コード例 #1
0
void
initppc(vaddr_t startkernel, vaddr_t endkernel, char *args, void *info_block)
{
	u_int32_t pllmode;
	u_int32_t psr;
	vaddr_t va;
	u_int memsize;

	/* Disable all external interrupts */
	mtdcr(DCR_UIC0_BASE + DCR_UIC_ER, 0);
	pllmode = mfdcr(DCR_CPC0_PLLMR);
	psr = mfdcr(DCR_CPC0_PSR);

	/* Setup board from BIOS */
	bios_board_init(info_block, startkernel);
	memsize = bios_board_memsize_get();

	/* Linear map kernel memory. */
	for (va = 0; va < endkernel; va += TLB_PG_SIZE)
		ppc4xx_tlb_reserve(va, va, TLB_PG_SIZE, TLB_EX);

	/* Map console after physmem (see pmap_tlbmiss()). */
	ppc4xx_tlb_reserve(CONADDR, roundup(memsize, TLB_PG_SIZE), TLB_PG_SIZE,
	    TLB_I | TLB_G);

	/* Initialize IBM405GPr CPU */
	ibm40x_memsize_init(memsize, startkernel);
	ibm4xx_init(startkernel, endkernel, pic_ext_intr);

#ifdef DEBUG
	bios_board_print();
	printf("  PLL Mode Register = 0x%08x\n", pllmode);
	printf("  Chip Pin Strapping Register = 0x%08x\n", psr);
#endif

#ifdef DDB
	if (boothowto & RB_KDB)
		Debugger();
#endif
#ifdef IPKDB
	/*
	 * Now trap to IPKDB
	 */
	ipkdb_init();
	if (boothowto & RB_KDB)
		ipkdb_connect(0);
#endif

	/*
	 * Look for the ibm4xx modules in the right place.
	 */
	module_machine = module_machine_ibm4xx;
}
コード例 #2
0
void
initppc(vaddr_t startkernel, vaddr_t endkernel)
{
	paddr_t			addr, memsize;

        /* Initialize cache info for memcpy, memset, etc. */
        cpu_probe_cache();

	memset(physmemr, 0, sizeof(physmemr)); 		/* [1].size = 0 */
	memset(availmemr, 0, sizeof(availmemr)); 	/* [1].size = 0 */

	memsize = (PHYSMEM * 1024 * 1024) & ~PGOFSET;

	physmemr[0].start 	= 0;
	physmemr[0].size 	= memsize;

	availmemr[0].start 	= startkernel;
	availmemr[0].size 	= memsize - availmemr[0].start;

	/* Map kernel memory linearly. */
	for (addr = 0; addr < endkernel; addr += TLB_PG_SIZE)
		ppc4xx_tlb_reserve(addr, addr, TLB_PG_SIZE, TLB_EX);

	/* Give design-specific code a hint for reserved mappings. */
	virtex_machdep_init(roundup(memsize, TLB_PG_SIZE), TLB_PG_SIZE,
	    physmemr, availmemr);

	ibm4xx_init(startkernel, endkernel, pic_ext_intr);

#ifdef DDB
	if (boothowto & RB_KDB)
		Debugger();
#endif
#ifdef IPKDB
	/*
	 * Now trap to IPKDB
	 */
	ipkdb_init();
	if (boothowto & RB_KDB)
		ipkdb_connect(0);
#endif
#ifdef KGDB
	/*
	 * Now trap to KGDB
	 */
	kgdb_connect(1);
#endif /* KGDB */

	/*
	 * Look for the ibm4xx modules in the right place.
	 */
	module_machine = module_machine_ibm4xx;
}
コード例 #3
0
u_int
at91bus_setup(BootConfig *mem)
{
	int loop;
	int loop1;
	u_int l1pagetable;

	consinit();

#ifdef	VERBOSE_INIT_ARM
	printf("\nNetBSD/AT91 booting ...\n");
#endif

	// setup the CPU / MMU / TLB functions:
	if (set_cpufuncs())
		panic("%s: cpu not recognized", __FUNCTION__);

#ifdef	VERBOSE_INIT_ARM
	printf("%s: configuring system...\n", __FUNCTION__);
#endif

	/*
	 * Setup the variables that define the availability of
	 * physical memory.
	 */
	physical_start = mem->dram[0].address;
	physical_end = mem->dram[0].address + mem->dram[0].pages * PAGE_SIZE;

	physical_freestart = mem->dram[0].address + 0x9000ULL;
	physical_freeend = KERNEL_BASE_PHYS;
	physmem = (physical_end - physical_start) / PAGE_SIZE;

#ifdef	VERBOSE_INIT_ARM
	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
	       physical_start, physical_end - 1);
#endif

	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

#ifdef	VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
	       physical_freestart, free_pages, free_pages);
#endif
	/* Define a macro to simplify memory allocation */
#define	valloc_pages(var, np)				\
	alloc_pages((var).pv_pa, (np));			\
	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;

#define alloc_pages(var, np)				\
	physical_freeend -= ((np) * PAGE_SIZE);		\
	if (physical_freeend < physical_freestart)	\
		panic("initarm: out of memory");	\
	(var) = physical_freeend;			\
	free_pages -= (np);				\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	loop1 = 0;
	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
		/* Are we 16KB aligned for an L1 ? */
		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
		    && kernel_l1pt.pv_pa == 0) {
			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
		} else {
			valloc_pages(kernel_pt_table[loop1],
			    L2_TABLE_SIZE / PAGE_SIZE);
			++loop1;
		}
	}

	/* This should never be able to happen but better confirm that. */
	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
		panic("initarm: Failed to align the kernel page directory");

	/*
	 * Allocate a page for the system vectors page
	 */
	valloc_pages(systempage, 1);
	systempage.pv_va = 0x00000000;

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, UPAGES);

#ifdef VERBOSE_INIT_ARM
	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
	    irqstack.pv_va); 
	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
	    abtstack.pv_va); 
	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
	    undstack.pv_va); 
	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
	    kernelstack.pv_va); 
#endif

	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);

	/*
	 * Ok we have allocated physical pages for the primary kernel
	 * page tables.  Save physical_freeend for when we give whats left 
	 * of memory below 2Mbyte to UVM.
	 */

	physical_freeend_low = physical_freeend;

#ifdef VERBOSE_INIT_ARM
	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif

	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_pa;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]);
	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);

	/* update the top of the kernel VM */
	pmap_curmaxkvaddr =
	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);

#ifdef VERBOSE_INIT_ARM
	printf("Mapping kernel\n");
#endif

	/* Now we fill in the L2 pagetable for the kernel static code/data */
	{
		extern char etext[], _end[];
		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
		u_int logical;

		textsize = (textsize + PGOFSET) & ~PGOFSET;
		totalsize = (totalsize + PGOFSET) & ~PGOFSET;

		logical = KERNEL_BASE_PHYS - mem->dram[0].address;	/* offset of kernel in RAM */
		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, totalsize - textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	}

#ifdef VERBOSE_INIT_ARM
	printf("Constructing L2 page tables\n");
#endif

	/* Map the stack pages */
	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);

	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	}

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa,
		       VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	/* Map the statically mapped devices. */
	pmap_devmap_bootstrap(l1pagetable, at91_devmap());

	/*
	 * Update the physical_freestart/physical_freeend/free_pages
	 * variables.
	 */
	{
		extern char _end[];

		physical_freestart = physical_start +
		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
		     KERNEL_BASE);
		physical_freeend = physical_end;
		free_pages =
		    (physical_freeend - physical_freestart) / PAGE_SIZE;
	}

	/*
	 * Now we have the real page tables in place so we can switch to them.
	 * Once this is done we will be running with the REAL kernel page
	 * tables.
	 */

	/* Switch tables */
#ifdef VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
	       physical_freestart, free_pages, free_pages);
	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
#endif
	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	cpu_setttb(kernel_l1pt.pv_pa, true);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Moved from cpu_startup() as data_abort_handler() references
	 * this during uvm init
	 */
	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);

#ifdef VERBOSE_INIT_ARM
	printf("done!\n");
#endif

#ifdef VERBOSE_INIT_ARM
	printf("bootstrap done.\n");
#endif

	/* @@@@ check this out: @@@ */
	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("init subsystems: stacks ");
#endif

	set_stackptr(PSR_IRQ32_MODE,
	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE,
	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE,
	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

	/*
	 * Well we should set a data abort handler.
	 * Once things get going this will change as we will need a proper
	 * handler.
	 * Until then we will use a handler that just panics but tells us
	 * why.
	 * Initialisation of the vectors will just panic on a data abort.
	 * This just fills in a slightly better one.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("vectors ");
#endif
	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;

	/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
	printf("undefined ");
#endif
	undefined_init();

	/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
	printf("page ");
#endif
	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
	    atop(physical_freestart), atop(physical_freeend),
	    VM_FREELIST_DEFAULT);
	uvm_page_physload(atop(physical_start), atop(physical_freeend_low),
	    atop(physical_start), atop(physical_freeend_low),
	    VM_FREELIST_DEFAULT);

	/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
	printf("pmap ");
#endif
	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);

	/* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
	printf("irq ");
#endif
	at91_intr_init();

#ifdef VERBOSE_INIT_ARM
	printf("done.\n");
#endif

#ifdef BOOTHOWTO
	boothowto = BOOTHOWTO;
#endif
	boothowto = AB_VERBOSE | AB_DEBUG; // @@@@

#ifdef IPKDB
	/* Initialise ipkdb */
	ipkdb_init();
	if (boothowto & RB_KDB)
		ipkdb_connect(0);
#endif

#ifdef DDB
	db_machine_init();
	if (boothowto & RB_KDB)
		Debugger();
#endif
#if 0
	printf("test data abort...\n");
	*((volatile uint32_t*)(0x1234567F)) = 0xdeadbeef;
#endif

#ifdef VERBOSE_INIT_ARM
  	printf("%s: returning new stack pointer 0x%lX\n", __FUNCTION__, (kernelstack.pv_va + USPACE_SVC_STACK_TOP));
#endif

	/* We return the new stack pointer address */
	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}