting->desc.bInterfaceNumber == 0) && (dev->product_id == USB_DEVICE_ID_CODEMERCS_IOW56)) /* IOWarrior56 has wMaxPacketSize different from report size */ dev->report_size = 7; /* create the urb and buffer for reading */ dev->int_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->int_in_urb) { dev_err(&interface->dev, "Couldn't allocate interrupt_in_urb\n"); goto error; } dev->int_in_buffer = kmalloc(dev->report_size, GFP_KERNEL); if (!dev->int_in_buffer) { dev_err(&interface->dev, "Couldn't allocate int_in_buffer\n"); goto error; } usb_fill_int_urb(dev->int_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->int_in_endpoint->bEndpointAddress), dev->int_in_buffer, dev->report_size, iowarrior_callback, dev, dev->int_in_endpoint->bInterval); /* create an internal buffer for interrupt data from the device */ dev->read_queue = kmalloc(((dev->report_size + 1) * MAX_INTERRUPT_BUFFER), GFP_KERNEL); if (!dev->read_queue) { dev_err(&interface->dev, "Couldn't allocate read_queue\n"); goto error; } /* Get the serial-number of the chip */ memset(dev->chip_serial, 0x00, sizeof(dev->chip_serial)); usb_string(udev, udev->descriptor.iSerialNumber, dev->chip_serial, sizeof(dev->chip_serial)); if (strlen(dev->chip_serial) != 8) memset(dev->chip_serial, 0x00, sizeof(dev->chip_serial)); /* Set the idle timeout to 0, if this is interface 0 */ if (dev->interface->cur_altsetting->desc.bInterfaceNumber == 0) { usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x0A, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } /* allow device read and ioctl */ dev->present = 1; /* we can register the device now, as it is ready */ usb_set_intfdata(interface, dev); retval = usb_register_dev(interface, &iowarrior_class); if (retval) { /* something prevented us from registering this driver */ dev_err(&interface->dev, "Not able to get a minor for this device.\n"); usb_set_intfdata(interface, NULL); goto error; } dev->minor = interface->minor; /* let the user know what node this device is now attached to */ dev_info(&interface->dev, "IOWarrior product=0x%x, serial=%s interface=%d " "now attached to iowarrior%d\n", dev->product_id, dev->chip_serial, iface_desc->desc.bInterfaceNumber, dev->minor - IOWARRIOR_MINOR_BASE); return retval; error: iowarrior_delete(dev); return retval; }
static int btusb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_endpoint_descriptor *ep_desc; struct btusb_data *data; struct hci_dev *hdev; int i, err; BT_DBG("intf %p id %p", intf, id); /* interface numbers are hardcoded in the spec */ if (intf->cur_altsetting->desc.bInterfaceNumber != 0) return -ENODEV; if (!id->driver_info) { const struct usb_device_id *match; match = usb_match_id(intf, blacklist_table); if (match) id = match; } if (id->driver_info == BTUSB_IGNORE) return -ENODEV; if (ignore_dga && id->driver_info & BTUSB_DIGIANSWER) return -ENODEV; if (ignore_csr && id->driver_info & BTUSB_CSR) return -ENODEV; if (ignore_sniffer && id->driver_info & BTUSB_SNIFFER) return -ENODEV; if (id->driver_info & BTUSB_ATH3012) { struct usb_device *udev = interface_to_usbdev(intf); /* Old firmware would otherwise let ath3k driver load * patch and sysconfig files */ if (le16_to_cpu(udev->descriptor.bcdDevice) <= 0x0001) return -ENODEV; } data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) { ep_desc = &intf->cur_altsetting->endpoint[i].desc; if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) { data->intr_ep = ep_desc; continue; } if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) { data->bulk_tx_ep = ep_desc; continue; } if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) { data->bulk_rx_ep = ep_desc; continue; } } if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep) { kfree(data); return -ENODEV; } data->cmdreq_type = USB_TYPE_CLASS; data->udev = interface_to_usbdev(intf); data->intf = intf; spin_lock_init(&data->lock); INIT_WORK(&data->work, btusb_work); INIT_WORK(&data->waker, btusb_waker); spin_lock_init(&data->txlock); init_usb_anchor(&data->tx_anchor); init_usb_anchor(&data->intr_anchor); init_usb_anchor(&data->bulk_anchor); init_usb_anchor(&data->isoc_anchor); init_usb_anchor(&data->deferred); hdev = hci_alloc_dev(); if (!hdev) { kfree(data); return -ENOMEM; } hdev->bus = HCI_USB; hdev->driver_data = data; data->hdev = hdev; SET_HCIDEV_DEV(hdev, &intf->dev); hdev->open = btusb_open; hdev->close = btusb_close; hdev->flush = btusb_flush; hdev->send = btusb_send_frame; hdev->destruct = btusb_destruct; hdev->notify = btusb_notify; hdev->owner = THIS_MODULE; /* Interface numbers are hardcoded in the specification */ data->isoc = usb_ifnum_to_if(data->udev, 1); if (!reset) set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks); if (force_scofix || id->driver_info & BTUSB_WRONG_SCO_MTU) { if (!disable_scofix) set_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks); } if (id->driver_info & BTUSB_BROKEN_ISOC) data->isoc = NULL; if (id->driver_info & BTUSB_DIGIANSWER) { data->cmdreq_type = USB_TYPE_VENDOR; set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks); } if (id->driver_info & BTUSB_CSR) { struct usb_device *udev = data->udev; /* Old firmware would otherwise execute USB reset */ if (le16_to_cpu(udev->descriptor.bcdDevice) < 0x117) set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks); } if (id->driver_info & BTUSB_SNIFFER) { struct usb_device *udev = data->udev; /* New sniffer firmware has crippled HCI interface */ if (le16_to_cpu(udev->descriptor.bcdDevice) > 0x997) set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks); data->isoc = NULL; } if (id->driver_info & BTUSB_BCM92035) { unsigned char cmd[] = { 0x3b, 0xfc, 0x01, 0x00 }; struct sk_buff *skb; skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); if (skb) { memcpy(skb_put(skb, sizeof(cmd)), cmd, sizeof(cmd)); skb_queue_tail(&hdev->driver_init, skb); } } if (data->isoc) { err = usb_driver_claim_interface(&btusb_driver, data->isoc, data); if (err < 0) { hci_free_dev(hdev); kfree(data); return err; } } err = hci_register_dev(hdev); if (err < 0) { hci_free_dev(hdev); kfree(data); return err; } usb_set_intfdata(intf, data); return 0; }
/** * ld_usb_probe * * Called by the usb core when a new device is connected that it thinks * this driver might be interested in. */ static int ld_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct ld_usb *dev = NULL; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; char *buffer; int i; int retval = -ENOMEM; /* allocate memory for our device state and intialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (dev == NULL) { dev_err(&intf->dev, "Out of memory\n"); goto exit; } init_MUTEX(&dev->sem); spin_lock_init(&dev->rbsl); dev->intf = intf; init_waitqueue_head(&dev->read_wait); init_waitqueue_head(&dev->write_wait); /* workaround for early firmware versions on fast computers */ if ((le16_to_cpu(udev->descriptor.idVendor) == USB_VENDOR_ID_LD) && ((le16_to_cpu(udev->descriptor.idProduct) == USB_DEVICE_ID_LD_CASSY) || (le16_to_cpu(udev->descriptor.idProduct) == USB_DEVICE_ID_LD_COM3LAB)) && (le16_to_cpu(udev->descriptor.bcdDevice) <= 0x103)) { buffer = kmalloc(256, GFP_KERNEL); if (buffer == NULL) { dev_err(&intf->dev, "Couldn't allocate string buffer\n"); goto error; } /* usb_string makes SETUP+STALL to leave always ControlReadLoop */ usb_string(udev, 255, buffer, 256); kfree(buffer); } iface_desc = intf->cur_altsetting; /* set up the endpoint information */ for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (usb_endpoint_is_int_in(endpoint)) dev->interrupt_in_endpoint = endpoint; if (usb_endpoint_is_int_out(endpoint)) dev->interrupt_out_endpoint = endpoint; } if (dev->interrupt_in_endpoint == NULL) { dev_err(&intf->dev, "Interrupt in endpoint not found\n"); goto error; } if (dev->interrupt_out_endpoint == NULL) dev_warn(&intf->dev, "Interrupt out endpoint not found (using control endpoint instead)\n"); dev->interrupt_in_endpoint_size = le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize); dev->ring_buffer = kmalloc(ring_buffer_size*(sizeof(size_t)+dev->interrupt_in_endpoint_size), GFP_KERNEL); if (!dev->ring_buffer) { dev_err(&intf->dev, "Couldn't allocate ring_buffer\n"); goto error; } dev->interrupt_in_buffer = kmalloc(dev->interrupt_in_endpoint_size, GFP_KERNEL); if (!dev->interrupt_in_buffer) { dev_err(&intf->dev, "Couldn't allocate interrupt_in_buffer\n"); goto error; } dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_in_urb) { dev_err(&intf->dev, "Couldn't allocate interrupt_in_urb\n"); goto error; } dev->interrupt_out_endpoint_size = dev->interrupt_out_endpoint ? le16_to_cpu(dev->interrupt_out_endpoint->wMaxPacketSize) : udev->descriptor.bMaxPacketSize0; dev->interrupt_out_buffer = kmalloc(write_buffer_size*dev->interrupt_out_endpoint_size, GFP_KERNEL); if (!dev->interrupt_out_buffer) { dev_err(&intf->dev, "Couldn't allocate interrupt_out_buffer\n"); goto error; } dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_out_urb) { dev_err(&intf->dev, "Couldn't allocate interrupt_out_urb\n"); goto error; } dev->interrupt_in_interval = min_interrupt_in_interval > dev->interrupt_in_endpoint->bInterval ? min_interrupt_in_interval : dev->interrupt_in_endpoint->bInterval; if (dev->interrupt_out_endpoint) dev->interrupt_out_interval = min_interrupt_out_interval > dev->interrupt_out_endpoint->bInterval ? min_interrupt_out_interval : dev->interrupt_out_endpoint->bInterval; /* we can register the device now, as it is ready */ usb_set_intfdata(intf, dev); retval = usb_register_dev(intf, &ld_usb_class); if (retval) { /* something prevented us from registering this driver */ dev_err(&intf->dev, "Not able to get a minor for this device.\n"); usb_set_intfdata(intf, NULL); goto error; } /* let the user know what node this device is now attached to */ dev_info(&intf->dev, "LD USB Device #%d now attached to major %d minor %d\n", (intf->minor - USB_LD_MINOR_BASE), USB_MAJOR, intf->minor); exit: return retval; error: ld_usb_delete(dev); return retval; }
static int xpad_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_xpad *xpad; struct input_dev *input_dev; struct usb_endpoint_descriptor *ep_irq_in; int i, error; for (i = 0; xpad_device[i].idVendor; i++) { if ((le16_to_cpu(udev->descriptor.idVendor) == xpad_device[i].idVendor) && (le16_to_cpu(udev->descriptor.idProduct) == xpad_device[i].idProduct)) break; } xpad = kzalloc(sizeof(struct usb_xpad), GFP_KERNEL); input_dev = input_allocate_device(); if (!xpad || !input_dev) { error = -ENOMEM; goto fail1; } xpad->idata = usb_alloc_coherent(udev, XPAD_PKT_LEN, GFP_KERNEL, &xpad->idata_dma); if (!xpad->idata) { error = -ENOMEM; goto fail1; } xpad->irq_in = usb_alloc_urb(0, GFP_KERNEL); if (!xpad->irq_in) { error = -ENOMEM; goto fail2; } xpad->udev = udev; xpad->mapping = xpad_device[i].mapping; xpad->xtype = xpad_device[i].xtype; if (xpad->xtype == XTYPE_UNKNOWN) { if (intf->cur_altsetting->desc.bInterfaceClass == USB_CLASS_VENDOR_SPEC) { if (intf->cur_altsetting->desc.bInterfaceProtocol == 129) xpad->xtype = XTYPE_XBOX360W; else xpad->xtype = XTYPE_XBOX360; } else xpad->xtype = XTYPE_XBOX; if (dpad_to_buttons) xpad->mapping |= MAP_DPAD_TO_BUTTONS; if (triggers_to_buttons) xpad->mapping |= MAP_TRIGGERS_TO_BUTTONS; if (sticks_to_null) xpad->mapping |= MAP_STICKS_TO_NULL; } xpad->dev = input_dev; usb_make_path(udev, xpad->phys, sizeof(xpad->phys)); strlcat(xpad->phys, "/input0", sizeof(xpad->phys)); input_dev->name = xpad_device[i].name; input_dev->phys = xpad->phys; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &intf->dev; input_set_drvdata(input_dev, xpad); input_dev->open = xpad_open; input_dev->close = xpad_close; input_dev->evbit[0] = BIT_MASK(EV_KEY); if (!(xpad->mapping & MAP_STICKS_TO_NULL)) { input_dev->evbit[0] |= BIT_MASK(EV_ABS); /* set up axes */ for (i = 0; xpad_abs[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs[i]); } /* set up standard buttons */ for (i = 0; xpad_common_btn[i] >= 0; i++) __set_bit(xpad_common_btn[i], input_dev->keybit); /* set up model-specific ones */ if (xpad->xtype == XTYPE_XBOX360 || xpad->xtype == XTYPE_XBOX360W) { for (i = 0; xpad360_btn[i] >= 0; i++) __set_bit(xpad360_btn[i], input_dev->keybit); } else { for (i = 0; xpad_btn[i] >= 0; i++) __set_bit(xpad_btn[i], input_dev->keybit); } if (xpad->mapping & MAP_DPAD_TO_BUTTONS) { for (i = 0; xpad_btn_pad[i] >= 0; i++) __set_bit(xpad_btn_pad[i], input_dev->keybit); } else { for (i = 0; xpad_abs_pad[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs_pad[i]); } if (xpad->mapping & MAP_TRIGGERS_TO_BUTTONS) { for (i = 0; xpad_btn_triggers[i] >= 0; i++) __set_bit(xpad_btn_triggers[i], input_dev->keybit); } else { for (i = 0; xpad_abs_triggers[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs_triggers[i]); } error = xpad_init_output(intf, xpad); if (error) goto fail3; error = xpad_init_ff(xpad); if (error) goto fail4; error = xpad_led_probe(xpad); if (error) goto fail5; ep_irq_in = &intf->cur_altsetting->endpoint[0].desc; usb_fill_int_urb(xpad->irq_in, udev, usb_rcvintpipe(udev, ep_irq_in->bEndpointAddress), xpad->idata, XPAD_PKT_LEN, xpad_irq_in, xpad, ep_irq_in->bInterval); xpad->irq_in->transfer_dma = xpad->idata_dma; xpad->irq_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; error = input_register_device(xpad->dev); if (error) goto fail6; usb_set_intfdata(intf, xpad); if (xpad->xtype == XTYPE_XBOX360W) { /* * Setup the message to set the LEDs on the * controller when it shows up */ xpad->bulk_out = usb_alloc_urb(0, GFP_KERNEL); if (!xpad->bulk_out) { error = -ENOMEM; goto fail7; } xpad->bdata = kzalloc(XPAD_PKT_LEN, GFP_KERNEL); if (!xpad->bdata) { error = -ENOMEM; goto fail8; } xpad->bdata[2] = 0x08; switch (intf->cur_altsetting->desc.bInterfaceNumber) { case 0: xpad->bdata[3] = 0x42; break; case 2: xpad->bdata[3] = 0x43; break; case 4: xpad->bdata[3] = 0x44; break; case 6: xpad->bdata[3] = 0x45; } ep_irq_in = &intf->cur_altsetting->endpoint[1].desc; usb_fill_bulk_urb(xpad->bulk_out, udev, usb_sndbulkpipe(udev, ep_irq_in->bEndpointAddress), xpad->bdata, XPAD_PKT_LEN, xpad_bulk_out, xpad); /* * Submit the int URB immediately rather than waiting for open * because we get status messages from the device whether * or not any controllers are attached. In fact, it's * exactly the message that a controller has arrived that * we're waiting for. */ xpad->irq_in->dev = xpad->udev; error = usb_submit_urb(xpad->irq_in, GFP_KERNEL); if (error) goto fail9; } return 0; fail9: kfree(xpad->bdata); fail8: usb_free_urb(xpad->bulk_out); fail7: input_unregister_device(input_dev); input_dev = NULL; fail6: xpad_led_disconnect(xpad); fail5: if (input_dev) input_ff_destroy(input_dev); fail4: xpad_deinit_output(xpad); fail3: usb_free_urb(xpad->irq_in); fail2: usb_free_coherent(udev, XPAD_PKT_LEN, xpad->idata, xpad->idata_dma); fail1: input_free_device(input_dev); kfree(xpad); return error; }
/* Line6 device disconnected. */ static void line6_disconnect(struct usb_interface *interface) { struct usb_line6 *line6; struct usb_device *usbdev; int interface_number, i; if (interface == NULL) return; usbdev = interface_to_usbdev(interface); if (usbdev == NULL) return; /* removal of additional special files should go here */ sysfs_remove_link(&interface->dev.kobj, "usb_device"); interface_number = interface->cur_altsetting->desc.bInterfaceNumber; line6 = usb_get_intfdata(interface); if (line6 != NULL) { if (line6->urb_listen != NULL) line6_stop_listen(line6); if (usbdev != line6->usbdev) dev_err(line6->ifcdev, "driver bug: inconsistent usb device\n"); switch (line6->usbdev->descriptor.idProduct) { case LINE6_DEVID_BASSPODXT: case LINE6_DEVID_BASSPODXTLIVE: case LINE6_DEVID_BASSPODXTPRO: case LINE6_DEVID_POCKETPOD: case LINE6_DEVID_PODX3: case LINE6_DEVID_PODX3LIVE: case LINE6_DEVID_PODXT: case LINE6_DEVID_PODXTPRO: line6_pod_disconnect(interface); break; case LINE6_DEVID_PODXTLIVE: switch (interface_number) { case PODXTLIVE_INTERFACE_POD: line6_pod_disconnect(interface); break; case PODXTLIVE_INTERFACE_VARIAX: line6_variax_disconnect(interface); break; } break; case LINE6_DEVID_VARIAX: line6_variax_disconnect(interface); break; case LINE6_DEVID_PODSTUDIO_GX: case LINE6_DEVID_PODSTUDIO_UX1: case LINE6_DEVID_PODSTUDIO_UX2: case LINE6_DEVID_TONEPORT_GX: case LINE6_DEVID_TONEPORT_UX1: case LINE6_DEVID_TONEPORT_UX2: case LINE6_DEVID_GUITARPORT: line6_toneport_disconnect(interface); break; default: MISSING_CASE; } dev_info(&interface->dev, "Line6 %s now disconnected\n", line6->properties->name); for (i = LINE6_MAX_DEVICES; i--;) if (line6_devices[i] == line6) line6_devices[i] = NULL; } line6_destruct(interface); /* decrement reference counters: */ usb_put_intf(interface); usb_put_dev(usbdev); }
static int skel_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_skel *dev = NULL; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; size_t buffer_size; int i; int retval = -ENOMEM; /* allocate memory for our device state and initialize it */ dev = kmalloc(sizeof(struct usb_skel), GFP_KERNEL); if (dev == NULL) { err("Out of memory"); goto error; } memset(dev, 0x00, sizeof (*dev)); kref_init(&dev->kref); dev->udev = usb_get_dev(interface_to_usbdev(interface)); dev->interface = interface; /* set up the endpoint information */ /* use only the first bulk-in and bulk-out endpoints */ iface_desc = interface->cur_altsetting; for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (!dev->bulk_in_endpointAddr && (endpoint->bEndpointAddress & USB_DIR_IN) && ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK)) { /* we found a bulk in endpoint */ buffer_size = endpoint->wMaxPacketSize; dev->bulk_in_size = buffer_size; dev->bulk_in_endpointAddr = endpoint->bEndpointAddress; dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL); if (!dev->bulk_in_buffer) { err("Could not allocate bulk_in_buffer"); goto error; } } if (!dev->bulk_out_endpointAddr && !(endpoint->bEndpointAddress & USB_DIR_IN) && ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK)) { /* we found a bulk out endpoint */ dev->bulk_out_endpointAddr = endpoint->bEndpointAddress; } } if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) { err("Could not find both bulk-in and bulk-out endpoints"); goto error; } /* save our data pointer in this interface device */ usb_set_intfdata(interface, dev); /* we can register the device now, as it is ready */ retval = usb_register_dev(interface, &skel_class); if (retval) { /* something prevented us from registering this driver */ err("Not able to get a minor for this device."); usb_set_intfdata(interface, NULL); goto error; } /* let the user know what node this device is now attached to */ info("USB Skeleton device now attached to USBSkel-%d", interface->minor); return 0; error: if (dev) kref_put(&dev->kref, skel_delete); return retval; }
/* Probe USB device. */ static int line6_probe(struct usb_interface *interface, const struct usb_device_id *id) { int devtype; struct usb_device *usbdev = NULL; struct usb_line6 *line6 = NULL; const struct line6_properties *properties; int devnum; int interface_number, alternate = 0; int product; int size = 0; int ep_read = 0, ep_write = 0; int ret; if (interface == NULL) return -ENODEV; usbdev = interface_to_usbdev(interface); if (usbdev == NULL) return -ENODEV; /* we don't handle multiple configurations */ if (usbdev->descriptor.bNumConfigurations != 1) { ret = -ENODEV; goto err_put; } /* check vendor and product id */ for (devtype = ARRAY_SIZE(line6_id_table) - 1; devtype--;) { u16 idVendor = le16_to_cpu(usbdev->descriptor.idVendor); u16 idProduct = le16_to_cpu(usbdev->descriptor.idProduct); if (idVendor == line6_id_table[devtype].idVendor && idProduct == line6_id_table[devtype].idProduct) break; } if (devtype < 0) { ret = -ENODEV; goto err_put; } /* find free slot in device table: */ for (devnum = 0; devnum < LINE6_MAX_DEVICES; ++devnum) if (line6_devices[devnum] == NULL) break; if (devnum == LINE6_MAX_DEVICES) { ret = -ENODEV; goto err_put; } /* initialize device info: */ properties = &line6_properties_table[devtype]; dev_info(&interface->dev, "Line6 %s found\n", properties->name); product = le16_to_cpu(usbdev->descriptor.idProduct); /* query interface number */ interface_number = interface->cur_altsetting->desc.bInterfaceNumber; switch (product) { case LINE6_DEVID_BASSPODXTLIVE: case LINE6_DEVID_PODXTLIVE: case LINE6_DEVID_VARIAX: alternate = 1; break; case LINE6_DEVID_POCKETPOD: switch (interface_number) { case 0: return 0; /* this interface has no endpoints */ case 1: alternate = 0; break; default: MISSING_CASE; } break; case LINE6_DEVID_PODX3: case LINE6_DEVID_PODX3LIVE: switch (interface_number) { case 0: alternate = 1; break; case 1: alternate = 0; break; default: MISSING_CASE; } break; case LINE6_DEVID_BASSPODXT: case LINE6_DEVID_BASSPODXTPRO: case LINE6_DEVID_PODXT: case LINE6_DEVID_PODXTPRO: alternate = 5; break; case LINE6_DEVID_GUITARPORT: case LINE6_DEVID_PODSTUDIO_GX: case LINE6_DEVID_PODSTUDIO_UX1: case LINE6_DEVID_TONEPORT_GX: case LINE6_DEVID_TONEPORT_UX1: alternate = 2; /* 1..4 seem to be ok */ break; case LINE6_DEVID_TONEPORT_UX2: case LINE6_DEVID_PODSTUDIO_UX2: switch (interface_number) { case 0: /* defaults to 44.1kHz, 16-bit */ alternate = 2; break; case 1: /* don't know yet what this is ... alternate = 1; break; */ return -ENODEV; default: MISSING_CASE; } break; default: MISSING_CASE; ret = -ENODEV; goto err_put; } ret = usb_set_interface(usbdev, interface_number, alternate); if (ret < 0) { dev_err(&interface->dev, "set_interface failed\n"); goto err_put; } /* initialize device data based on product id: */ switch (product) { case LINE6_DEVID_BASSPODXT: case LINE6_DEVID_BASSPODXTLIVE: case LINE6_DEVID_BASSPODXTPRO: case LINE6_DEVID_PODXT: case LINE6_DEVID_PODXTPRO: size = sizeof(struct usb_line6_pod); ep_read = 0x84; ep_write = 0x03; break; case LINE6_DEVID_POCKETPOD: size = sizeof(struct usb_line6_pod); ep_read = 0x82; ep_write = 0x02; break; case LINE6_DEVID_PODX3: case LINE6_DEVID_PODX3LIVE: /* currently unused! */ size = sizeof(struct usb_line6_pod); ep_read = 0x81; ep_write = 0x01; break; case LINE6_DEVID_PODSTUDIO_GX: case LINE6_DEVID_PODSTUDIO_UX1: case LINE6_DEVID_PODSTUDIO_UX2: case LINE6_DEVID_TONEPORT_GX: case LINE6_DEVID_TONEPORT_UX1: case LINE6_DEVID_TONEPORT_UX2: case LINE6_DEVID_GUITARPORT: size = sizeof(struct usb_line6_toneport); /* these don't have a control channel */ break; case LINE6_DEVID_PODXTLIVE: switch (interface_number) { case PODXTLIVE_INTERFACE_POD: size = sizeof(struct usb_line6_pod); ep_read = 0x84; ep_write = 0x03; break; case PODXTLIVE_INTERFACE_VARIAX: size = sizeof(struct usb_line6_variax); ep_read = 0x86; ep_write = 0x05; break; default: ret = -ENODEV; goto err_put; } break; case LINE6_DEVID_VARIAX: size = sizeof(struct usb_line6_variax); ep_read = 0x82; ep_write = 0x01; break; default: MISSING_CASE; ret = -ENODEV; goto err_put; } if (size == 0) { dev_err(line6->ifcdev, "driver bug: interface data size not set\n"); ret = -ENODEV; goto err_put; } line6 = kzalloc(size, GFP_KERNEL); if (line6 == NULL) { dev_err(&interface->dev, "Out of memory\n"); ret = -ENODEV; goto err_put; } /* store basic data: */ line6->interface_number = interface_number; line6->properties = properties; line6->usbdev = usbdev; line6->ifcdev = &interface->dev; line6->ep_control_read = ep_read; line6->ep_control_write = ep_write; line6->product = product; /* get data from endpoint descriptor (see usb_maxpacket): */ { struct usb_host_endpoint *ep; unsigned epnum = usb_pipeendpoint(usb_rcvintpipe(usbdev, ep_read)); ep = usbdev->ep_in[epnum]; if (ep != NULL) { line6->interval = ep->desc.bInterval; line6->max_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); } else { line6->interval = LINE6_FALLBACK_INTERVAL; line6->max_packet_size = LINE6_FALLBACK_MAXPACKETSIZE; dev_err(line6->ifcdev, "endpoint not available, using fallback values"); } } usb_set_intfdata(interface, line6); if (properties->capabilities & LINE6_BIT_CONTROL) { /* initialize USB buffers: */ line6->buffer_listen = kmalloc(LINE6_BUFSIZE_LISTEN, GFP_KERNEL); if (line6->buffer_listen == NULL) { dev_err(&interface->dev, "Out of memory\n"); ret = -ENOMEM; goto err_destruct; } line6->buffer_message = kmalloc(LINE6_MESSAGE_MAXLEN, GFP_KERNEL); if (line6->buffer_message == NULL) { dev_err(&interface->dev, "Out of memory\n"); ret = -ENOMEM; goto err_destruct; } line6->urb_listen = usb_alloc_urb(0, GFP_KERNEL); if (line6->urb_listen == NULL) { dev_err(&interface->dev, "Out of memory\n"); line6_destruct(interface); ret = -ENOMEM; goto err_destruct; } ret = line6_start_listen(line6); if (ret < 0) { dev_err(&interface->dev, "%s: usb_submit_urb failed\n", __func__); goto err_destruct; } } /* initialize device data based on product id: */ switch (product) { case LINE6_DEVID_BASSPODXT: case LINE6_DEVID_BASSPODXTLIVE: case LINE6_DEVID_BASSPODXTPRO: case LINE6_DEVID_POCKETPOD: case LINE6_DEVID_PODX3: case LINE6_DEVID_PODX3LIVE: case LINE6_DEVID_PODXT: case LINE6_DEVID_PODXTPRO: ret = line6_pod_init(interface, (struct usb_line6_pod *)line6); break; case LINE6_DEVID_PODXTLIVE: switch (interface_number) { case PODXTLIVE_INTERFACE_POD: ret = line6_pod_init(interface, (struct usb_line6_pod *)line6); break; case PODXTLIVE_INTERFACE_VARIAX: ret = line6_variax_init(interface, (struct usb_line6_variax *)line6); break; default: dev_err(&interface->dev, "PODxt Live interface %d not supported\n", interface_number); ret = -ENODEV; } break; case LINE6_DEVID_VARIAX: ret = line6_variax_init(interface, (struct usb_line6_variax *)line6); break; case LINE6_DEVID_PODSTUDIO_GX: case LINE6_DEVID_PODSTUDIO_UX1: case LINE6_DEVID_PODSTUDIO_UX2: case LINE6_DEVID_TONEPORT_GX: case LINE6_DEVID_TONEPORT_UX1: case LINE6_DEVID_TONEPORT_UX2: case LINE6_DEVID_GUITARPORT: ret = line6_toneport_init(interface, (struct usb_line6_toneport *)line6); break; default: MISSING_CASE; ret = -ENODEV; } if (ret < 0) goto err_destruct; ret = sysfs_create_link(&interface->dev.kobj, &usbdev->dev.kobj, "usb_device"); if (ret < 0) goto err_destruct; /* creation of additional special files should go here */ dev_info(&interface->dev, "Line6 %s now attached\n", line6->properties->name); line6_devices[devnum] = line6; switch (product) { case LINE6_DEVID_PODX3: case LINE6_DEVID_PODX3LIVE: dev_info(&interface->dev, "NOTE: the Line6 %s is detected, but not yet supported\n", line6->properties->name); } /* increment reference counters: */ usb_get_intf(interface); usb_get_dev(usbdev); return 0; err_destruct: line6_destruct(interface); err_put: usb_put_intf(interface); usb_put_dev(usbdev); return ret; }
static void usbhid_mark_busy(struct usbhid_device *usbhid) { struct usb_interface *intf = usbhid->intf; usb_mark_last_busy(interface_to_usbdev(intf)); }
/* * Probe a i2400m interface and register it * * @iface: USB interface to link to * @id: USB class/subclass/protocol id * @returns: 0 if ok, < 0 errno code on error. * * Alloc a net device, initialize the bus-specific details and then * calls the bus-generic initialization routine. That will register * the wimax and netdev devices, upload the firmware [using * _bus_bm_*()], call _bus_dev_start() to finalize the setup of the * communication with the device and then will start to talk to it to * finnish setting it up. */ static int i2400mu_probe(struct usb_interface *iface, const struct usb_device_id *id) { int result; struct net_device *net_dev; struct device *dev = &iface->dev; struct i2400m *i2400m; struct i2400mu *i2400mu; struct usb_device *usb_dev = interface_to_usbdev(iface); if (usb_dev->speed != USB_SPEED_HIGH) dev_err(dev, "device not connected as high speed\n"); /* Allocate instance [calls i2400m_netdev_setup() on it]. */ result = -ENOMEM; net_dev = alloc_netdev(sizeof(*i2400mu), "wmx%d", i2400mu_netdev_setup); if (net_dev == NULL) { dev_err(dev, "no memory for network device instance\n"); goto error_alloc_netdev; } SET_NETDEV_DEV(net_dev, dev); SET_NETDEV_DEVTYPE(net_dev, &i2400mu_type); i2400m = net_dev_to_i2400m(net_dev); i2400mu = container_of(i2400m, struct i2400mu, i2400m); i2400m->wimax_dev.net_dev = net_dev; i2400mu->usb_dev = usb_get_dev(usb_dev); i2400mu->usb_iface = iface; usb_set_intfdata(iface, i2400mu); i2400m->bus_tx_block_size = I2400MU_BLK_SIZE; i2400m->bus_pl_size_max = I2400MU_PL_SIZE_MAX; i2400m->bus_setup = NULL; i2400m->bus_dev_start = i2400mu_bus_dev_start; i2400m->bus_dev_stop = i2400mu_bus_dev_stop; i2400m->bus_release = NULL; i2400m->bus_tx_kick = i2400mu_bus_tx_kick; i2400m->bus_reset = i2400mu_bus_reset; i2400m->bus_bm_retries = I2400M_USB_BOOT_RETRIES; i2400m->bus_bm_cmd_send = i2400mu_bus_bm_cmd_send; i2400m->bus_bm_wait_for_ack = i2400mu_bus_bm_wait_for_ack; i2400m->bus_bm_mac_addr_impaired = 0; switch (id->idProduct) { case USB_DEVICE_ID_I6050: case USB_DEVICE_ID_I6050_2: i2400mu->i6050 = 1; break; default: break; } if (i2400mu->i6050) { i2400m->bus_fw_names = i2400mu_bus_fw_names_6050; i2400mu->endpoint_cfg.bulk_out = 0; i2400mu->endpoint_cfg.notification = 3; i2400mu->endpoint_cfg.reset_cold = 2; i2400mu->endpoint_cfg.bulk_in = 1; } else { i2400m->bus_fw_names = i2400mu_bus_fw_names_5x50; i2400mu->endpoint_cfg.bulk_out = 0; i2400mu->endpoint_cfg.notification = 1; i2400mu->endpoint_cfg.reset_cold = 2; i2400mu->endpoint_cfg.bulk_in = 3; } #ifdef CONFIG_PM iface->needs_remote_wakeup = 1; /* autosuspend (15s delay) */ device_init_wakeup(dev, 1); usb_dev->autosuspend_delay = 15 * HZ; usb_dev->autosuspend_disabled = 0; #endif result = i2400m_setup(i2400m, I2400M_BRI_MAC_REINIT); if (result < 0) { dev_err(dev, "cannot setup device: %d\n", result); goto error_setup; } result = i2400mu_debugfs_add(i2400mu); if (result < 0) { dev_err(dev, "Can't register i2400mu's debugfs: %d\n", result); goto error_debugfs_add; } return 0; error_debugfs_add: i2400m_release(i2400m); error_setup: usb_set_intfdata(iface, NULL); usb_put_dev(i2400mu->usb_dev); free_netdev(net_dev); error_alloc_netdev: return result; }
/** * if_usb_probe - sets the configuration values * * @ifnum interface number * @id pointer to usb_device_id * * Returns: 0 on success, error code on failure */ static int if_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; struct lbtf_private *priv; struct if_usb_card *cardp; int i; lbtf_deb_enter(LBTF_DEB_USB); udev = interface_to_usbdev(intf); cardp = kzalloc(sizeof(struct if_usb_card), GFP_KERNEL); if (!cardp) { pr_err("Out of memory allocating private data.\n"); goto error; } setup_timer(&cardp->fw_timeout, if_usb_fw_timeo, (unsigned long)cardp); init_waitqueue_head(&cardp->fw_wq); cardp->udev = udev; iface_desc = intf->cur_altsetting; lbtf_deb_usbd(&udev->dev, "bcdUSB = 0x%X bDeviceClass = 0x%X" " bDeviceSubClass = 0x%X, bDeviceProtocol = 0x%X\n", le16_to_cpu(udev->descriptor.bcdUSB), udev->descriptor.bDeviceClass, udev->descriptor.bDeviceSubClass, udev->descriptor.bDeviceProtocol); for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (usb_endpoint_is_bulk_in(endpoint)) { cardp->ep_in_size = le16_to_cpu(endpoint->wMaxPacketSize); cardp->ep_in = usb_endpoint_num(endpoint); lbtf_deb_usbd(&udev->dev, "in_endpoint = %d\n", cardp->ep_in); lbtf_deb_usbd(&udev->dev, "Bulk in size is %d\n", cardp->ep_in_size); } else if (usb_endpoint_is_bulk_out(endpoint)) { cardp->ep_out_size = le16_to_cpu(endpoint->wMaxPacketSize); cardp->ep_out = usb_endpoint_num(endpoint); lbtf_deb_usbd(&udev->dev, "out_endpoint = %d\n", cardp->ep_out); lbtf_deb_usbd(&udev->dev, "Bulk out size is %d\n", cardp->ep_out_size); } } if (!cardp->ep_out_size || !cardp->ep_in_size) { lbtf_deb_usbd(&udev->dev, "Endpoints not found\n"); /* Endpoints not found */ goto dealloc; } cardp->rx_urb = usb_alloc_urb(0, GFP_KERNEL); if (!cardp->rx_urb) { lbtf_deb_usbd(&udev->dev, "Rx URB allocation failed\n"); goto dealloc; } cardp->tx_urb = usb_alloc_urb(0, GFP_KERNEL); if (!cardp->tx_urb) { lbtf_deb_usbd(&udev->dev, "Tx URB allocation failed\n"); goto dealloc; } cardp->cmd_urb = usb_alloc_urb(0, GFP_KERNEL); if (!cardp->cmd_urb) { lbtf_deb_usbd(&udev->dev, "Cmd URB allocation failed\n"); goto dealloc; } cardp->ep_out_buf = kmalloc(MRVDRV_ETH_TX_PACKET_BUFFER_SIZE, GFP_KERNEL); if (!cardp->ep_out_buf) { lbtf_deb_usbd(&udev->dev, "Could not allocate buffer\n"); goto dealloc; } priv = lbtf_add_card(cardp, &udev->dev); if (!priv) goto dealloc; cardp->priv = priv; priv->hw_host_to_card = if_usb_host_to_card; priv->hw_prog_firmware = if_usb_prog_firmware; priv->hw_reset_device = if_usb_reset_device; cardp->boot2_version = udev->descriptor.bcdDevice; usb_get_dev(udev); usb_set_intfdata(intf, cardp); return 0; dealloc: if_usb_free(cardp); error: lbtf_deb_leave(LBTF_DEB_MAIN); return -ENOMEM; }
static int bfusb_probe(struct usb_interface *intf, const struct usb_device_id *id) { const struct firmware *firmware; struct usb_device *udev = interface_to_usbdev(intf); struct usb_host_endpoint *bulk_out_ep; struct usb_host_endpoint *bulk_in_ep; struct hci_dev *hdev; struct bfusb_data *data; BT_DBG("intf %p id %p", intf, id); /* Check number of endpoints */ if (intf->cur_altsetting->desc.bNumEndpoints < 2) return -EIO; bulk_out_ep = &intf->cur_altsetting->endpoint[0]; bulk_in_ep = &intf->cur_altsetting->endpoint[1]; if (!bulk_out_ep || !bulk_in_ep) { BT_ERR("Bulk endpoints not found"); goto done; } /* Initialize control structure and load firmware */ data = kzalloc(sizeof(struct bfusb_data), GFP_KERNEL); if (!data) { BT_ERR("Can't allocate memory for control structure"); goto done; } data->udev = udev; data->bulk_in_ep = bulk_in_ep->desc.bEndpointAddress; data->bulk_out_ep = bulk_out_ep->desc.bEndpointAddress; data->bulk_pkt_size = le16_to_cpu(bulk_out_ep->desc.wMaxPacketSize); rwlock_init(&data->lock); data->reassembly = NULL; skb_queue_head_init(&data->transmit_q); skb_queue_head_init(&data->pending_q); skb_queue_head_init(&data->completed_q); if (request_firmware(&firmware, "bfubase.frm", &udev->dev) < 0) { BT_ERR("Firmware request failed"); goto error; } BT_DBG("firmware data %p size %zu", firmware->data, firmware->size); if (bfusb_load_firmware(data, firmware->data, firmware->size) < 0) { BT_ERR("Firmware loading failed"); goto release; } release_firmware(firmware); /* Initialize and register HCI device */ hdev = hci_alloc_dev(); if (!hdev) { BT_ERR("Can't allocate HCI device"); goto error; } data->hdev = hdev; hdev->bus = HCI_USB; hdev->driver_data = data; SET_HCIDEV_DEV(hdev, &intf->dev); hdev->open = bfusb_open; hdev->close = bfusb_close; hdev->flush = bfusb_flush; hdev->send = bfusb_send_frame; hdev->destruct = bfusb_destruct; hdev->ioctl = bfusb_ioctl; if (hci_register_dev(hdev) < 0) { BT_ERR("Can't register HCI device"); hci_free_dev(hdev); goto error; } usb_set_intfdata(intf, data); return 0; release: release_firmware(firmware); error: kfree(data); done: return -EIO; }
static int skel_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_skel *dev; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; size_t buffer_size; int i; int retval = -ENOMEM; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { err("Out of memory"); goto error; } kref_init(&dev->kref); sema_init(&dev->limit_sem, WRITES_IN_FLIGHT); mutex_init(&dev->io_mutex); spin_lock_init(&dev->err_lock); init_usb_anchor(&dev->submitted); dev->udev = usb_get_dev(interface_to_usbdev(interface)); dev->interface = interface; /* set up the endpoint information */ /* use only the first bulk-in and bulk-out endpoints */ iface_desc = interface->cur_altsetting; for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (!dev->bulk_in_endpointAddr && usb_endpoint_is_bulk_in(endpoint)) { /* we found a bulk in endpoint */ buffer_size = le16_to_cpu(endpoint->wMaxPacketSize); dev->bulk_in_size = buffer_size; dev->bulk_in_endpointAddr = endpoint->bEndpointAddress; dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL); if (!dev->bulk_in_buffer) { err("Could not allocate bulk_in_buffer"); goto error; } } if (!dev->bulk_out_endpointAddr && usb_endpoint_is_bulk_out(endpoint)) { /* we found a bulk out endpoint */ dev->bulk_out_endpointAddr = endpoint->bEndpointAddress; } } if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) { err("Could not find both bulk-in and bulk-out endpoints"); goto error; } /* save our data pointer in this interface device */ usb_set_intfdata(interface, dev); /* we can register the device now, as it is ready */ retval = usb_register_dev(interface, &skel_class); if (retval) { /* something prevented us from registering this driver */ err("Not able to get a minor for this device."); usb_set_intfdata(interface, NULL); goto error; } /* let the user know what node this device is now attached to */ info("USB Skeleton device now attached to USBSkel-%d", interface->minor); return 0; error: if (dev) /* this frees allocated memory */ kref_put(&dev->kref, skel_delete); return retval; }
static int btusb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_endpoint_descriptor *ep_desc; struct btusb_data *data; struct hci_dev *hdev; int i, err,flag1,flag2; struct usb_device *udev; udev = interface_to_usbdev(intf); /* interface numbers are hardcoded in the spec */ if (intf->cur_altsetting->desc.bInterfaceNumber != 0) return -ENODEV; /*******************************/ flag1=device_can_wakeup(&udev->dev); flag2=device_may_wakeup(&udev->dev); RTKBT_DBG("btusb_probe 1==========can_wakeup=%x flag2=%x",flag1,flag2); //device_wakeup_enable(&udev->dev); /*device_wakeup_disable(&udev->dev); flag1=device_can_wakeup(&udev->dev); flag2=device_may_wakeup(&udev->dev); RTKBT_DBG("btusb_probe 2==========can_wakeup=%x flag2=%x",flag1,flag2); */ err = patch_add(intf); if (err < 0) return -1; /*******************************/ data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) { ep_desc = &intf->cur_altsetting->endpoint[i].desc; if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) { data->intr_ep = ep_desc; continue; } if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) { data->bulk_tx_ep = ep_desc; continue; } if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) { data->bulk_rx_ep = ep_desc; continue; } } if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep) { kfree(data); return -ENODEV; } data->cmdreq_type = USB_TYPE_CLASS; data->udev = interface_to_usbdev(intf); data->intf = intf; spin_lock_init(&data->lock); INIT_WORK(&data->work, btusb_work); INIT_WORK(&data->waker, btusb_waker); spin_lock_init(&data->txlock); init_usb_anchor(&data->tx_anchor); init_usb_anchor(&data->intr_anchor); init_usb_anchor(&data->bulk_anchor); init_usb_anchor(&data->isoc_anchor); init_usb_anchor(&data->deferred); hdev = hci_alloc_dev(); if (!hdev) { kfree(data); return -ENOMEM; } HDEV_BUS = HCI_USB; data->hdev = hdev; SET_HCIDEV_DEV(hdev, &intf->dev); hdev->open = btusb_open; hdev->close = btusb_close; hdev->flush = btusb_flush; hdev->send = btusb_send_frame; hdev->notify = btusb_notify; #if LINUX_VERSION_CODE > KERNEL_VERSION(3, 4, 0) hci_set_drvdata(hdev, data); #else hdev->driver_data = data; hdev->destruct = btusb_destruct; hdev->owner = THIS_MODULE; #endif /* Interface numbers are hardcoded in the specification */ data->isoc = usb_ifnum_to_if(data->udev, 1); if (data->isoc) { err = usb_driver_claim_interface(&btusb_driver, data->isoc, data); if (err < 0) { hci_free_dev(hdev); kfree(data); return err; } } err = hci_register_dev(hdev); if (err < 0) { hci_free_dev(hdev); kfree(data); return err; } usb_set_intfdata(intf, data); return 0; }
static int asus_oled_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct asus_oled_dev *odev = NULL; int retval = -ENOMEM; uint16_t dev_width = 0; enum oled_pack_mode pack_mode = PACK_MODE_LAST; const struct oled_dev_desc_str *dev_desc = oled_dev_desc_table; const char *desc = NULL; if (!id) { /* Even possible? Just to make sure...*/ dev_err(&interface->dev, "No usb_device_id provided!\n"); return -ENODEV; } for (; dev_desc->idVendor; dev_desc++) { if (dev_desc->idVendor == id->idVendor && dev_desc->idProduct == id->idProduct) { dev_width = dev_desc->devWidth; desc = dev_desc->devDesc; pack_mode = dev_desc->packMode; break; } } if (!desc || dev_width < 1 || pack_mode == PACK_MODE_LAST) { dev_err(&interface->dev, "Missing or incomplete device description!\n"); return -ENODEV; } odev = kzalloc(sizeof(struct asus_oled_dev), GFP_KERNEL); if (odev == NULL) { dev_err(&interface->dev, "Out of memory\n"); return -ENOMEM; } odev->udev = usb_get_dev(udev); odev->pic_mode = ASUS_OLED_STATIC; odev->dev_width = dev_width; odev->pack_mode = pack_mode; odev->height = 0; odev->width = 0; odev->x_shift = 0; odev->y_shift = 0; odev->buf_offs = 0; odev->buf_size = 0; odev->last_val = 0; odev->buf = NULL; odev->enabled = 1; odev->dev = NULL; usb_set_intfdata(interface, odev); retval = device_create_file(&interface->dev, &ASUS_OLED_DEVICE_ATTR(enabled)); if (retval) goto err_files; retval = device_create_file(&interface->dev, &ASUS_OLED_DEVICE_ATTR(picture)); if (retval) goto err_files; odev->dev = device_create(oled_class, &interface->dev, MKDEV(0, 0), NULL, "oled_%d", ++oled_num); if (IS_ERR(odev->dev)) { retval = PTR_ERR(odev->dev); goto err_files; } dev_set_drvdata(odev->dev, odev); retval = device_create_file(odev->dev, &dev_attr_enabled); if (retval) goto err_class_enabled; retval = device_create_file(odev->dev, &dev_attr_picture); if (retval) goto err_class_picture; dev_info(&interface->dev, "Attached Asus OLED device: %s [width %u, pack_mode %d]\n", desc, odev->dev_width, odev->pack_mode); if (start_off) enable_oled(odev, 0); return 0; err_class_picture: device_remove_file(odev->dev, &dev_attr_picture); err_class_enabled: device_remove_file(odev->dev, &dev_attr_enabled); device_unregister(odev->dev); err_files: device_remove_file(&interface->dev, &ASUS_OLED_DEVICE_ATTR(enabled)); device_remove_file(&interface->dev, &ASUS_OLED_DEVICE_ATTR(picture)); usb_set_intfdata(interface, NULL); usb_put_dev(odev->udev); kfree(odev); return retval; }
/* * This routine is called by the USB subsystem for each new device * in the system. We need to check if the device is ours, and in * this case start handling it. */ static int ksdazzle_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_host_interface *interface; struct usb_endpoint_descriptor *endpoint; struct usb_device *dev = interface_to_usbdev(intf); struct ksdazzle_cb *kingsun = NULL; struct net_device *net = NULL; int ret = -ENOMEM; int pipe, maxp_in, maxp_out; __u8 ep_in; __u8 ep_out; /* Check that there really are two interrupt endpoints. Check based on the one in drivers/usb/input/usbmouse.c */ interface = intf->cur_altsetting; if (interface->desc.bNumEndpoints != 2) { err("ksdazzle: expected 2 endpoints, found %d", interface->desc.bNumEndpoints); return -ENODEV; } endpoint = &interface->endpoint[KINGSUN_EP_IN].desc; if (!usb_endpoint_is_int_in(endpoint)) { err("ksdazzle: endpoint 0 is not interrupt IN"); return -ENODEV; } ep_in = endpoint->bEndpointAddress; pipe = usb_rcvintpipe(dev, ep_in); maxp_in = usb_maxpacket(dev, pipe, usb_pipeout(pipe)); if (maxp_in > 255 || maxp_in <= 1) { err("ksdazzle: endpoint 0 has max packet size %d not in range [2..255]", maxp_in); return -ENODEV; } endpoint = &interface->endpoint[KINGSUN_EP_OUT].desc; if (!usb_endpoint_is_int_out(endpoint)) { err("ksdazzle: endpoint 1 is not interrupt OUT"); return -ENODEV; } ep_out = endpoint->bEndpointAddress; pipe = usb_sndintpipe(dev, ep_out); maxp_out = usb_maxpacket(dev, pipe, usb_pipeout(pipe)); /* Allocate network device container. */ net = alloc_irdadev(sizeof(*kingsun)); if (!net) goto err_out1; SET_NETDEV_DEV(net, &intf->dev); kingsun = netdev_priv(net); kingsun->netdev = net; kingsun->usbdev = dev; kingsun->ep_in = ep_in; kingsun->ep_out = ep_out; kingsun->irlap = NULL; kingsun->tx_urb = NULL; kingsun->tx_buf_clear = NULL; kingsun->tx_buf_clear_used = 0; kingsun->tx_buf_clear_sent = 0; kingsun->rx_urb = NULL; kingsun->rx_buf = NULL; kingsun->rx_unwrap_buff.in_frame = FALSE; kingsun->rx_unwrap_buff.state = OUTSIDE_FRAME; kingsun->rx_unwrap_buff.skb = NULL; kingsun->receiving = 0; spin_lock_init(&kingsun->lock); kingsun->speed_setuprequest = NULL; kingsun->speed_urb = NULL; kingsun->speedparams.baudrate = 0; /* Allocate input buffer */ kingsun->rx_buf = kmalloc(KINGSUN_RCV_MAX, GFP_KERNEL); if (!kingsun->rx_buf) goto free_mem; /* Allocate output buffer */ kingsun->tx_buf_clear = kmalloc(KINGSUN_SND_FIFO_SIZE, GFP_KERNEL); if (!kingsun->tx_buf_clear) goto free_mem; /* Allocate and initialize speed setup packet */ kingsun->speed_setuprequest = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); if (!kingsun->speed_setuprequest) goto free_mem; kingsun->speed_setuprequest->bRequestType = USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE; kingsun->speed_setuprequest->bRequest = KINGSUN_REQ_SEND; kingsun->speed_setuprequest->wValue = cpu_to_le16(0x0200); kingsun->speed_setuprequest->wIndex = cpu_to_le16(0x0001); kingsun->speed_setuprequest->wLength = cpu_to_le16(sizeof(struct ksdazzle_speedparams)); printk(KERN_INFO "KingSun/Dazzle IRDA/USB found at address %d, " "Vendor: %x, Product: %x\n", dev->devnum, le16_to_cpu(dev->descriptor.idVendor), le16_to_cpu(dev->descriptor.idProduct)); /* Initialize QoS for this device */ irda_init_max_qos_capabilies(&kingsun->qos); /* Baud rates known to be supported. Please uncomment if devices (other than a SonyEriccson K300 phone) can be shown to support higher speeds with this dongle. */ kingsun->qos.baud_rate.bits = IR_2400 | IR_9600 | IR_19200 | IR_38400 | IR_57600 | IR_115200; kingsun->qos.min_turn_time.bits &= KINGSUN_MTT; irda_qos_bits_to_value(&kingsun->qos); /* Override the network functions we need to use */ net->hard_start_xmit = ksdazzle_hard_xmit; net->open = ksdazzle_net_open; net->stop = ksdazzle_net_close; net->get_stats = ksdazzle_net_get_stats; net->do_ioctl = ksdazzle_net_ioctl; ret = register_netdev(net); if (ret != 0) goto free_mem; dev_info(&net->dev, "IrDA: Registered KingSun/Dazzle device %s\n", net->name); usb_set_intfdata(intf, kingsun); /* Situation at this point: - all work buffers allocated - setup requests pre-filled - urbs not allocated, set to NULL - max rx packet known (is KINGSUN_FIFO_SIZE) - unwrap state machine (partially) initialized, but skb == NULL */ return 0; free_mem: kfree(kingsun->speed_setuprequest); kfree(kingsun->tx_buf_clear); kfree(kingsun->rx_buf); free_netdev(net); err_out1: return ret; }
static int acm_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_cdc_union_desc *union_header = NULL; struct usb_cdc_country_functional_desc *cfd = NULL; unsigned char *buffer = intf->altsetting->extra; int buflen = intf->altsetting->extralen; struct usb_interface *control_interface; struct usb_interface *data_interface; struct usb_endpoint_descriptor *epctrl = NULL; struct usb_endpoint_descriptor *epread = NULL; struct usb_endpoint_descriptor *epwrite = NULL; struct usb_device *usb_dev = interface_to_usbdev(intf); struct acm *acm; int minor; int ctrlsize, readsize; u8 *buf; u8 ac_management_function = 0; u8 call_management_function = 0; int call_interface_num = -1; int data_interface_num = -1; unsigned long quirks; int num_rx_buf; int i; int combined_interfaces = 0; quirks = (unsigned long)id->driver_info; num_rx_buf = (quirks == SINGLE_RX_URB) ? 1 : ACM_NR; if (quirks == NO_UNION_NORMAL) { data_interface = usb_ifnum_to_if(usb_dev, 1); control_interface = usb_ifnum_to_if(usb_dev, 0); goto skip_normal_probe; } if (!buffer) { dev_err(&intf->dev, "Weird descriptor references\n"); return -EINVAL; } if (!buflen) { if (intf->cur_altsetting->endpoint && intf->cur_altsetting->endpoint->extralen && intf->cur_altsetting->endpoint->extra) { dev_dbg(&intf->dev, "Seeking extra descriptors on endpoint\n"); buflen = intf->cur_altsetting->endpoint->extralen; buffer = intf->cur_altsetting->endpoint->extra; } else { dev_err(&intf->dev, "Zero length descriptor references\n"); return -EINVAL; } } while (buflen > 0) { if (buffer[1] != USB_DT_CS_INTERFACE) { dev_err(&intf->dev, "skipping garbage\n"); goto next_desc; } switch (buffer[2]) { case USB_CDC_UNION_TYPE: if (union_header) { dev_err(&intf->dev, "More than one " "union descriptor, skipping ...\n"); goto next_desc; } union_header = (struct usb_cdc_union_desc *)buffer; break; case USB_CDC_COUNTRY_TYPE: cfd = (struct usb_cdc_country_functional_desc *)buffer; break; case USB_CDC_HEADER_TYPE: break; case USB_CDC_ACM_TYPE: ac_management_function = buffer[3]; break; case USB_CDC_CALL_MANAGEMENT_TYPE: call_management_function = buffer[3]; call_interface_num = buffer[4]; if ( (quirks & NOT_A_MODEM) == 0 && (call_management_function & 3) != 3) dev_err(&intf->dev, "This device cannot do calls on its own. It is not a modem.\n"); break; default: dev_dbg(&intf->dev, "Ignoring descriptor: " "type %02x, length %d\n", buffer[2], buffer[0]); break; } next_desc: buflen -= buffer[0]; buffer += buffer[0]; } if (!union_header) { if (call_interface_num > 0) { dev_dbg(&intf->dev, "No union descriptor, using call management descriptor\n"); if (quirks & NO_DATA_INTERFACE) data_interface = usb_ifnum_to_if(usb_dev, 0); else data_interface = usb_ifnum_to_if(usb_dev, (data_interface_num = call_interface_num)); control_interface = intf; } else { if (intf->cur_altsetting->desc.bNumEndpoints != 3) { dev_dbg(&intf->dev,"No union descriptor, giving up\n"); return -ENODEV; } else { dev_warn(&intf->dev,"No union descriptor, testing for castrated device\n"); combined_interfaces = 1; control_interface = data_interface = intf; goto look_for_collapsed_interface; } } } else { control_interface = usb_ifnum_to_if(usb_dev, union_header->bMasterInterface0); data_interface = usb_ifnum_to_if(usb_dev, (data_interface_num = union_header->bSlaveInterface0)); if (!control_interface || !data_interface) { dev_dbg(&intf->dev, "no interfaces\n"); return -ENODEV; } } if (data_interface_num != call_interface_num) dev_dbg(&intf->dev, "Separate call control interface. That is not fully supported.\n"); if (control_interface == data_interface) { dev_warn(&intf->dev,"Control and data interfaces are not separated!\n"); combined_interfaces = 1; quirks |= NO_CAP_LINE; if (data_interface->cur_altsetting->desc.bNumEndpoints != 3) { dev_err(&intf->dev, "This needs exactly 3 endpoints\n"); return -EINVAL; } look_for_collapsed_interface: for (i = 0; i < 3; i++) { struct usb_endpoint_descriptor *ep; ep = &data_interface->cur_altsetting->endpoint[i].desc; if (usb_endpoint_is_int_in(ep)) epctrl = ep; else if (usb_endpoint_is_bulk_out(ep)) epwrite = ep; else if (usb_endpoint_is_bulk_in(ep)) epread = ep; else return -EINVAL; } if (!epctrl || !epread || !epwrite) return -ENODEV; else goto made_compressed_probe; } skip_normal_probe: if (data_interface->cur_altsetting->desc.bInterfaceClass != CDC_DATA_INTERFACE_TYPE) { if (control_interface->cur_altsetting->desc.bInterfaceClass == CDC_DATA_INTERFACE_TYPE) { struct usb_interface *t; dev_dbg(&intf->dev, "Your device has switched interfaces.\n"); t = control_interface; control_interface = data_interface; data_interface = t; } else { return -EINVAL; } } if (!combined_interfaces && intf != control_interface) return -ENODEV; if (!combined_interfaces && usb_interface_claimed(data_interface)) { dev_dbg(&intf->dev, "The data interface isn't available\n"); return -EBUSY; } if (data_interface->cur_altsetting->desc.bNumEndpoints < 2) return -EINVAL; epctrl = &control_interface->cur_altsetting->endpoint[0].desc; epread = &data_interface->cur_altsetting->endpoint[0].desc; epwrite = &data_interface->cur_altsetting->endpoint[1].desc; if (!usb_endpoint_dir_in(epread)) { struct usb_endpoint_descriptor *t; dev_dbg(&intf->dev, "The data interface has switched endpoints\n"); t = epread; epread = epwrite; epwrite = t; } made_compressed_probe: dev_dbg(&intf->dev, "interfaces are valid\n"); acm = kzalloc(sizeof(struct acm), GFP_KERNEL); if (acm == NULL) { dev_err(&intf->dev, "out of memory (acm kzalloc)\n"); goto alloc_fail; } minor = acm_alloc_minor(acm); if (minor == ACM_TTY_MINORS) { dev_err(&intf->dev, "no more free acm devices\n"); kfree(acm); return -ENODEV; } ctrlsize = usb_endpoint_maxp(epctrl); readsize = usb_endpoint_maxp(epread) * (quirks == SINGLE_RX_URB ? 1 : 2); acm->combined_interfaces = combined_interfaces; acm->writesize = usb_endpoint_maxp(epwrite) * 20; acm->control = control_interface; acm->data = data_interface; acm->minor = minor; acm->dev = usb_dev; acm->ctrl_caps = ac_management_function; if (quirks & NO_CAP_LINE) acm->ctrl_caps &= ~USB_CDC_CAP_LINE; acm->ctrlsize = ctrlsize; acm->readsize = readsize; acm->rx_buflimit = num_rx_buf; INIT_WORK(&acm->work, acm_softint); spin_lock_init(&acm->write_lock); spin_lock_init(&acm->read_lock); mutex_init(&acm->mutex); acm->rx_endpoint = usb_rcvbulkpipe(usb_dev, epread->bEndpointAddress); acm->is_int_ep = usb_endpoint_xfer_int(epread); if (acm->is_int_ep) acm->bInterval = epread->bInterval; tty_port_init(&acm->port); acm->port.ops = &acm_port_ops; buf = usb_alloc_coherent(usb_dev, ctrlsize, GFP_KERNEL, &acm->ctrl_dma); if (!buf) { dev_err(&intf->dev, "out of memory (ctrl buffer alloc)\n"); goto alloc_fail2; } acm->ctrl_buffer = buf; if (acm_write_buffers_alloc(acm) < 0) { dev_err(&intf->dev, "out of memory (write buffer alloc)\n"); goto alloc_fail4; } acm->ctrlurb = usb_alloc_urb(0, GFP_KERNEL); if (!acm->ctrlurb) { dev_err(&intf->dev, "out of memory (ctrlurb kmalloc)\n"); goto alloc_fail5; } for (i = 0; i < num_rx_buf; i++) { struct acm_rb *rb = &(acm->read_buffers[i]); struct urb *urb; rb->base = usb_alloc_coherent(acm->dev, readsize, GFP_KERNEL, &rb->dma); if (!rb->base) { dev_err(&intf->dev, "out of memory " "(read bufs usb_alloc_coherent)\n"); goto alloc_fail6; } rb->index = i; rb->instance = acm; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { dev_err(&intf->dev, "out of memory (read urbs usb_alloc_urb)\n"); goto alloc_fail6; } urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; urb->transfer_dma = rb->dma; if (acm->is_int_ep) { usb_fill_int_urb(urb, acm->dev, acm->rx_endpoint, rb->base, acm->readsize, acm_read_bulk_callback, rb, acm->bInterval); } else { usb_fill_bulk_urb(urb, acm->dev, acm->rx_endpoint, rb->base, acm->readsize, acm_read_bulk_callback, rb); } acm->read_urbs[i] = urb; __set_bit(i, &acm->read_urbs_free); } for (i = 0; i < ACM_NW; i++) { struct acm_wb *snd = &(acm->wb[i]); snd->urb = usb_alloc_urb(0, GFP_KERNEL); if (snd->urb == NULL) { dev_err(&intf->dev, "out of memory (write urbs usb_alloc_urb)\n"); goto alloc_fail7; } if (usb_endpoint_xfer_int(epwrite)) usb_fill_int_urb(snd->urb, usb_dev, usb_sndbulkpipe(usb_dev, epwrite->bEndpointAddress), NULL, acm->writesize, acm_write_bulk, snd, epwrite->bInterval); else usb_fill_bulk_urb(snd->urb, usb_dev, usb_sndbulkpipe(usb_dev, epwrite->bEndpointAddress), NULL, acm->writesize, acm_write_bulk, snd); snd->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; snd->instance = acm; } usb_set_intfdata(intf, acm); i = device_create_file(&intf->dev, &dev_attr_bmCapabilities); if (i < 0) goto alloc_fail7; if (cfd) { acm->country_codes = kmalloc(cfd->bLength - 4, GFP_KERNEL); if (!acm->country_codes) goto skip_countries; acm->country_code_size = cfd->bLength - 4; memcpy(acm->country_codes, (u8 *)&cfd->wCountyCode0, cfd->bLength - 4); acm->country_rel_date = cfd->iCountryCodeRelDate; i = device_create_file(&intf->dev, &dev_attr_wCountryCodes); if (i < 0) { kfree(acm->country_codes); acm->country_codes = NULL; acm->country_code_size = 0; goto skip_countries; } i = device_create_file(&intf->dev, &dev_attr_iCountryCodeRelDate); if (i < 0) { device_remove_file(&intf->dev, &dev_attr_wCountryCodes); kfree(acm->country_codes); acm->country_codes = NULL; acm->country_code_size = 0; goto skip_countries; } } skip_countries: usb_fill_int_urb(acm->ctrlurb, usb_dev, usb_rcvintpipe(usb_dev, epctrl->bEndpointAddress), acm->ctrl_buffer, ctrlsize, acm_ctrl_irq, acm, epctrl->bInterval ? epctrl->bInterval : 0xff); acm->ctrlurb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; acm->ctrlurb->transfer_dma = acm->ctrl_dma; dev_info(&intf->dev, "ttyACM%d: USB ACM device\n", minor); acm_set_control(acm, acm->ctrlout); acm->line.dwDTERate = cpu_to_le32(9600); acm->line.bDataBits = 8; acm_set_line(acm, &acm->line); usb_driver_claim_interface(&acm_driver, data_interface, acm); usb_set_intfdata(data_interface, acm); usb_get_intf(control_interface); tty_register_device(acm_tty_driver, minor, &control_interface->dev); return 0; alloc_fail7: for (i = 0; i < ACM_NW; i++) usb_free_urb(acm->wb[i].urb); alloc_fail6: for (i = 0; i < num_rx_buf; i++) usb_free_urb(acm->read_urbs[i]); acm_read_buffers_free(acm); usb_free_urb(acm->ctrlurb); alloc_fail5: acm_write_buffers_free(acm); alloc_fail4: usb_free_coherent(usb_dev, ctrlsize, acm->ctrl_buffer, acm->ctrl_dma); alloc_fail2: acm_release_minor(acm); kfree(acm); alloc_fail: return -ENOMEM; }
/** * usb_alphatrack_probe * * Called by the usb core when a new device is connected that it thinks * this driver might be interested in. */ static int usb_alphatrack_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_alphatrack *dev = NULL; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; int i; int true_size; int retval = -ENOMEM; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (dev == NULL) goto exit; mutex_init(&dev->mtx); dev->intf = intf; init_waitqueue_head(&dev->read_wait); init_waitqueue_head(&dev->write_wait); iface_desc = intf->cur_altsetting; /* set up the endpoint information */ for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (usb_endpoint_is_int_in(endpoint)) dev->interrupt_in_endpoint = endpoint; if (usb_endpoint_is_int_out(endpoint)) dev->interrupt_out_endpoint = endpoint; } if (dev->interrupt_in_endpoint == NULL) { dev_err(&intf->dev, "Interrupt in endpoint not found\n"); goto error; } if (dev->interrupt_out_endpoint == NULL) dev_warn(&intf->dev, "Interrupt out endpoint not found (using control endpoint instead)\n"); dev->interrupt_in_endpoint_size = le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize); if (dev->interrupt_in_endpoint_size != 64) dev_warn(&intf->dev, "Interrupt in endpoint size is not 64!\n"); if (ring_buffer_size == 0) ring_buffer_size = RING_BUFFER_SIZE; true_size = min(ring_buffer_size, RING_BUFFER_SIZE); /* * FIXME - there are more usb_alloc routines for dma correctness. * Needed? */ dev->ring_buffer = kmalloc_array(true_size, sizeof(struct alphatrack_icmd), GFP_KERNEL); if (!dev->ring_buffer) goto error; dev->interrupt_in_buffer = kmalloc(dev->interrupt_in_endpoint_size, GFP_KERNEL); if (!dev->interrupt_in_buffer) goto error; dev->oldi_buffer = kmalloc(dev->interrupt_in_endpoint_size, GFP_KERNEL); if (!dev->oldi_buffer) goto error; dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_in_urb) { dev_err(&intf->dev, "Couldn't allocate interrupt_in_urb\n"); goto error; } dev->interrupt_out_endpoint_size = dev->interrupt_out_endpoint ? le16_to_cpu(dev-> interrupt_out_endpoint-> wMaxPacketSize) : udev-> descriptor.bMaxPacketSize0; if (dev->interrupt_out_endpoint_size != 64) dev_warn(&intf->dev, "Interrupt out endpoint size is not 64!)\n"); if (write_buffer_size == 0) write_buffer_size = WRITE_BUFFER_SIZE; true_size = min(write_buffer_size, WRITE_BUFFER_SIZE); dev->interrupt_out_buffer = kmalloc_array(true_size, dev->interrupt_out_endpoint_size, GFP_KERNEL); if (!dev->interrupt_out_buffer) goto error; dev->write_buffer = kmalloc_array(true_size, sizeof(struct alphatrack_ocmd), GFP_KERNEL); if (!dev->write_buffer) goto error; dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_out_urb) { dev_err(&intf->dev, "Couldn't allocate interrupt_out_urb\n"); goto error; } dev->interrupt_in_interval = min_interrupt_in_interval > dev->interrupt_in_endpoint-> bInterval ? min_interrupt_in_interval : dev->interrupt_in_endpoint-> bInterval; if (dev->interrupt_out_endpoint) dev->interrupt_out_interval = min_interrupt_out_interval > dev->interrupt_out_endpoint-> bInterval ? min_interrupt_out_interval : dev-> interrupt_out_endpoint->bInterval; /* we can register the device now, as it is ready */ usb_set_intfdata(intf, dev); atomic_set(&dev->writes_pending, 0); retval = usb_register_dev(intf, &usb_alphatrack_class); if (retval) { /* something prevented us from registering this driver */ dev_err(&intf->dev, "Not able to get a minor for this device.\n"); usb_set_intfdata(intf, NULL); goto error; } /* let the user know what node this device is now attached to */ dev_info(&intf->dev, "Alphatrack Device #%d now attached to major %d minor %d\n", (intf->minor - USB_ALPHATRACK_MINOR_BASE), USB_MAJOR, intf->minor); exit: return retval; error: usb_alphatrack_delete(dev); return retval; }