コード例 #1
0
ファイル: gimple-expr.c プロジェクト: WojciechMigda/gcc
bool
is_gimple_condexpr (tree t)
{
  return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
				&& !tree_could_throw_p (t)
				&& is_gimple_val (TREE_OPERAND (t, 0))
				&& is_gimple_val (TREE_OPERAND (t, 1))));
}
コード例 #2
0
ファイル: gimple-match-head.c プロジェクト: angrysnail/gcc
tree
maybe_push_res_to_seq (code_helper rcode, tree type, tree *ops,
		       gimple_seq *seq, tree res)
{
  if (rcode.is_tree_code ())
    {
      if (!res
	  && (TREE_CODE_LENGTH ((tree_code) rcode) == 0
	      || ((tree_code) rcode) == ADDR_EXPR)
	  && is_gimple_val (ops[0]))
	return ops[0];
      if (!seq)
	return NULL_TREE;
      /* Play safe and do not allow abnormals to be mentioned in
         newly created statements.  */
      if ((TREE_CODE (ops[0]) == SSA_NAME
	   && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[0]))
	  || (ops[1]
	      && TREE_CODE (ops[1]) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[1]))
	  || (ops[2]
	      && TREE_CODE (ops[2]) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[2])))
	return NULL_TREE;
      if (!res)
	res = make_ssa_name (type, NULL);
      maybe_build_generic_op (rcode, type, &ops[0], ops[1], ops[2]);
      gimple new_stmt = gimple_build_assign_with_ops (rcode, res,
						      ops[0], ops[1], ops[2]);
      gimple_seq_add_stmt_without_update (seq, new_stmt);
      return res;
    }
  else
    {
      if (!seq)
	return NULL_TREE;
      tree decl = builtin_decl_implicit (rcode);
      if (!decl)
	return NULL_TREE;
      unsigned nargs = type_num_arguments (TREE_TYPE (decl));
      gcc_assert (nargs <= 3);
      /* Play safe and do not allow abnormals to be mentioned in
         newly created statements.  */
      if ((TREE_CODE (ops[0]) == SSA_NAME
	   && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[0]))
	  || (nargs >= 2
	      && TREE_CODE (ops[1]) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[1]))
	  || (nargs == 3
	      && TREE_CODE (ops[2]) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[2])))
	return NULL_TREE;
      if (!res)
	res = make_ssa_name (type, NULL);
      gimple new_stmt = gimple_build_call (decl, nargs, ops[0], ops[1], ops[2]);
      gimple_call_set_lhs (new_stmt, res);
      gimple_seq_add_stmt_without_update (seq, new_stmt);
      return res;
    }
}
コード例 #3
0
ファイル: gimple-expr.c プロジェクト: WojciechMigda/gcc
bool
is_gimple_asm_val (tree t)
{
  if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
    return true;

  return is_gimple_val (t);
}
コード例 #4
0
ファイル: tree-gimple.c プロジェクト: AhmadTux/DragonFlyBSD
bool
is_gimple_mem_rhs (tree t)
{
  /* If we're dealing with a renamable type, either source or dest must be
     a renamed variable.  Also force a temporary if the type doesn't need
     to be stored in memory, since it's cheap and prevents erroneous
     tailcalls (PR 17526).  */
  if (is_gimple_reg_type (TREE_TYPE (t))
      || TYPE_MODE (TREE_TYPE (t)) != BLKmode)
    return is_gimple_val (t);
  else
    return is_gimple_formal_tmp_rhs (t);
}
コード例 #5
0
ファイル: gimplify-me.c プロジェクト: Nodplus/gcc
tree
force_gimple_operand_1 (tree expr, gimple_seq *stmts,
                        gimple_predicate gimple_test_f, tree var)
{
    enum gimplify_status ret;
    location_t saved_location;

    *stmts = NULL;

    /* gimple_test_f might be more strict than is_gimple_val, make
       sure we pass both.  Just checking gimple_test_f doesn't work
       because most gimple predicates do not work recursively.  */
    if (is_gimple_val (expr)
            && (*gimple_test_f) (expr))
        return expr;

    push_gimplify_context (gimple_in_ssa_p (cfun), true);
    saved_location = input_location;
    input_location = UNKNOWN_LOCATION;

    if (var)
    {
        if (gimple_in_ssa_p (cfun) && is_gimple_reg (var))
            var = make_ssa_name (var, NULL);
        expr = build2 (MODIFY_EXPR, TREE_TYPE (var), var, expr);
    }

    if (TREE_CODE (expr) != MODIFY_EXPR
            && TREE_TYPE (expr) == void_type_node)
    {
        gimplify_and_add (expr, stmts);
        expr = NULL_TREE;
    }
    else
    {
        ret = gimplify_expr (&expr, stmts, NULL, gimple_test_f, fb_rvalue);
        gcc_assert (ret != GS_ERROR);
    }

    input_location = saved_location;
    pop_gimplify_context (NULL);

    return expr;
}
コード例 #6
0
ファイル: tree-gimple.c プロジェクト: 5432935/crossbridge
bool
is_gimple_formal_tmp_rhs (tree t)
{
  enum tree_code code = TREE_CODE (t);

  switch (TREE_CODE_CLASS (code))
    {
    case tcc_unary:
    case tcc_binary:
    case tcc_comparison:
      return true;

    default:
      break;
    }

  switch (code)
    {
    case TRUTH_NOT_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
    case ADDR_EXPR:
    case CALL_EXPR:
    case CONSTRUCTOR:
    case COMPLEX_EXPR:
    case INTEGER_CST:
    case REAL_CST:
    case STRING_CST:
    case COMPLEX_CST:
    case VECTOR_CST:
    case OBJ_TYPE_REF:
    case ASSERT_EXPR:
      return true;

    default:
      break;
    }

  return is_gimple_lvalue (t) || is_gimple_val (t);
}
コード例 #7
0
ファイル: gimple-expr.c プロジェクト: WojciechMigda/gcc
bool
is_gimple_address (const_tree t)
{
  tree op;

  if (TREE_CODE (t) != ADDR_EXPR)
    return false;

  op = TREE_OPERAND (t, 0);
  while (handled_component_p (op))
    {
      if ((TREE_CODE (op) == ARRAY_REF
	   || TREE_CODE (op) == ARRAY_RANGE_REF)
	  && !is_gimple_val (TREE_OPERAND (op, 1)))
	    return false;

      op = TREE_OPERAND (op, 0);
    }

  if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
    return true;

  switch (TREE_CODE (op))
    {
    case PARM_DECL:
    case RESULT_DECL:
    case LABEL_DECL:
    case FUNCTION_DECL:
    case VAR_DECL:
    case CONST_DECL:
      return true;

    default:
      return false;
    }
}
コード例 #8
0
ファイル: tree-mudflap.c プロジェクト: ChaosJohn/gcc
/* Synthesize a CALL_EXPR and a TRY_FINALLY_EXPR, for this chain of
   _DECLs if appropriate.  Arrange to call the __mf_register function
   now, and the __mf_unregister function later for each.  Return the
   gimple sequence after synthesis.  */
gimple_seq
mx_register_decls (tree decl, gimple_seq seq, location_t location)
{
  gimple_seq finally_stmts = NULL;
  gimple_stmt_iterator initially_stmts = gsi_start (seq);

  while (decl != NULL_TREE)
    {
      if (mf_decl_eligible_p (decl)
          /* Not already processed.  */
          && ! mf_marked_p (decl)
          /* Automatic variable.  */
          && ! DECL_EXTERNAL (decl)
          && ! TREE_STATIC (decl))
        {
          tree size = NULL_TREE, variable_name;
          gimple unregister_fncall, register_fncall;
	  tree unregister_fncall_param, register_fncall_param;

	  /* Variable-sized objects should have sizes already been
	     gimplified when we got here. */
	  size = fold_convert (size_type_node,
			       TYPE_SIZE_UNIT (TREE_TYPE (decl)));
	  gcc_assert (is_gimple_val (size));


          unregister_fncall_param =
	    mf_mark (build1 (ADDR_EXPR,
			     build_pointer_type (TREE_TYPE (decl)),
			     decl));
          /* __mf_unregister (&VARIABLE, sizeof (VARIABLE), __MF_TYPE_STACK) */
          unregister_fncall = gimple_build_call (mf_unregister_fndecl, 3,
						 unregister_fncall_param,
						 size,
						 integer_three_node);


          variable_name = mf_varname_tree (decl);
          register_fncall_param =
	    mf_mark (build1 (ADDR_EXPR,
			     build_pointer_type (TREE_TYPE (decl)),
			     decl));
          /* __mf_register (&VARIABLE, sizeof (VARIABLE), __MF_TYPE_STACK,
	                    "name") */
	  register_fncall = gimple_build_call (mf_register_fndecl, 4,
					       register_fncall_param,
					       size,
					       integer_three_node,
					       variable_name);


          /* Accumulate the two calls.  */
	  gimple_set_location (register_fncall, location);
	  gimple_set_location (unregister_fncall, location);

          /* Add the __mf_register call at the current appending point.  */
          if (gsi_end_p (initially_stmts))
	    {
	      if (!mf_artificial (decl))
		warning (OPT_Wmudflap,
			 "mudflap cannot track %qE in stub function",
			 DECL_NAME (decl));
	    }
	  else
	    {
	      gsi_insert_before (&initially_stmts, register_fncall,
				 GSI_SAME_STMT);

	      /* Accumulate the FINALLY piece.  */
	      gimple_seq_add_stmt (&finally_stmts, unregister_fncall);
	    }
          mf_mark (decl);
        }

      decl = DECL_CHAIN (decl);
    }

  /* Actually, (initially_stmts!=NULL) <=> (finally_stmts!=NULL) */
  if (finally_stmts != NULL)
    {
      gimple stmt = gimple_build_try (seq, finally_stmts, GIMPLE_TRY_FINALLY);
      gimple_seq new_seq = NULL;

      gimple_seq_add_stmt (&new_seq, stmt);
      return new_seq;
    }
   else
    return seq;
}
コード例 #9
0
ファイル: gimple-expr.c プロジェクト: WojciechMigda/gcc
bool
is_gimple_call_addr (tree t)
{
  return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
}
コード例 #10
0
tree
create_mem_ref (gimple_stmt_iterator *gsi, tree type, aff_tree *addr,
		tree alias_ptr_type, tree iv_cand, tree base_hint, bool speed)
{
  tree mem_ref, tmp;
  struct mem_address parts;

  addr_to_parts (type, addr, iv_cand, base_hint, &parts, speed);
  gimplify_mem_ref_parts (gsi, &parts);
  mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts, true);
  if (mem_ref)
    return mem_ref;

  /* The expression is too complicated.  Try making it simpler.  */

  if (parts.step && !integer_onep (parts.step))
    {
      /* Move the multiplication to index.  */
      gcc_assert (parts.index);
      parts.index = force_gimple_operand_gsi (gsi,
				fold_build2 (MULT_EXPR, sizetype,
					     parts.index, parts.step),
				true, NULL_TREE, true, GSI_SAME_STMT);
      parts.step = NULL_TREE;

      mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts, true);
      if (mem_ref)
	return mem_ref;
    }

  if (parts.symbol)
    {
      tmp = parts.symbol;
      gcc_assert (is_gimple_val (tmp));

      /* Add the symbol to base, eventually forcing it to register.  */
      if (parts.base)
	{
	  gcc_assert (useless_type_conversion_p
				(sizetype, TREE_TYPE (parts.base)));

	  if (parts.index)
	    {
	      parts.base = force_gimple_operand_gsi_1 (gsi,
			fold_build_pointer_plus (tmp, parts.base),
			is_gimple_mem_ref_addr, NULL_TREE, true, GSI_SAME_STMT);
	    }
	  else
	    {
	      parts.index = parts.base;
	      parts.base = tmp;
	    }
	}
      else
	parts.base = tmp;
      parts.symbol = NULL_TREE;

      mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts, true);
      if (mem_ref)
	return mem_ref;
    }

  if (parts.index)
    {
      /* Add index to base.  */
      if (parts.base)
	{
	  parts.base = force_gimple_operand_gsi_1 (gsi,
			fold_build_pointer_plus (parts.base, parts.index),
			is_gimple_mem_ref_addr, NULL_TREE, true, GSI_SAME_STMT);
	}
      else
	parts.base = parts.index;
      parts.index = NULL_TREE;

      mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts, true);
      if (mem_ref)
	return mem_ref;
    }

  if (parts.offset && !integer_zerop (parts.offset))
    {
      /* Try adding offset to base.  */
      if (parts.base)
	{
	  parts.base = force_gimple_operand_gsi_1 (gsi,
			fold_build_pointer_plus (parts.base, parts.offset),
			is_gimple_mem_ref_addr, NULL_TREE, true, GSI_SAME_STMT);
	}
      else
	parts.base = parts.offset;

      parts.offset = NULL_TREE;

      mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts, true);
      if (mem_ref)
	return mem_ref;
    }

  /* Verify that the address is in the simplest possible shape
     (only a register).  If we cannot create such a memory reference,
     something is really wrong.  */
  gcc_assert (parts.symbol == NULL_TREE);
  gcc_assert (parts.index == NULL_TREE);
  gcc_assert (!parts.step || integer_onep (parts.step));
  gcc_assert (!parts.offset || integer_zerop (parts.offset));
  gcc_unreachable ();
}
コード例 #11
0
ファイル: tree-gimple.c プロジェクト: 5432935/crossbridge
bool
is_gimple_condexpr (tree t)
{
  return (is_gimple_val (t) || COMPARISON_CLASS_P (t));
}
コード例 #12
0
ファイル: plugin_lbc.c プロジェクト: sdzahed/LBC-Plugin
/* Synthesize a CALL_EXPR and a TRY_FINALLY_EXPR, for this chain of
   _DECLs if appropriate.  Arrange to call the __mf_register function
   now, and the __mf_unregister function later for each.  Return the
   gimple sequence after synthesis.  */
gimple_seq
mx_register_decls (tree decl, gimple_seq seq, gimple stmt, location_t location, bool func_args)
{
    gimple_seq finally_stmts = NULL;
    gimple_stmt_iterator initially_stmts = gsi_start (seq);
    bool sframe_inserted = false;
    size_t front_rz_size, rear_rz_size;
    tree fsize, rsize, size;
    gimple uninit_fncall_front, uninit_fncall_rear, init_fncall_front, \
        init_fncall_rear, init_assign_stmt;
    tree fncall_param_front, fncall_param_rear;
    int map_ret;

    while (decl != NULL_TREE)
    {
        if ((mf_decl_eligible_p (decl) || TREE_CODE(TREE_TYPE(decl)) == ARRAY_TYPE)
                /* Not already processed.  */
                && ! mf_marked_p (decl)
                /* Automatic variable.  */
                && ! DECL_EXTERNAL (decl)
                && ! TREE_STATIC (decl)
                && get_name(decl))
        {
            DEBUGLOG("DEBUG Instrumenting %s is_complete_type %d\n", IDENTIFIER_POINTER(DECL_NAME(decl)), COMPLETE_TYPE_P(decl));

            /* construct a tree corresponding to the type struct{
               unsigned int rz_front[6U];
               original variable
               unsigned int rz_rear[6U];
               };
             */

            if (!sframe_inserted){
                gimple ensure_fn_call = gimple_build_call (lbc_ensure_sframe_bitmap_fndecl, 0);
                gimple_set_location (ensure_fn_call, location);
                gsi_insert_before (&initially_stmts, ensure_fn_call, GSI_SAME_STMT);

                sframe_inserted = true;
            }

            // Calculate the zone sizes
            size_t element_size = 0, request_size = 0;
            if (COMPLETE_TYPE_P(decl)){
                request_size = TREE_INT_CST_LOW(TYPE_SIZE_UNIT(TREE_TYPE(decl)));
                if (TREE_CODE(TREE_TYPE(decl)) == ARRAY_TYPE)
                    element_size = TREE_INT_CST_LOW(TYPE_SIZE_UNIT(TREE_TYPE(TREE_TYPE(decl))));
                else
                    element_size = request_size;
            }
            calculate_zone_sizes(element_size, request_size, /*global*/ false, COMPLETE_TYPE_P(decl), &front_rz_size, &rear_rz_size);
            DEBUGLOG("DEBUG *SIZES* req_size %u, ele_size %u, fsize %u, rsize %u\n", request_size, element_size, front_rz_size, rear_rz_size);
			
            tree struct_type = create_struct_type(decl, front_rz_size, rear_rz_size);
            tree struct_var = create_struct_var(struct_type, decl, location);
            declare_vars(struct_var, stmt, 0);

			/* Inserting into hashtable */
            PWord_t PV;
            JSLI(PV, decl_map, mf_varname_tree(decl));
            gcc_assert(PV);
            *PV = (PWord_t) struct_var;

            fsize = convert (unsigned_type_node, size_int(front_rz_size));
            gcc_assert (is_gimple_val (fsize));

            tree rz_front = TYPE_FIELDS(struct_type);
            fncall_param_front = mf_mark (build1 (ADDR_EXPR, ptr_type_node, build3 (COMPONENT_REF, TREE_TYPE(rz_front),
                                                      struct_var, rz_front, NULL_TREE)));
            uninit_fncall_front = gimple_build_call (lbc_uninit_front_rz_fndecl, 2, fncall_param_front, fsize);
            init_fncall_front = gimple_build_call (lbc_init_front_rz_fndecl, 2, fncall_param_front, fsize);
            gimple_set_location (init_fncall_front, location);
            gimple_set_location (uninit_fncall_front, location);

            // In complete types have only a front red zone
            if (COMPLETE_TYPE_P(decl)){
                rsize = convert (unsigned_type_node, size_int(rear_rz_size));
                gcc_assert (is_gimple_val (rsize));

                tree rz_rear = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS (struct_type)));
                fncall_param_rear = mf_mark (build1 (ADDR_EXPR, ptr_type_node, build3 (COMPONENT_REF, TREE_TYPE(rz_rear),
                                struct_var, rz_rear, NULL_TREE)));
                init_fncall_rear = gimple_build_call (lbc_init_rear_rz_fndecl, 2, fncall_param_rear, rsize);
                uninit_fncall_rear = gimple_build_call (lbc_uninit_rear_rz_fndecl, 2, fncall_param_rear, rsize);
                gimple_set_location (init_fncall_rear, location);
                gimple_set_location (uninit_fncall_rear, location);
            }

            // TODO Do I need this?
#if 0
            if (DECL_INITIAL(decl) != NULL_TREE){
                // This code never seems to be getting executed for somehting like int i = 10;
                // I have no idea why? But looking at the tree dump, seems like its because
                // by the time it gets here, these kind of statements are split into two statements
                // as int i; and i = 10; respectively. I am leaving it in just in case.
                tree orig_var_type = DECL_CHAIN(TYPE_FIELDS (struct_type));
                tree orig_var_lval = mf_mark (build3 (COMPONENT_REF, TREE_TYPE(orig_var_type),
                                        struct_var, orig_var_type, NULL_TREE));
                init_assign_stmt = gimple_build_assign(orig_var_lval, DECL_INITIAL(decl));
                gimple_set_location (init_assign_stmt, location);
            }
#endif

            if (gsi_end_p (initially_stmts))
            {
                // TODO handle this
                if (!DECL_ARTIFICIAL (decl))
                    warning (OPT_Wmudflap,
                            "mudflap cannot track %qE in stub function",
                            DECL_NAME (decl));
            }
            else
            {
#if 0
                // Insert the declaration initializer
                if (DECL_INITIAL(decl) != NULL_TREE)
                    gsi_insert_before (&initially_stmts, init_assign_stmt, GSI_SAME_STMT);
#endif

                //gsi_insert_before (&initially_stmts, register_fncall, GSI_SAME_STMT);
                gsi_insert_before (&initially_stmts, init_fncall_front, GSI_SAME_STMT);
                if (COMPLETE_TYPE_P(decl))
                    gsi_insert_before (&initially_stmts, init_fncall_rear, GSI_SAME_STMT);

                /* Accumulate the FINALLY piece.  */
                //gimple_seq_add_stmt (&finally_stmts, unregister_fncall);
                gimple_seq_add_stmt (&finally_stmts, uninit_fncall_front);
                if (COMPLETE_TYPE_P(decl))
                    gimple_seq_add_stmt (&finally_stmts, uninit_fncall_rear);

            }
            mf_mark (decl);
        }

        decl = DECL_CHAIN (decl);
    }

    /* Actually, (initially_stmts!=NULL) <=> (finally_stmts!=NULL) */
    if (finally_stmts != NULL)
    {
        gimple stmt = gimple_build_try (seq, finally_stmts, GIMPLE_TRY_FINALLY);
        gimple_seq new_seq = gimple_seq_alloc ();

        gimple_seq_add_stmt (&new_seq, stmt);
        return new_seq;
    }
    else
        return seq;
}
コード例 #13
0
static tree
forward_propagate_into_cond_1 (tree cond, tree *test_var_p)
{
  tree new_cond = NULL_TREE;
  enum tree_code cond_code = TREE_CODE (cond);
  tree test_var = NULL_TREE;
  tree def;
  tree def_rhs;

  /* If the condition is not a lone variable or an equality test of an
     SSA_NAME against an integral constant, then we do not have an
     optimizable case.

     Note these conditions also ensure the COND_EXPR has no
     virtual operands or other side effects.  */
  if (cond_code != SSA_NAME
      && !((cond_code == EQ_EXPR || cond_code == NE_EXPR)
	   && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
	   && CONSTANT_CLASS_P (TREE_OPERAND (cond, 1))
	   && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
    return NULL_TREE;

  /* Extract the single variable used in the test into TEST_VAR.  */
  if (cond_code == SSA_NAME)
    test_var = cond;
  else
    test_var = TREE_OPERAND (cond, 0);

  /* Now get the defining statement for TEST_VAR.  Skip this case if
     it's not defined by some MODIFY_EXPR.  */
  def = SSA_NAME_DEF_STMT (test_var);
  if (TREE_CODE (def) != MODIFY_EXPR)
    return NULL_TREE;

  def_rhs = TREE_OPERAND (def, 1);

  /* If TEST_VAR is set by adding or subtracting a constant
     from an SSA_NAME, then it is interesting to us as we
     can adjust the constant in the conditional and thus
     eliminate the arithmetic operation.  */
  if (TREE_CODE (def_rhs) == PLUS_EXPR
      || TREE_CODE (def_rhs) == MINUS_EXPR)
    {
      tree op0 = TREE_OPERAND (def_rhs, 0);
      tree op1 = TREE_OPERAND (def_rhs, 1);

      /* The first operand must be an SSA_NAME and the second
	 operand must be a constant.  */
      if (TREE_CODE (op0) != SSA_NAME
	  || !CONSTANT_CLASS_P (op1)
	  || !INTEGRAL_TYPE_P (TREE_TYPE (op1)))
	return NULL_TREE;

      /* Don't propagate if the first operand occurs in
	 an abnormal PHI.  */
      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
	return NULL_TREE;

      if (has_single_use (test_var))
	{
	  enum tree_code new_code;
	  tree t;

	  /* If the variable was defined via X + C, then we must
	     subtract C from the constant in the conditional.
	     Otherwise we add C to the constant in the
	     conditional.  The result must fold into a valid
	     gimple operand to be optimizable.  */
	  new_code = (TREE_CODE (def_rhs) == PLUS_EXPR
		      ? MINUS_EXPR : PLUS_EXPR);
	  t = int_const_binop (new_code, TREE_OPERAND (cond, 1), op1, 0);
	  if (!is_gimple_val (t))
	    return NULL_TREE;

	  new_cond = build (cond_code, boolean_type_node, op0, t);
	}
    }

  /* These cases require comparisons of a naked SSA_NAME or
     comparison of an SSA_NAME against zero or one.  */
  else if (TREE_CODE (cond) == SSA_NAME
	   || integer_zerop (TREE_OPERAND (cond, 1))
	   || integer_onep (TREE_OPERAND (cond, 1)))
    {
      /* If TEST_VAR is set from a relational operation
	 between two SSA_NAMEs or a combination of an SSA_NAME
	 and a constant, then it is interesting.  */
      if (COMPARISON_CLASS_P (def_rhs))
	{
	  tree op0 = TREE_OPERAND (def_rhs, 0);
	  tree op1 = TREE_OPERAND (def_rhs, 1);

	  /* Both operands of DEF_RHS must be SSA_NAMEs or
	     constants.  */
	  if ((TREE_CODE (op0) != SSA_NAME
	       && !is_gimple_min_invariant (op0))
	      || (TREE_CODE (op1) != SSA_NAME
		  && !is_gimple_min_invariant (op1)))
	    return NULL_TREE;

	  /* Don't propagate if the first operand occurs in
	     an abnormal PHI.  */
	  if (TREE_CODE (op0) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
	    return NULL_TREE;

	  /* Don't propagate if the second operand occurs in
	     an abnormal PHI.  */
	  if (TREE_CODE (op1) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))
	    return NULL_TREE;

	  if (has_single_use (test_var))
	    {
	      /* TEST_VAR was set from a relational operator.  */
	      new_cond = build (TREE_CODE (def_rhs),
				boolean_type_node, op0, op1);

	      /* Invert the conditional if necessary.  */
	      if ((cond_code == EQ_EXPR
		   && integer_zerop (TREE_OPERAND (cond, 1)))
		  || (cond_code == NE_EXPR
		      && integer_onep (TREE_OPERAND (cond, 1))))
		{
		  new_cond = invert_truthvalue (new_cond);

		  /* If we did not get a simple relational
		     expression or bare SSA_NAME, then we can
		     not optimize this case.  */
		  if (!COMPARISON_CLASS_P (new_cond)
		      && TREE_CODE (new_cond) != SSA_NAME)
		    new_cond = NULL_TREE;
		}
	    }
	}

      /* If TEST_VAR is set from a TRUTH_NOT_EXPR, then it
	 is interesting.  */
      else if (TREE_CODE (def_rhs) == TRUTH_NOT_EXPR)
	{
	  enum tree_code new_code;

	  def_rhs = TREE_OPERAND (def_rhs, 0);

	  /* DEF_RHS must be an SSA_NAME or constant.  */
	  if (TREE_CODE (def_rhs) != SSA_NAME
	      && !is_gimple_min_invariant (def_rhs))
	    return NULL_TREE;

	  /* Don't propagate if the operand occurs in
	     an abnormal PHI.  */
	  if (TREE_CODE (def_rhs) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def_rhs))
	    return NULL_TREE;

	  if (cond_code == SSA_NAME
	      || (cond_code == NE_EXPR
		  && integer_zerop (TREE_OPERAND (cond, 1)))
	      || (cond_code == EQ_EXPR
		  && integer_onep (TREE_OPERAND (cond, 1))))
	    new_code = EQ_EXPR;
	  else
	    new_code = NE_EXPR;

	  new_cond = build2 (new_code, boolean_type_node, def_rhs,
			     fold_convert (TREE_TYPE (def_rhs),
					   integer_zero_node));
	}

      /* If TEST_VAR was set from a cast of an integer type
	 to a boolean type or a cast of a boolean to an
	 integral, then it is interesting.  */
      else if (TREE_CODE (def_rhs) == NOP_EXPR
	       || TREE_CODE (def_rhs) == CONVERT_EXPR)
	{
	  tree outer_type;
	  tree inner_type;

	  outer_type = TREE_TYPE (def_rhs);
	  inner_type = TREE_TYPE (TREE_OPERAND (def_rhs, 0));

	  if ((TREE_CODE (outer_type) == BOOLEAN_TYPE
	       && INTEGRAL_TYPE_P (inner_type))
	      || (TREE_CODE (inner_type) == BOOLEAN_TYPE
		  && INTEGRAL_TYPE_P (outer_type)))
	    ;
	  else if (INTEGRAL_TYPE_P (outer_type)
		   && INTEGRAL_TYPE_P (inner_type)
		   && TREE_CODE (TREE_OPERAND (def_rhs, 0)) == SSA_NAME
		   && ssa_name_defined_by_comparison_p (TREE_OPERAND (def_rhs,
								      0)))
	    ;
	  else
	    return NULL_TREE;

	  /* Don't propagate if the operand occurs in
	     an abnormal PHI.  */
	  if (TREE_CODE (TREE_OPERAND (def_rhs, 0)) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (TREE_OPERAND
						  (def_rhs, 0)))
	    return NULL_TREE;

	  if (has_single_use (test_var))
	    {
	      enum tree_code new_code;
	      tree new_arg;

	      if (cond_code == SSA_NAME
		  || (cond_code == NE_EXPR
		      && integer_zerop (TREE_OPERAND (cond, 1)))
		  || (cond_code == EQ_EXPR
		      && integer_onep (TREE_OPERAND (cond, 1))))
		new_code = NE_EXPR;
	      else
		new_code = EQ_EXPR;

	      new_arg = TREE_OPERAND (def_rhs, 0);
	      new_cond = build2 (new_code, boolean_type_node, new_arg,
				 fold_convert (TREE_TYPE (new_arg),
					       integer_zero_node));
	    }
	}
    }

  *test_var_p = test_var;
  return new_cond;
}
コード例 #14
0
static void
substitute_single_use_vars (varray_type *cond_worklist,
			    varray_type vars_worklist)
{
  while (VARRAY_ACTIVE_SIZE (vars_worklist) > 0)
    {
      tree test_var = VARRAY_TOP_TREE (vars_worklist);
      tree def = SSA_NAME_DEF_STMT (test_var);
      dataflow_t df;
      int j, num_uses, propagated_uses;

      VARRAY_POP (vars_worklist);

      /* Now compute the immediate uses of TEST_VAR.  */
      df = get_immediate_uses (def);
      num_uses = num_immediate_uses (df);
      propagated_uses = 0;

      /* If TEST_VAR is used more than once and is not a boolean set
	 via TRUTH_NOT_EXPR with another SSA_NAME as its argument, then
	 we can not optimize.  */
      if (num_uses == 1
	  || (TREE_CODE (TREE_TYPE (test_var)) == BOOLEAN_TYPE
	      && TREE_CODE (TREE_OPERAND (def, 1)) == TRUTH_NOT_EXPR
	      && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (def, 1), 0))
		  == SSA_NAME)))
	;
      else
	continue;

      /* Walk over each use and try to forward propagate the RHS of
	 DEF into the use.  */
      for (j = 0; j < num_uses; j++)
	{
	  tree cond_stmt;
	  tree cond;
	  enum tree_code cond_code;
	  tree def_rhs;
	  enum tree_code def_rhs_code;
	  tree new_cond;

	  cond_stmt = immediate_use (df, j);

	  /* For now we can only propagate into COND_EXPRs.  */
	  if (TREE_CODE (cond_stmt) != COND_EXPR) 
	    continue;

	  cond = COND_EXPR_COND (cond_stmt);
	  cond_code = TREE_CODE (cond);
	  def_rhs = TREE_OPERAND (def, 1);
	  def_rhs_code = TREE_CODE (def_rhs);

	  /* If the definition of the single use variable was from an
	     arithmetic operation, then we just need to adjust the
	     constant in the COND_EXPR_COND and update the variable tested.  */
	  if (def_rhs_code == PLUS_EXPR || def_rhs_code == MINUS_EXPR)
	    {
	      tree op0 = TREE_OPERAND (def_rhs, 0);
	      tree op1 = TREE_OPERAND (def_rhs, 1);
	      enum tree_code new_code;
	      tree t;

	      /* If the variable was defined via X + C, then we must subtract
		 C from the constant in the conditional.  Otherwise we add
		 C to the constant in the conditional.  The result must fold
		 into a valid gimple operand to be optimizable.  */
	      new_code = def_rhs_code == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
	      t = int_const_binop (new_code, TREE_OPERAND (cond, 1), op1, 0);
	      if (!is_gimple_val (t))
		continue;

	      new_cond = build (cond_code, boolean_type_node, op0, t);
	    }
	  /* If the variable is defined by a conditional expression... */
	  else if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
	    {
	      /* TEST_VAR was set from a relational operator.  */
	      tree op0 = TREE_OPERAND (def_rhs, 0);
	      tree op1 = TREE_OPERAND (def_rhs, 1);

	      new_cond = build (def_rhs_code, boolean_type_node, op0, op1);

	      /* Invert the conditional if necessary.  */
	      if ((cond_code == EQ_EXPR
		   && integer_zerop (TREE_OPERAND (cond, 1)))
		  || (cond_code == NE_EXPR
		      && integer_onep (TREE_OPERAND (cond, 1))))
		{
		  new_cond = invert_truthvalue (new_cond);

		  /* If we did not get a simple relational expression or
		     bare SSA_NAME, then we can not optimize this case.  */
		  if (!COMPARISON_CLASS_P (new_cond)
		      && TREE_CODE (new_cond) != SSA_NAME)
		    continue;
		}
	    }
	  else
	    {
	      bool invert = false;
	      enum tree_code new_code;
	      tree new_arg;

	      /* TEST_VAR was set from a TRUTH_NOT_EXPR or a NOP_EXPR.  */
	      if (def_rhs_code == TRUTH_NOT_EXPR)
		invert = true;
      
	      /* If we don't have <NE_EXPR/EQ_EXPR x INT_CST>, then we cannot
	         optimize this case.  */
	      if ((cond_code == NE_EXPR || cond_code == EQ_EXPR)
	          && TREE_CODE (TREE_OPERAND (cond, 1)) != INTEGER_CST)
		continue;
		
	      if (cond_code == SSA_NAME
		  || (cond_code == NE_EXPR
		      && integer_zerop (TREE_OPERAND (cond, 1)))
		  || (cond_code == EQ_EXPR
		      && integer_onep (TREE_OPERAND (cond, 1))))
		new_code = NE_EXPR;
	      else
		new_code = EQ_EXPR;

	      if (invert)
		new_code = (new_code == EQ_EXPR ? NE_EXPR  : EQ_EXPR);

	      new_arg = TREE_OPERAND (def_rhs, 0);
	      new_cond = build2 (new_code, boolean_type_node, new_arg,
				 fold_convert (TREE_TYPE (new_arg),
					       integer_zero_node));
	    }

	  /* Dump details.  */
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "  Replaced '");
	      print_generic_expr (dump_file, cond, dump_flags);
	      fprintf (dump_file, "' with '");
	      print_generic_expr (dump_file, new_cond, dump_flags);
	      fprintf (dump_file, "'\n");
	    }

	  /* Replace the condition.  */
	  COND_EXPR_COND (cond_stmt) = new_cond;
	  modify_stmt (cond_stmt);
	  propagated_uses++;
	  VARRAY_PUSH_TREE (*cond_worklist, cond_stmt);
	}

      /* If we propagated into all the uses, then we can delete DEF.
	 Unfortunately, we have to find the defining statement in
	 whatever block it might be in.  */
      if (num_uses && num_uses == propagated_uses)
	{
	  block_stmt_iterator bsi = bsi_for_stmt (def);
	  bsi_remove (&bsi);
	}
    }
}