static Port * open_port(Process* p, Eterm name, Eterm settings, int *err_typep, int *err_nump) { Sint i; Eterm option; Uint arity; Eterm* tp; Uint* nargs; erts_driver_t* driver; char* name_buf = NULL; SysDriverOpts opts; Sint linebuf; Eterm edir = NIL; byte dir[MAXPATHLEN]; erts_aint32_t sflgs = 0; Port *port; /* These are the defaults */ opts.packet_bytes = 0; opts.use_stdio = 1; opts.redir_stderr = 0; opts.read_write = 0; opts.hide_window = 0; opts.wd = NULL; opts.envir = NULL; opts.exit_status = 0; opts.overlapped_io = 0; opts.spawn_type = ERTS_SPAWN_ANY; opts.argv = NULL; opts.parallelism = erts_port_parallelism; linebuf = 0; *err_nump = 0; if (is_not_list(settings) && is_not_nil(settings)) { goto badarg; } /* * Parse the settings. */ if (is_not_nil(settings)) { nargs = list_val(settings); while (1) { if (is_tuple_arity(*nargs, 2)) { tp = tuple_val(*nargs); arity = *tp++; option = *tp++; if (option == am_packet) { if (is_not_small(*tp)) { goto badarg; } opts.packet_bytes = signed_val(*tp); switch (opts.packet_bytes) { case 1: case 2: case 4: break; default: goto badarg; } } else if (option == am_line) { if (is_not_small(*tp)) { goto badarg; } linebuf = signed_val(*tp); if (linebuf <= 0) { goto badarg; } } else if (option == am_env) { byte* bytes; if ((bytes = convert_environment(p, *tp)) == NULL) { goto badarg; } opts.envir = (char *) bytes; } else if (option == am_args) { char **av; char **oav = opts.argv; if ((av = convert_args(*tp)) == NULL) { goto badarg; } opts.argv = av; if (oav) { opts.argv[0] = oav[0]; oav[0] = erts_default_arg0; free_args(oav); } } else if (option == am_arg0) { char *a0; if ((a0 = erts_convert_filename_to_native(*tp, NULL, 0, ERTS_ALC_T_TMP, 1, 1, NULL)) == NULL) { goto badarg; } if (opts.argv == NULL) { opts.argv = erts_alloc(ERTS_ALC_T_TMP, 2 * sizeof(char **)); opts.argv[0] = a0; opts.argv[1] = NULL; } else { if (opts.argv[0] != erts_default_arg0) { erts_free(ERTS_ALC_T_TMP, opts.argv[0]); } opts.argv[0] = a0; } } else if (option == am_cd) { edir = *tp; } else if (option == am_parallelism) { if (*tp == am_true) opts.parallelism = 1; else if (*tp == am_false) opts.parallelism = 0; else goto badarg; } else { goto badarg; } } else if (*nargs == am_stream) { opts.packet_bytes = 0; } else if (*nargs == am_use_stdio) { opts.use_stdio = 1; } else if (*nargs == am_stderr_to_stdout) { opts.redir_stderr = 1; } else if (*nargs == am_line) { linebuf = 512; } else if (*nargs == am_nouse_stdio) { opts.use_stdio = 0; } else if (*nargs == am_binary) { sflgs |= ERTS_PORT_SFLG_BINARY_IO; } else if (*nargs == am_in) { opts.read_write |= DO_READ; } else if (*nargs == am_out) { opts.read_write |= DO_WRITE; } else if (*nargs == am_eof) { sflgs |= ERTS_PORT_SFLG_SOFT_EOF; } else if (*nargs == am_hide) { opts.hide_window = 1; } else if (*nargs == am_exit_status) { opts.exit_status = 1; } else if (*nargs == am_overlapped_io) { opts.overlapped_io = 1; } else { goto badarg; } if (is_nil(*++nargs)) break; if (is_not_list(*nargs)) { goto badarg; } nargs = list_val(*nargs); } } if (opts.read_write == 0) /* implement default */ opts.read_write = DO_READ|DO_WRITE; /* Mutually exclusive arguments. */ if((linebuf && opts.packet_bytes) || (opts.redir_stderr && !opts.use_stdio)) { goto badarg; } /* * Parse the first argument and start the appropriate driver. */ if (is_atom(name) || (i = is_string(name))) { /* a vanilla port */ if (is_atom(name)) { name_buf = (char *) erts_alloc(ERTS_ALC_T_TMP, atom_tab(atom_val(name))->len+1); sys_memcpy((void *) name_buf, (void *) atom_tab(atom_val(name))->name, atom_tab(atom_val(name))->len); name_buf[atom_tab(atom_val(name))->len] = '\0'; } else { name_buf = (char *) erts_alloc(ERTS_ALC_T_TMP, i + 1); if (intlist_to_buf(name, name_buf, i) != i) erts_exit(ERTS_ERROR_EXIT, "%s:%d: Internal error\n", __FILE__, __LINE__); name_buf[i] = '\0'; } driver = &vanilla_driver; } else { if (is_not_tuple(name)) { goto badarg; /* Not a process or fd port */ } tp = tuple_val(name); arity = *tp++; if (arity == make_arityval(0)) { goto badarg; } if (*tp == am_spawn || *tp == am_spawn_driver || *tp == am_spawn_executable) { /* A process port */ int encoding; if (arity != make_arityval(2)) { goto badarg; } name = tp[1]; encoding = erts_get_native_filename_encoding(); /* Do not convert the command to utf-16le yet, do that in win32 specific code */ /* since the cmd is used for comparsion with drivers names and copied to port info */ if (encoding == ERL_FILENAME_WIN_WCHAR) { encoding = ERL_FILENAME_UTF8; } if ((name_buf = erts_convert_filename_to_encoding(name, NULL, 0, ERTS_ALC_T_TMP,0,1, encoding, NULL, 0)) == NULL) { goto badarg; } if (*tp == am_spawn_driver) { opts.spawn_type = ERTS_SPAWN_DRIVER; } else if (*tp == am_spawn_executable) { opts.spawn_type = ERTS_SPAWN_EXECUTABLE; } driver = &spawn_driver; } else if (*tp == am_fd) { /* An fd port */ int n; struct Sint_buf sbuf; char* p; if (arity != make_arityval(3)) { goto badarg; } if (is_not_small(tp[1]) || is_not_small(tp[2])) { goto badarg; } opts.ifd = unsigned_val(tp[1]); opts.ofd = unsigned_val(tp[2]); /* Syntesize name from input and output descriptor. */ name_buf = erts_alloc(ERTS_ALC_T_TMP, 2*sizeof(struct Sint_buf) + 2); p = Sint_to_buf(opts.ifd, &sbuf); n = sys_strlen(p); sys_strncpy(name_buf, p, n); name_buf[n] = '/'; p = Sint_to_buf(opts.ofd, &sbuf); sys_strcpy(name_buf+n+1, p); driver = &fd_driver; } else { goto badarg; } } if ((driver != &spawn_driver && opts.argv != NULL) || (driver == &spawn_driver && opts.spawn_type != ERTS_SPAWN_EXECUTABLE && opts.argv != NULL)) { /* Argument vector only if explicit spawn_executable */ goto badarg; } if (edir != NIL) { if ((opts.wd = erts_convert_filename_to_native(edir, NULL, 0, ERTS_ALC_T_TMP,0,1,NULL)) == NULL) { goto badarg; } } if (driver != &spawn_driver && opts.exit_status) { goto badarg; } if (IS_TRACED_FL(p, F_TRACE_SCHED_PROCS)) { trace_sched(p, ERTS_PROC_LOCK_MAIN, am_out); } erts_smp_proc_unlock(p, ERTS_PROC_LOCK_MAIN); port = erts_open_driver(driver, p->common.id, name_buf, &opts, err_typep, err_nump); #ifdef USE_VM_PROBES if (port && DTRACE_ENABLED(port_open)) { DTRACE_CHARBUF(process_str, DTRACE_TERM_BUF_SIZE); DTRACE_CHARBUF(port_str, DTRACE_TERM_BUF_SIZE); dtrace_proc_str(p, process_str); erts_snprintf(port_str, sizeof(DTRACE_CHARBUF_NAME(port_str)), "%T", port->common.id); DTRACE3(port_open, process_str, name_buf, port_str); } #endif if (port && IS_TRACED_FL(port, F_TRACE_PORTS)) trace_port(port, am_getting_linked, p->common.id); erts_smp_proc_lock(p, ERTS_PROC_LOCK_MAIN); if (IS_TRACED_FL(p, F_TRACE_SCHED_PROCS)) { trace_sched(p, ERTS_PROC_LOCK_MAIN, am_in); } if (!port) { DEBUGF(("open_driver returned (%d:%d)\n", err_typep ? *err_typep : 4711, err_nump ? *err_nump : 4711)); goto do_return; } if (linebuf && port->linebuf == NULL){ port->linebuf = allocate_linebuf(linebuf); sflgs |= ERTS_PORT_SFLG_LINEBUF_IO; } if (sflgs) erts_atomic32_read_bor_relb(&port->state, sflgs); do_return: if (name_buf) erts_free(ERTS_ALC_T_TMP, (void *) name_buf); if (opts.argv) { free_args(opts.argv); } if (opts.wd && opts.wd != ((char *)dir)) { erts_free(ERTS_ALC_T_TMP, (void *) opts.wd); } return port; badarg: if (err_typep) *err_typep = -3; if (err_nump) *err_nump = BADARG; port = NULL; goto do_return; }
static byte* convert_environment(Process* p, Eterm env) { Eterm all; Eterm* temp_heap; Eterm* hp; Uint heap_size; Sint n; Sint size; byte* bytes; int encoding = erts_get_native_filename_encoding(); if ((n = erts_list_length(env)) < 0) { return NULL; } heap_size = 2*(5*n+1); temp_heap = hp = (Eterm *) erts_alloc(ERTS_ALC_T_TMP, heap_size*sizeof(Eterm)); bytes = NULL; /* Indicating error */ /* * All errors below are handled by jumping to 'done', to ensure that the memory * gets deallocated. Do NOT return directly from this function. */ all = CONS(hp, make_small(0), NIL); hp += 2; while(is_list(env)) { Eterm tmp; Eterm* tp; tmp = CAR(list_val(env)); if (is_not_tuple_arity(tmp, 2)) { goto done; } tp = tuple_val(tmp); tmp = CONS(hp, make_small(0), NIL); hp += 2; if (tp[2] != am_false) { tmp = CONS(hp, tp[2], tmp); hp += 2; } tmp = CONS(hp, make_small('='), tmp); hp += 2; tmp = CONS(hp, tp[1], tmp); hp += 2; all = CONS(hp, tmp, all); hp += 2; env = CDR(list_val(env)); } if (is_not_nil(env)) { goto done; } if ((size = erts_native_filename_need(all,encoding)) < 0) { goto done; } /* * Put the result in a binary (no risk for a memory leak that way). */ (void) erts_new_heap_binary(p, NULL, size, &bytes); erts_native_filename_put(all,encoding,bytes); done: erts_free(ERTS_ALC_T_TMP, temp_heap); return bytes; }
BIF_RETTYPE erts_internal_port_command_3(BIF_ALIST_3) { BIF_RETTYPE res; Port *prt; int flags = 0; Eterm ref; if (is_not_nil(BIF_ARG_3)) { Eterm l = BIF_ARG_3; while (is_list(l)) { Eterm* cons = list_val(l); Eterm car = CAR(cons); if (car == am_force) flags |= ERTS_PORT_SIG_FLG_FORCE; else if (car == am_nosuspend) flags |= ERTS_PORT_SIG_FLG_NOSUSPEND; else BIF_RET(am_badarg); l = CDR(cons); } if (!is_nil(l)) BIF_RET(am_badarg); } prt = sig_lookup_port(BIF_P, BIF_ARG_1); if (!prt) BIF_RET(am_badarg); if (flags & ERTS_PORT_SIG_FLG_FORCE) { if (!(prt->drv_ptr->flags & ERL_DRV_FLAG_SOFT_BUSY)) BIF_RET(am_notsup); } #ifdef DEBUG ref = NIL; #endif switch (erts_port_output(BIF_P, flags, prt, prt->common.id, BIF_ARG_2, &ref)) { case ERTS_PORT_OP_CALLER_EXIT: case ERTS_PORT_OP_BADARG: case ERTS_PORT_OP_DROPPED: ERTS_BIF_PREP_RET(res, am_badarg); break; case ERTS_PORT_OP_BUSY: ASSERT(!(flags & ERTS_PORT_SIG_FLG_FORCE)); if (flags & ERTS_PORT_SIG_FLG_NOSUSPEND) ERTS_BIF_PREP_RET(res, am_false); else { erts_suspend(BIF_P, ERTS_PROC_LOCK_MAIN, prt); ERTS_BIF_PREP_YIELD3(res, bif_export[BIF_erts_internal_port_command_3], BIF_P, BIF_ARG_1, BIF_ARG_2, BIF_ARG_3); } break; case ERTS_PORT_OP_BUSY_SCHEDULED: ASSERT(!(flags & ERTS_PORT_SIG_FLG_FORCE)); /* Fall through... */ case ERTS_PORT_OP_SCHEDULED: ASSERT(is_internal_ordinary_ref(ref)); ERTS_BIF_PREP_RET(res, ref); break; case ERTS_PORT_OP_DONE: ERTS_BIF_PREP_RET(res, am_true); break; default: ERTS_INTERNAL_ERROR("Unexpected erts_port_output() result"); break; } if (ERTS_PROC_IS_EXITING(BIF_P)) { KILL_CATCHES(BIF_P); /* Must exit */ ERTS_BIF_PREP_ERROR(res, BIF_P, EXC_ERROR); } return res; }
Process *hipe_mode_switch(Process *p, unsigned cmd, Eterm reg[]) { unsigned result; #if NR_ARG_REGS > 5 /* When NR_ARG_REGS > 5, we need to protect the process' input reduction count (which BEAM stores in def_arg_reg[5]) from being clobbered by the arch glue code. */ Eterm reds_in = p->def_arg_reg[5]; #endif #if NR_ARG_REGS > 4 Eterm o_reds = p->def_arg_reg[4]; #endif p->i = NULL; DPRINTF("cmd == %#x (%s)", cmd, code_str(cmd)); HIPE_CHECK_PCB(p); p->arity = 0; switch (cmd & 0xFF) { case HIPE_MODE_SWITCH_CMD_CALL: { /* BEAM calls a native code function */ unsigned arity = cmd >> 8; /* p->hipe.ncallee set in beam_emu */ if (p->cp == hipe_beam_pc_return) { /* Native called BEAM, which now tailcalls native. */ hipe_pop_beam_trap_frame(p); result = hipe_tailcall_to_native(p, arity, reg); break; } DPRINTF("calling %#lx/%u", (long)p->hipe.ncallee, arity); result = hipe_call_to_native(p, arity, reg); break; } case HIPE_MODE_SWITCH_CMD_CALL_CLOSURE: { /* BEAM calls a native code closure */ unsigned arity = cmd >> 8; /* #formals + #fvs (closure not counted) */ Eterm fun; ErlFunThing *funp; /* drop the fvs, move the closure, correct arity */ fun = reg[arity]; HIPE_ASSERT(is_fun(fun)); funp = (ErlFunThing*)fun_val(fun); HIPE_ASSERT(funp->num_free <= arity); arity -= funp->num_free; /* arity == #formals */ reg[arity] = fun; ++arity; /* correct for having added the closure */ /* HIPE_ASSERT(p->hipe.ncallee == (void(*)(void))funp->native_address); */ /* just like a normal call from now on */ /* p->hipe.ncallee set in beam_emu */ if (p->cp == hipe_beam_pc_return) { /* Native called BEAM, which now tailcalls native. */ hipe_pop_beam_trap_frame(p); result = hipe_tailcall_to_native(p, arity, reg); break; } DPRINTF("calling %#lx/%u", (long)p->hipe.ncallee, arity); result = hipe_call_to_native(p, arity, reg); break; } case HIPE_MODE_SWITCH_CMD_THROW: { /* BEAM just executed hipe_beam_pc_throw[] */ /* Native called BEAM, which now throws an exception back to native. */ DPRINTF("beam throws freason %#lx fvalue %#lx", p->freason, p->fvalue); hipe_pop_beam_trap_frame(p); do_throw_to_native: p->def_arg_reg[0] = exception_tag[GET_EXC_CLASS(p->freason)]; hipe_find_handler(p); result = hipe_throw_to_native(p); break; } case HIPE_MODE_SWITCH_CMD_RETURN: { /* BEAM just executed hipe_beam_pc_return[] */ /* Native called BEAM, which now returns back to native. */ /* pop trap frame off estack */ hipe_pop_beam_trap_frame(p); p->def_arg_reg[0] = reg[0]; result = hipe_return_to_native(p); break; } do_resume: case HIPE_MODE_SWITCH_CMD_RESUME: { /* BEAM just executed hipe_beam_pc_resume[] */ /* BEAM called native, which suspended. */ if (p->flags & F_TIMO) { /* XXX: The process will immediately execute 'clear_timeout', repeating these two statements. Remove them? */ p->flags &= ~F_TIMO; JOIN_MESSAGE(p); p->def_arg_reg[0] = 0; /* make_small(0)? */ } else p->def_arg_reg[0] = 1; /* make_small(1)? */ result = hipe_return_to_native(p); break; } default: erl_exit(1, "hipe_mode_switch: cmd %#x\r\n", cmd); } do_return_from_native: DPRINTF("result == %#x (%s)", result, code_str(result)); HIPE_CHECK_PCB(p); switch (result) { case HIPE_MODE_SWITCH_RES_RETURN: { hipe_return_from_native(p); reg[0] = p->def_arg_reg[0]; DPRINTF("returning with r(0) == %#lx", reg[0]); break; } case HIPE_MODE_SWITCH_RES_THROW: { DPRINTF("native throws freason %#lx fvalue %#lx", p->freason, p->fvalue); hipe_throw_from_native(p); break; } case HIPE_MODE_SWITCH_RES_TRAP: { /* * Native code called a BIF, which "failed" with a TRAP to BEAM. * Prior to returning, the BIF stored (see BIF_TRAP<N>): * the callee's address in p->def_arg_reg[3] * the callee's parameters in p->def_arg_reg[0..2] * the callee's arity in p->arity (for BEAM gc purposes) * * We need to remove the BIF's parameters from the native * stack: to this end hipe_${ARCH}_glue.S stores the BIF's * arity in p->hipe.narity. */ unsigned int i, is_recursive, callee_arity; /* Save p->arity, then update it with the original BIF's arity. Get rid of any stacked parameters in that call. */ /* XXX: hipe_call_from_native_is_recursive() copies data to reg[], which is useless in the TRAP case. Maybe write a specialised hipe_trap_from_native_is_recursive() later. */ callee_arity = p->arity; p->arity = p->hipe.narity; /* caller's arity */ is_recursive = hipe_call_from_native_is_recursive(p, reg); p->i = (Eterm *)(p->def_arg_reg[3]); p->arity = callee_arity; for (i = 0; i < p->arity; ++i) reg[i] = p->def_arg_reg[i]; if (is_recursive) hipe_push_beam_trap_frame(p, reg, p->arity); result = HIPE_MODE_SWITCH_RES_CALL; break; } case HIPE_MODE_SWITCH_RES_CALL: { /* Native code calls or tailcalls BEAM. * * p->i is the callee's BEAM code * p->arity is the callee's arity * p->def_arg_reg[] contains the register parameters * p->hipe.nsp[] contains the stacked parameters */ if (hipe_call_from_native_is_recursive(p, reg)) { /* BEAM called native, which now calls BEAM */ hipe_push_beam_trap_frame(p, reg, p->arity); } break; } case HIPE_MODE_SWITCH_RES_CALL_CLOSURE: { /* Native code calls or tailcalls a closure in BEAM * * In native code a call to a closure of arity n looks like * F(A1, ..., AN, Closure), * The BEAM code for a closure expects to get: * F(A1, ..., AN, FV1, ..., FVM, Closure) * (Where Ai is argument i and FVj is free variable j) * * p->hipe.closure contains the closure * p->def_arg_reg[] contains the register parameters * p->hipe.nsp[] contains the stacked parameters */ ErlFunThing *closure; unsigned num_free, arity, i, is_recursive; HIPE_ASSERT(is_fun(p->hipe.closure)); closure = (ErlFunThing*)fun_val(p->hipe.closure); num_free = closure->num_free; arity = closure->fe->arity; /* Store the arity in p->arity for the stack popping. */ /* Note: we already have the closure so only need to move arity values to reg[]. However, there are arity+1 parameters in the native code state that need to be removed. */ p->arity = arity+1; /* +1 for the closure */ /* Get parameters, don't do GC just yet. */ is_recursive = hipe_call_from_native_is_recursive(p, reg); if ((Sint)closure->fe->address[-1] < 0) { /* Unloaded. Let beam_emu.c:call_fun() deal with it. */ result = HIPE_MODE_SWITCH_RES_CALL_CLOSURE; } else { /* The BEAM code is present. Prepare to call it. */ /* Append the free vars after the actual parameters. */ for (i = 0; i < num_free; ++i) reg[arity+i] = closure->env[i]; /* Update arity to reflect the new parameters. */ arity += i; /* Make a call to the closure's BEAM code. */ p->i = closure->fe->address; /* Change result code to the faster plain CALL type. */ result = HIPE_MODE_SWITCH_RES_CALL; } /* Append the closure as the last parameter. Don't increment arity. */ reg[arity] = p->hipe.closure; if (is_recursive) { /* BEAM called native, which now calls BEAM. Need to put a trap-frame on the beam stack. This may cause GC, which is safe now that the arguments, free vars, and most importantly the closure, all are in reg[]. */ hipe_push_beam_trap_frame(p, reg, arity+1); } break; } case HIPE_MODE_SWITCH_RES_SUSPEND: { p->i = hipe_beam_pc_resume; p->arity = 0; erts_smp_proc_lock(p, ERTS_PROC_LOCK_STATUS); if (p->status != P_SUSPENDED) erts_add_to_runq(p); erts_smp_proc_unlock(p, ERTS_PROC_LOCK_STATUS); goto do_schedule; } case HIPE_MODE_SWITCH_RES_WAIT: case HIPE_MODE_SWITCH_RES_WAIT_TIMEOUT: { /* same semantics, different debug trace messages */ #ifdef ERTS_SMP /* XXX: BEAM has different entries for the locked and unlocked cases. HiPE doesn't, so we must check dynamically. */ if (p->hipe_smp.have_receive_locks) p->hipe_smp.have_receive_locks = 0; else erts_smp_proc_lock(p, ERTS_PROC_LOCKS_MSG_RECEIVE); #endif p->i = hipe_beam_pc_resume; p->arity = 0; p->status = P_WAITING; erts_smp_proc_unlock(p, ERTS_PROC_LOCKS_MSG_RECEIVE); do_schedule: { #if !(NR_ARG_REGS > 5) int reds_in = p->def_arg_reg[5]; #endif p = schedule(p, reds_in - p->fcalls); #ifdef ERTS_SMP p->hipe_smp.have_receive_locks = 0; reg = p->scheduler_data->save_reg; #endif } { Eterm *argp; int i; argp = p->arg_reg; for (i = p->arity; --i >= 0;) reg[i] = argp[i]; } { #if !(NR_ARG_REGS > 5) Eterm reds_in; #endif #if !(NR_ARG_REGS > 4) Eterm o_reds; #endif reds_in = p->fcalls; o_reds = 0; if (ERTS_PROC_GET_SAVED_CALLS_BUF(p)) { o_reds = reds_in; reds_in = 0; p->fcalls = 0; } p->def_arg_reg[4] = o_reds; p->def_arg_reg[5] = reds_in; if (p->i == hipe_beam_pc_resume) { p->i = NULL; p->arity = 0; goto do_resume; } } HIPE_CHECK_PCB(p); result = HIPE_MODE_SWITCH_RES_CALL; p->def_arg_reg[3] = result; return p; } case HIPE_MODE_SWITCH_RES_APPLY: { Eterm mfa[3], args; unsigned int arity; void *address; hipe_pop_params(p, 3, &mfa[0]); /* Unroll the arglist onto reg[]. */ args = mfa[2]; arity = 0; while (is_list(args)) { if (arity < 255) { reg[arity++] = CAR(list_val(args)); args = CDR(list_val(args)); } else goto do_apply_fail; } if (is_not_nil(args)) goto do_apply_fail; /* find a native code entry point for {M,F,A} for a remote call */ address = hipe_get_remote_na(mfa[0], mfa[1], arity); if (!address) goto do_apply_fail; p->hipe.ncallee = (void(*)(void)) address; result = hipe_tailcall_to_native(p, arity, reg); goto do_return_from_native; do_apply_fail: p->freason = BADARG; goto do_throw_to_native; } default: erl_exit(1, "hipe_mode_switch: result %#x\r\n", result); } HIPE_CHECK_PCB(p); p->def_arg_reg[3] = result; #if NR_ARG_REGS > 4 p->def_arg_reg[4] = o_reds; #endif #if NR_ARG_REGS > 5 p->def_arg_reg[5] = reds_in; #endif return p; }
static void setup_reference_table(void) { ErlHeapFragment *hfp; DistEntry *dep; HashInfo hi; int i, max; DeclareTmpHeapNoproc(heap,3); inserted_bins = NULL; hash_get_info(&hi, &erts_node_table); referred_nodes = erts_alloc(ERTS_ALC_T_NC_TMP, hi.objs*sizeof(ReferredNode)); no_referred_nodes = 0; hash_foreach(&erts_node_table, init_referred_node, NULL); ASSERT(no_referred_nodes == hi.objs); hash_get_info(&hi, &erts_dist_table); referred_dists = erts_alloc(ERTS_ALC_T_NC_TMP, hi.objs*sizeof(ReferredDist)); no_referred_dists = 0; hash_foreach(&erts_dist_table, init_referred_dist, NULL); ASSERT(no_referred_dists == hi.objs); /* Go through the hole system, and build a table of all references to ErlNode and DistEntry structures */ erts_debug_callback_timer_foreach(try_delete_node, insert_delayed_delete_node, NULL); erts_debug_callback_timer_foreach(try_delete_dist_entry, insert_delayed_delete_dist_entry, NULL); UseTmpHeapNoproc(3); insert_node(erts_this_node, SYSTEM_REF, TUPLE2(&heap[0], AM_system, am_undefined)); UnUseTmpHeapNoproc(3); max = erts_ptab_max(&erts_proc); /* Insert all processes */ for (i = 0; i < max; i++) { Process *proc = erts_pix2proc(i); if (proc) { int mli; ErtsMessage *msg_list[] = { proc->msg.first, #ifdef ERTS_SMP proc->msg_inq.first, #endif proc->msg_frag}; /* Insert Heap */ insert_offheap(&(proc->off_heap), HEAP_REF, proc->common.id); /* Insert heap fragments buffers */ for(hfp = proc->mbuf; hfp; hfp = hfp->next) insert_offheap(&(hfp->off_heap), HEAP_REF, proc->common.id); /* Insert msg buffers */ for (mli = 0; mli < sizeof(msg_list)/sizeof(msg_list[0]); mli++) { ErtsMessage *msg; for (msg = msg_list[mli]; msg; msg = msg->next) { ErlHeapFragment *heap_frag = NULL; if (msg->data.attached) { if (msg->data.attached == ERTS_MSG_COMBINED_HFRAG) heap_frag = &msg->hfrag; else if (is_value(ERL_MESSAGE_TERM(msg))) heap_frag = msg->data.heap_frag; else { if (msg->data.dist_ext->dep) insert_dist_entry(msg->data.dist_ext->dep, HEAP_REF, proc->common.id, 0); if (is_not_nil(ERL_MESSAGE_TOKEN(msg))) heap_frag = erts_dist_ext_trailer(msg->data.dist_ext); } } while (heap_frag) { insert_offheap(&(heap_frag->off_heap), HEAP_REF, proc->common.id); heap_frag = heap_frag->next; } } } /* Insert links */ if (ERTS_P_LINKS(proc)) insert_links(ERTS_P_LINKS(proc), proc->common.id); if (ERTS_P_MONITORS(proc)) insert_monitors(ERTS_P_MONITORS(proc), proc->common.id); /* Insert controller */ { DistEntry *dep = ERTS_PROC_GET_DIST_ENTRY(proc); if (dep) insert_dist_entry(dep, CTRL_REF, proc->common.id, 0); } } } #ifdef ERTS_SMP erts_foreach_sys_msg_in_q(insert_sys_msg); #endif /* Insert all ports */ max = erts_ptab_max(&erts_port); for (i = 0; i < max; i++) { ErlOffHeap *ohp; erts_aint32_t state; Port *prt; prt = erts_pix2port(i); if (!prt) continue; state = erts_atomic32_read_nob(&prt->state); if (state & ERTS_PORT_SFLGS_DEAD) continue; /* Insert links */ if (ERTS_P_LINKS(prt)) insert_links(ERTS_P_LINKS(prt), prt->common.id); /* Insert monitors */ if (ERTS_P_MONITORS(prt)) insert_monitors(ERTS_P_MONITORS(prt), prt->common.id); /* Insert port data */ ohp = erts_port_data_offheap(prt); if (ohp) insert_offheap(ohp, HEAP_REF, prt->common.id); /* Insert controller */ if (prt->dist_entry) insert_dist_entry(prt->dist_entry, CTRL_REF, prt->common.id, 0); } { /* Add binaries stored elsewhere ... */ ErlOffHeap oh; ProcBin pb[2]; int i = 0; Binary *default_match_spec; Binary *default_meta_match_spec; oh.first = NULL; /* Only the ProcBin members thing_word, val and next will be inspected (by insert_offheap()) */ #undef ADD_BINARY #define ADD_BINARY(Bin) \ if ((Bin)) { \ pb[i].thing_word = REFC_BINARY_SUBTAG; \ pb[i].val = (Bin); \ pb[i].next = oh.first; \ oh.first = (struct erl_off_heap_header*) &pb[i]; \ i++; \ } erts_get_default_trace_pattern(NULL, &default_match_spec, &default_meta_match_spec, NULL, NULL); ADD_BINARY(default_match_spec); ADD_BINARY(default_meta_match_spec); insert_offheap(&oh, BIN_REF, AM_match_spec); #undef ADD_BINARY } /* Insert all dist links */ for(dep = erts_visible_dist_entries; dep; dep = dep->next) { if(dep->nlinks) insert_links2(dep->nlinks, dep->sysname); if(dep->node_links) insert_links(dep->node_links, dep->sysname); if(dep->monitors) insert_monitors(dep->monitors, dep->sysname); } for(dep = erts_hidden_dist_entries; dep; dep = dep->next) { if(dep->nlinks) insert_links2(dep->nlinks, dep->sysname); if(dep->node_links) insert_links(dep->node_links, dep->sysname); if(dep->monitors) insert_monitors(dep->monitors, dep->sysname); } /* Not connected dist entries should not have any links, but inspect them anyway */ for(dep = erts_not_connected_dist_entries; dep; dep = dep->next) { if(dep->nlinks) insert_links2(dep->nlinks, dep->sysname); if(dep->node_links) insert_links(dep->node_links, dep->sysname); if(dep->monitors) insert_monitors(dep->monitors, dep->sysname); } /* Insert all ets tables */ erts_db_foreach_table(insert_ets_table, NULL); /* Insert all bif timers */ erts_debug_bif_timer_foreach(insert_bif_timer, NULL); /* Insert node table (references to dist) */ hash_foreach(&erts_node_table, insert_erl_node, NULL); }
static Eterm keyfind(int Bif, Process* p, Eterm Key, Eterm Pos, Eterm List) { int max_iter = 10 * CONTEXT_REDS; Sint pos; Eterm term; if (!is_small(Pos) || (pos = signed_val(Pos)) < 1) { BIF_ERROR(p, BADARG); } if (is_small(Key)) { double float_key = (double) signed_val(Key); while (is_list(List)) { if (--max_iter < 0) { BUMP_ALL_REDS(p); BIF_TRAP3(bif_export[Bif], p, Key, Pos, List); } term = CAR(list_val(List)); List = CDR(list_val(List)); if (is_tuple(term)) { Eterm *tuple_ptr = tuple_val(term); if (pos <= arityval(*tuple_ptr)) { Eterm element = tuple_ptr[pos]; if (Key == element) { return term; } else if (is_float(element)) { FloatDef f; GET_DOUBLE(element, f); if (f.fd == float_key) { return term; } } } } } } else if (is_immed(Key)) { while (is_list(List)) { if (--max_iter < 0) { BUMP_ALL_REDS(p); BIF_TRAP3(bif_export[Bif], p, Key, Pos, List); } term = CAR(list_val(List)); List = CDR(list_val(List)); if (is_tuple(term)) { Eterm *tuple_ptr = tuple_val(term); if (pos <= arityval(*tuple_ptr)) { Eterm element = tuple_ptr[pos]; if (Key == element) { return term; } } } } } else { while (is_list(List)) { if (--max_iter < 0) { BUMP_ALL_REDS(p); BIF_TRAP3(bif_export[Bif], p, Key, Pos, List); } term = CAR(list_val(List)); List = CDR(list_val(List)); if (is_tuple(term)) { Eterm *tuple_ptr = tuple_val(term); if (pos <= arityval(*tuple_ptr)) { Eterm element = tuple_ptr[pos]; if (CMP(Key, element) == 0) { return term; } } } } } if (is_not_nil(List)) { BIF_ERROR(p, BADARG); } return am_false; }
static int pdisplay1(int to, void *to_arg, Process* p, Eterm obj) { int i, k; Eterm* nobj; if (dcount-- <= 0) return(1); if (is_CP(obj)) { erts_print(to, to_arg, "<cp/header:%0*lX",PTR_SIZE,obj); return 0; } switch (tag_val_def(obj)) { case NIL_DEF: erts_print(to, to_arg, "[]"); break; case ATOM_DEF: erts_print(to, to_arg, "%T", obj); break; case SMALL_DEF: erts_print(to, to_arg, "%ld", signed_val(obj)); break; case BIG_DEF: nobj = big_val(obj); if (!IN_HEAP(p, nobj)) { erts_print(to, to_arg, "#<bad big %X>#", obj); return 1; } i = BIG_SIZE(nobj); if (BIG_SIGN(nobj)) erts_print(to, to_arg, "-#integer(%d) = {", i); else erts_print(to, to_arg, "#integer(%d) = {", i); erts_print(to, to_arg, "%d", BIG_DIGIT(nobj, 0)); for (k = 1; k < i; k++) erts_print(to, to_arg, ",%d", BIG_DIGIT(nobj, k)); erts_putc(to, to_arg, '}'); break; case REF_DEF: case EXTERNAL_REF_DEF: { Uint32 *ref_num; erts_print(to, to_arg, "#Ref<%lu", ref_channel_no(obj)); ref_num = ref_numbers(obj); for (i = ref_no_of_numbers(obj)-1; i >= 0; i--) erts_print(to, to_arg, ",%lu", ref_num[i]); erts_print(to, to_arg, ">"); break; } case PID_DEF: case EXTERNAL_PID_DEF: erts_print(to, to_arg, "<%lu.%lu.%lu>", pid_channel_no(obj), pid_number(obj), pid_serial(obj)); break; case PORT_DEF: case EXTERNAL_PORT_DEF: erts_print(to, to_arg, "#Port<%lu.%lu>", port_channel_no(obj), port_number(obj)); break; case LIST_DEF: erts_putc(to, to_arg, '['); nobj = list_val(obj); while (1) { if (!IN_HEAP(p, nobj)) { erts_print(to, to_arg, "#<bad list %X>", obj); return 1; } if (pdisplay1(to, to_arg, p, *nobj++) != 0) return(1); if (is_not_list(*nobj)) break; erts_putc(to, to_arg, ','); nobj = list_val(*nobj); } if (is_not_nil(*nobj)) { erts_putc(to, to_arg, '|'); if (pdisplay1(to, to_arg, p, *nobj) != 0) return(1); } erts_putc(to, to_arg, ']'); break; case TUPLE_DEF: nobj = tuple_val(obj); /* pointer to arity */ i = arityval(*nobj); /* arity */ erts_putc(to, to_arg, '{'); while (i--) { if (pdisplay1(to, to_arg, p, *++nobj) != 0) return(1); if (i >= 1) erts_putc(to, to_arg, ','); } erts_putc(to, to_arg, '}'); break; case FLOAT_DEF: { FloatDef ff; GET_DOUBLE(obj, ff); erts_print(to, to_arg, "%.20e", ff.fd); } break; case BINARY_DEF: erts_print(to, to_arg, "#Bin"); break; default: erts_print(to, to_arg, "unknown object %x", obj); } return(0); }
int enif_get_list_length(ErlNifEnv* env, Eterm term, unsigned* len) { if (is_not_list(term) && is_not_nil(term)) return 0; *len = list_length(term); return 1; }
BIF_RETTYPE lists_reverse_2(BIF_ALIST_2) { Eterm list; Eterm tmp_list; Eterm result; Eterm* hp; Uint n; int max_iter; /* * Handle legal and illegal non-lists quickly. */ if (is_nil(BIF_ARG_1)) { BIF_RET(BIF_ARG_2); } else if (is_not_list(BIF_ARG_1)) { error: BIF_ERROR(BIF_P, BADARG); } /* * First use the rest of the remaning heap space. */ list = BIF_ARG_1; result = BIF_ARG_2; hp = HEAP_TOP(BIF_P); n = HeapWordsLeft(BIF_P) / 2; while (n != 0 && is_list(list)) { Eterm* pair = list_val(list); result = CONS(hp, CAR(pair), result); list = CDR(pair); hp += 2; n--; } HEAP_TOP(BIF_P) = hp; if (is_nil(list)) { BIF_RET(result); } /* * Calculate length of remaining list (up to a suitable limit). */ max_iter = CONTEXT_REDS * 40; n = 0; tmp_list = list; while (max_iter-- > 0 && is_list(tmp_list)) { tmp_list = CDR(list_val(tmp_list)); n++; } if (is_not_nil(tmp_list) && is_not_list(tmp_list)) { goto error; } /* * Now do one HAlloc() and continue reversing. */ hp = HAlloc(BIF_P, 2*n); while (n != 0 && is_list(list)) { Eterm* pair = list_val(list); result = CONS(hp, CAR(pair), result); list = CDR(pair); hp += 2; n--; } if (is_nil(list)) { BIF_RET(result); } else { BUMP_ALL_REDS(BIF_P); BIF_TRAP2(bif_export[BIF_lists_reverse_2], BIF_P, list, result); } }
Process *hipe_mode_switch(Process *p, unsigned cmd, Eterm reg[]) { unsigned result; Eterm reds_in = p->def_arg_reg[5]; /* * Process is in the normal case scheduled out when reduction * count reach zero. When "save calls" is enabled reduction * count is subtracted with CONTEXT_REDS, i.e. initial reduction * count will be zero or less and process is scheduled out * when -CONTEXT_REDS is reached. * * HiPE does not support the "save calls" feature, so we switch * to using a positive reduction counter when executing in * hipe mode, but need to restore the "save calls" when * returning to beam. We also need to hide the save calls buffer * from BIFs. We do that by moving the saved calls buf to * suspended saved calls buf. * * Beam has initial reduction count in stored in p->def_arg_reg[5]. * * Beam expects -neg_o_reds to be found in p->def_arg_reg[4] * on return to beam. */ { struct saved_calls *scb = ERTS_PROC_SET_SAVED_CALLS_BUF(p, NULL); if (scb) { reds_in += CONTEXT_REDS; p->fcalls += CONTEXT_REDS; ERTS_PROC_SET_SUSPENDED_SAVED_CALLS_BUF(p, scb); } } p->flags |= F_HIPE_MODE; /* inform bifs where we are comming from... */ p->i = NULL; /* Set current_function to undefined. stdlib hibernate tests rely on it. */ p->current = NULL; DPRINTF("cmd == %#x (%s)", cmd, code_str(cmd)); HIPE_CHECK_PCB(p); p->arity = 0; switch (cmd & 0xFF) { case HIPE_MODE_SWITCH_CMD_CALL: { /* BEAM calls a native code function */ unsigned arity = cmd >> 8; /* p->hipe.u.ncallee set in beam_emu */ if (p->cp == hipe_beam_pc_return) { /* Native called BEAM, which now tailcalls native. */ hipe_pop_beam_trap_frame(p); result = hipe_tailcall_to_native(p, arity, reg); break; } DPRINTF("calling %#lx/%u", (long)p->hipe.u.ncallee, arity); result = hipe_call_to_native(p, arity, reg); break; } case HIPE_MODE_SWITCH_CMD_CALL_CLOSURE: { /* BEAM calls a native code closure */ unsigned arity = cmd >> 8; /* #formals + #fvs (closure not counted) */ Eterm fun; ErlFunThing *funp; /* drop the fvs, move the closure, correct arity */ fun = reg[arity]; HIPE_ASSERT(is_fun(fun)); funp = (ErlFunThing*)fun_val(fun); HIPE_ASSERT(funp->num_free <= arity); arity -= funp->num_free; /* arity == #formals */ reg[arity] = fun; ++arity; /* correct for having added the closure */ /* HIPE_ASSERT(p->hipe.u.ncallee == (void(*)(void))funp->native_address); */ /* just like a normal call from now on */ /* p->hipe.u.ncallee set in beam_emu */ if (p->cp == hipe_beam_pc_return) { /* Native called BEAM, which now tailcalls native. */ hipe_pop_beam_trap_frame(p); result = hipe_tailcall_to_native(p, arity, reg); break; } DPRINTF("calling %#lx/%u", (long)p->hipe.u.ncallee, arity); result = hipe_call_to_native(p, arity, reg); break; } case HIPE_MODE_SWITCH_CMD_THROW: { /* BEAM just executed hipe_beam_pc_throw[] */ /* Native called BEAM, which now throws an exception back to native. */ DPRINTF("beam throws freason %#lx fvalue %#lx", p->freason, p->fvalue); hipe_pop_beam_trap_frame(p); do_throw_to_native: p->def_arg_reg[0] = exception_tag[GET_EXC_CLASS(p->freason)]; hipe_find_handler(p); result = hipe_throw_to_native(p); break; } case HIPE_MODE_SWITCH_CMD_RETURN: { /* BEAM just executed hipe_beam_pc_return[] */ /* Native called BEAM, which now returns back to native. */ /* pop trap frame off estack */ hipe_pop_beam_trap_frame(p); p->def_arg_reg[0] = reg[0]; result = hipe_return_to_native(p); break; } do_resume: case HIPE_MODE_SWITCH_CMD_RESUME: { /* BEAM just executed hipe_beam_pc_resume[] */ /* BEAM called native, which suspended. */ if (p->flags & F_TIMO) { /* XXX: The process will immediately execute 'clear_timeout', repeating these two statements. Remove them? */ p->flags &= ~F_TIMO; JOIN_MESSAGE(p); p->def_arg_reg[0] = 0; /* make_small(0)? */ } else p->def_arg_reg[0] = 1; /* make_small(1)? */ result = hipe_return_to_native(p); break; } default: erts_exit(ERTS_ERROR_EXIT, "hipe_mode_switch: cmd %#x\r\n", cmd); } do_return_from_native: DPRINTF("result == %#x (%s)", result, code_str(result)); HIPE_CHECK_PCB(p); switch (result) { case HIPE_MODE_SWITCH_RES_RETURN: { hipe_return_from_native(p); reg[0] = p->def_arg_reg[0]; DPRINTF("returning with r(0) == %#lx", reg[0]); break; } case HIPE_MODE_SWITCH_RES_THROW: { DPRINTF("native throws freason %#lx fvalue %#lx", p->freason, p->fvalue); hipe_throw_from_native(p); break; } case HIPE_MODE_SWITCH_RES_TRAP: { /* * Native code called a BIF, which "failed" with a TRAP to BEAM. * Prior to returning, the BIF stored (see BIF_TRAP<N>): * the callee's address in p->i * the callee's parameters in reg[0..2] * the callee's arity in p->arity (for BEAM gc purposes) * * We need to remove the BIF's parameters from the native * stack: to this end hipe_${ARCH}_glue.S stores the BIF's * arity in p->hipe.narity. * * If the BIF emptied the stack (typically hibernate), p->hipe.nstack * is NULL and there is no need to get rid of stacked parameters. */ unsigned int i, is_recursive = 0; if (p->hipe.nstack != NULL) { ASSERT(p->hipe.nsp != NULL); is_recursive = hipe_trap_from_native_is_recursive(p); } else { /* Some architectures (risc) need this re-reset of nsp as the * BIF wrapper do not detect stack change and causes an obsolete * stack pointer to be saved in p->hipe.nsp before return to us. */ p->hipe.nsp = NULL; } /* Schedule next process if current process was hibernated or is waiting for messages */ if (p->flags & F_HIBERNATE_SCHED) { p->flags &= ~F_HIBERNATE_SCHED; goto do_schedule; } if (!(erts_atomic32_read_acqb(&p->state) & ERTS_PSFLG_ACTIVE)) { for (i = 0; i < p->arity; ++i) p->arg_reg[i] = reg[i]; goto do_schedule; } if (is_recursive) hipe_push_beam_trap_frame(p, reg, p->arity); result = HIPE_MODE_SWITCH_RES_CALL_BEAM; break; } case HIPE_MODE_SWITCH_RES_CALL_EXPORTED: { /* Native code calls or tailcalls BEAM. * * p->hipe.u.callee_exp is the callee's export entry * p->arity is the callee's arity * p->def_arg_reg[] contains the register parameters * p->hipe.nsp[] contains the stacked parameters */ if (hipe_call_from_native_is_recursive(p, reg)) { /* BEAM called native, which now calls BEAM */ hipe_push_beam_trap_frame(p, reg, p->arity); } break; } case HIPE_MODE_SWITCH_RES_CALL_CLOSURE: { /* Native code calls or tailcalls a closure in BEAM * * In native code a call to a closure of arity n looks like * F(A1, ..., AN, Closure), * The BEAM code for a closure expects to get: * F(A1, ..., AN, FV1, ..., FVM, Closure) * (Where Ai is argument i and FVj is free variable j) * * p->hipe.u.closure contains the closure * p->def_arg_reg[] contains the register parameters * p->hipe.nsp[] contains the stacked parameters */ ErlFunThing *closure; unsigned num_free, arity, i, is_recursive; HIPE_ASSERT(is_fun(p->hipe.u.closure)); closure = (ErlFunThing*)fun_val(p->hipe.u.closure); num_free = closure->num_free; arity = closure->fe->arity; /* Store the arity in p->arity for the stack popping. */ /* Note: we already have the closure so only need to move arity values to reg[]. However, there are arity+1 parameters in the native code state that need to be removed. */ p->arity = arity+1; /* +1 for the closure */ /* Get parameters, don't do GC just yet. */ is_recursive = hipe_call_from_native_is_recursive(p, reg); if ((Sint)closure->fe->address[-1] < 0) { /* Unloaded. Let beam_emu.c:call_fun() deal with it. */ result = HIPE_MODE_SWITCH_RES_CALL_CLOSURE; } else { /* The BEAM code is present. Prepare to call it. */ /* Append the free vars after the actual parameters. */ for (i = 0; i < num_free; ++i) reg[arity+i] = closure->env[i]; /* Update arity to reflect the new parameters. */ arity += i; /* Make a call to the closure's BEAM code. */ p->i = closure->fe->address; /* Change result code to the faster plain CALL type. */ result = HIPE_MODE_SWITCH_RES_CALL_BEAM; } /* Append the closure as the last parameter. Don't increment arity. */ reg[arity] = p->hipe.u.closure; if (is_recursive) { /* BEAM called native, which now calls BEAM. Need to put a trap-frame on the beam stack. This may cause GC, which is safe now that the arguments, free vars, and most importantly the closure, all are in reg[]. */ hipe_push_beam_trap_frame(p, reg, arity+1); } break; } case HIPE_MODE_SWITCH_RES_SUSPEND: { p->i = hipe_beam_pc_resume; p->arity = 0; goto do_schedule; } case HIPE_MODE_SWITCH_RES_WAIT: case HIPE_MODE_SWITCH_RES_WAIT_TIMEOUT: { /* same semantics, different debug trace messages */ /* XXX: BEAM has different entries for the locked and unlocked cases. HiPE doesn't, so we must check dynamically. */ if (p->flags & F_HIPE_RECV_LOCKED) p->flags &= ~F_HIPE_RECV_LOCKED; else erts_proc_lock(p, ERTS_PROC_LOCKS_MSG_RECEIVE); p->i = hipe_beam_pc_resume; p->arity = 0; if (erts_atomic32_read_nob(&p->state) & ERTS_PSFLG_EXITING) ASSERT(erts_atomic32_read_nob(&p->state) & ERTS_PSFLG_ACTIVE); else if (!(p->flags & F_HIPE_RECV_YIELD)) erts_atomic32_read_band_relb(&p->state, ~ERTS_PSFLG_ACTIVE); else { /* Yielded from receive */ ERTS_VBUMP_ALL_REDS(p); p->flags &= ~F_HIPE_RECV_YIELD; } erts_proc_unlock(p, ERTS_PROC_LOCKS_MSG_RECEIVE); do_schedule: { struct saved_calls *scb; scb = ERTS_PROC_SET_SUSPENDED_SAVED_CALLS_BUF(p, NULL); if (scb) ERTS_PROC_SET_SAVED_CALLS_BUF(p, scb); /* The process may have died while it was executing, if so we return out from native code to the interpreter */ if (erts_atomic32_read_nob(&p->state) & ERTS_PSFLG_EXITING) p->i = beam_exit; #ifdef DEBUG ASSERT(p->debug_reds_in == reds_in); #endif p->flags &= ~F_HIPE_MODE; ERTS_UNREQ_PROC_MAIN_LOCK(p); p = erts_schedule(NULL, p, reds_in - p->fcalls); ERTS_REQ_PROC_MAIN_LOCK(p); ASSERT(!(p->flags & F_HIPE_MODE)); p->flags &= ~F_HIPE_RECV_LOCKED; reg = p->scheduler_data->x_reg_array; } { Eterm *argp; int i; argp = p->arg_reg; for (i = p->arity; --i >= 0;) reg[i] = argp[i]; } { struct saved_calls *scb; reds_in = p->fcalls; p->def_arg_reg[5] = reds_in; #ifdef DEBUG p->debug_reds_in = reds_in; #endif if (p->i == hipe_beam_pc_resume) { p->flags |= F_HIPE_MODE; /* inform bifs where we are comming from... */ scb = ERTS_PROC_SET_SAVED_CALLS_BUF(p, NULL); if (scb) ERTS_PROC_SET_SUSPENDED_SAVED_CALLS_BUF(p, scb); p->i = NULL; p->arity = 0; goto do_resume; } scb = ERTS_PROC_GET_SAVED_CALLS_BUF(p); if (!scb) p->def_arg_reg[4] = 0; else { p->def_arg_reg[4] = CONTEXT_REDS; p->fcalls = -CONTEXT_REDS + reds_in; } } HIPE_CHECK_PCB(p); result = HIPE_MODE_SWITCH_RES_CALL_BEAM; p->def_arg_reg[3] = result; return p; } case HIPE_MODE_SWITCH_RES_APPLY: { Eterm mfa[3], args; unsigned int arity; void *address; hipe_pop_params(p, 3, &mfa[0]); /* Unroll the arglist onto reg[]. */ args = mfa[2]; arity = 0; while (is_list(args)) { if (arity < 255) { reg[arity++] = CAR(list_val(args)); args = CDR(list_val(args)); } else goto do_apply_fail; } if (is_not_nil(args)) goto do_apply_fail; /* find a native code entry point for {M,F,A} for a remote call */ address = hipe_get_remote_na(mfa[0], mfa[1], arity); if (!address) goto do_apply_fail; p->hipe.u.ncallee = (void(*)(void)) address; result = hipe_tailcall_to_native(p, arity, reg); goto do_return_from_native; do_apply_fail: p->freason = BADARG; goto do_throw_to_native; } default: erts_exit(ERTS_ERROR_EXIT, "hipe_mode_switch: result %#x\r\n", result); } { struct saved_calls *scb = ERTS_PROC_SET_SUSPENDED_SAVED_CALLS_BUF(p, NULL); if (!scb) p->def_arg_reg[4] = 0; else { p->def_arg_reg[4] = CONTEXT_REDS; p->fcalls -= CONTEXT_REDS; ERTS_PROC_SET_SAVED_CALLS_BUF(p, scb); } } HIPE_CHECK_PCB(p); p->def_arg_reg[3] = result; #if NR_ARG_REGS > 5 /* * When NR_ARG_REGS > 5, we need to protect the process' input * reduction count (which BEAM stores in def_arg_reg[5]) from * being clobbered by the arch glue code. */ p->def_arg_reg[5] = reds_in; #endif p->flags &= ~F_HIPE_MODE; return p; }
void erts_queue_dist_message(Process *rcvr, ErtsProcLocks *rcvr_locks, ErtsDistExternal *dist_ext, Eterm token) { ErlMessage* mp; #ifdef USE_VM_PROBES Sint tok_label = 0; Sint tok_lastcnt = 0; Sint tok_serial = 0; #endif #ifdef ERTS_SMP erts_aint_t state; #endif ERTS_SMP_LC_ASSERT(*rcvr_locks == erts_proc_lc_my_proc_locks(rcvr)); mp = message_alloc(); #ifdef ERTS_SMP if (!(*rcvr_locks & ERTS_PROC_LOCK_MSGQ)) { if (erts_smp_proc_trylock(rcvr, ERTS_PROC_LOCK_MSGQ) == EBUSY) { ErtsProcLocks need_locks = ERTS_PROC_LOCK_MSGQ; if (*rcvr_locks & ERTS_PROC_LOCK_STATUS) { erts_smp_proc_unlock(rcvr, ERTS_PROC_LOCK_STATUS); need_locks |= ERTS_PROC_LOCK_STATUS; } erts_smp_proc_lock(rcvr, need_locks); } } state = erts_smp_atomic32_read_acqb(&rcvr->state); if (state & (ERTS_PSFLG_PENDING_EXIT|ERTS_PSFLG_EXITING)) { if (!(*rcvr_locks & ERTS_PROC_LOCK_MSGQ)) erts_smp_proc_unlock(rcvr, ERTS_PROC_LOCK_MSGQ); /* Drop message if receiver is exiting or has a pending exit ... */ if (is_not_nil(token)) { ErlHeapFragment *heap_frag; heap_frag = erts_dist_ext_trailer(mp->data.dist_ext); erts_cleanup_offheap(&heap_frag->off_heap); } erts_free_dist_ext_copy(dist_ext); message_free(mp); } else #endif if (IS_TRACED_FL(rcvr, F_TRACE_RECEIVE)) { /* Ahh... need to decode it in order to trace it... */ ErlHeapFragment *mbuf; Eterm msg; if (!(*rcvr_locks & ERTS_PROC_LOCK_MSGQ)) erts_smp_proc_unlock(rcvr, ERTS_PROC_LOCK_MSGQ); message_free(mp); msg = erts_msg_distext2heap(rcvr, rcvr_locks, &mbuf, &token, dist_ext); if (is_value(msg)) #ifdef USE_VM_PROBES if (DTRACE_ENABLED(message_queued)) { DTRACE_CHARBUF(receiver_name, DTRACE_TERM_BUF_SIZE); dtrace_proc_str(rcvr, receiver_name); if (token != NIL && token != am_have_dt_utag) { tok_label = signed_val(SEQ_TRACE_T_LABEL(token)); tok_lastcnt = signed_val(SEQ_TRACE_T_LASTCNT(token)); tok_serial = signed_val(SEQ_TRACE_T_SERIAL(token)); } DTRACE6(message_queued, receiver_name, size_object(msg), rcvr->msg.len, tok_label, tok_lastcnt, tok_serial); } #endif erts_queue_message(rcvr, rcvr_locks, mbuf, msg, token); } else { /* Enqueue message on external format */ ERL_MESSAGE_TERM(mp) = THE_NON_VALUE; #ifdef USE_VM_PROBES ERL_MESSAGE_DT_UTAG(mp) = NIL; if (token == am_have_dt_utag) { ERL_MESSAGE_TOKEN(mp) = NIL; } else { #endif ERL_MESSAGE_TOKEN(mp) = token; #ifdef USE_VM_PROBES } #endif mp->next = NULL; #ifdef USE_VM_PROBES if (DTRACE_ENABLED(message_queued)) { DTRACE_CHARBUF(receiver_name, DTRACE_TERM_BUF_SIZE); dtrace_proc_str(rcvr, receiver_name); if (token != NIL && token != am_have_dt_utag) { tok_label = signed_val(SEQ_TRACE_T_LABEL(token)); tok_lastcnt = signed_val(SEQ_TRACE_T_LASTCNT(token)); tok_serial = signed_val(SEQ_TRACE_T_SERIAL(token)); } /* * TODO: We don't know the real size of the external message here. * -1 will appear to a D script as 4294967295. */ DTRACE6(message_queued, receiver_name, -1, rcvr->msg.len + 1, tok_label, tok_lastcnt, tok_serial); } #endif mp->data.dist_ext = dist_ext; LINK_MESSAGE(rcvr, mp); if (!(*rcvr_locks & ERTS_PROC_LOCK_MSGQ)) erts_smp_proc_unlock(rcvr, ERTS_PROC_LOCK_MSGQ); erts_proc_notify_new_message(rcvr, #ifdef ERTS_SMP *rcvr_locks #else 0 #endif ); } }
static int open_port(Process* p, Eterm name, Eterm settings, int *err_nump) { #define OPEN_PORT_ERROR(VAL) do { port_num = (VAL); goto do_return; } while (0) int i, port_num; Eterm option; Uint arity; Eterm* tp; Uint* nargs; erts_driver_t* driver; char* name_buf = NULL; SysDriverOpts opts; int binary_io; int soft_eof; Sint linebuf; Eterm edir = NIL; byte dir[MAXPATHLEN]; /* These are the defaults */ opts.packet_bytes = 0; opts.use_stdio = 1; opts.redir_stderr = 0; opts.read_write = 0; opts.hide_window = 0; opts.wd = NULL; opts.envir = NULL; opts.exit_status = 0; opts.overlapped_io = 0; opts.spawn_type = ERTS_SPAWN_ANY; opts.argv = NULL; binary_io = 0; soft_eof = 0; linebuf = 0; *err_nump = 0; if (is_not_list(settings) && is_not_nil(settings)) { goto badarg; } /* * Parse the settings. */ if (is_not_nil(settings)) { nargs = list_val(settings); while (1) { if (is_tuple_arity(*nargs, 2)) { tp = tuple_val(*nargs); arity = *tp++; option = *tp++; if (option == am_packet) { if (is_not_small(*tp)) { goto badarg; } opts.packet_bytes = signed_val(*tp); switch (opts.packet_bytes) { case 1: case 2: case 4: break; default: goto badarg; } } else if (option == am_line) { if (is_not_small(*tp)) { goto badarg; } linebuf = signed_val(*tp); if (linebuf <= 0) { goto badarg; } } else if (option == am_env) { byte* bytes; if ((bytes = convert_environment(p, *tp)) == NULL) { goto badarg; } opts.envir = (char *) bytes; } else if (option == am_args) { char **av; char **oav = opts.argv; if ((av = convert_args(*tp)) == NULL) { goto badarg; } opts.argv = av; if (oav) { opts.argv[0] = oav[0]; oav[0] = erts_default_arg0; free_args(oav); } } else if (option == am_arg0) { char *a0; if ((a0 = erts_convert_filename_to_native(*tp, ERTS_ALC_T_TMP, 1)) == NULL) { goto badarg; } if (opts.argv == NULL) { opts.argv = erts_alloc(ERTS_ALC_T_TMP, 2 * sizeof(char **)); opts.argv[0] = a0; opts.argv[1] = NULL; } else { if (opts.argv[0] != erts_default_arg0) { erts_free(ERTS_ALC_T_TMP, opts.argv[0]); } opts.argv[0] = a0; } } else if (option == am_cd) { edir = *tp; } else { goto badarg; } } else if (*nargs == am_stream) { opts.packet_bytes = 0; } else if (*nargs == am_use_stdio) { opts.use_stdio = 1; } else if (*nargs == am_stderr_to_stdout) { opts.redir_stderr = 1; } else if (*nargs == am_line) { linebuf = 512; } else if (*nargs == am_nouse_stdio) { opts.use_stdio = 0; } else if (*nargs == am_binary) { binary_io = 1; } else if (*nargs == am_in) { opts.read_write |= DO_READ; } else if (*nargs == am_out) { opts.read_write |= DO_WRITE; } else if (*nargs == am_eof) { soft_eof = 1; } else if (*nargs == am_hide) { opts.hide_window = 1; } else if (*nargs == am_exit_status) { opts.exit_status = 1; } else if (*nargs == am_overlapped_io) { opts.overlapped_io = 1; } else { goto badarg; } if (is_nil(*++nargs)) break; if (is_not_list(*nargs)) { goto badarg; } nargs = list_val(*nargs); } } if (opts.read_write == 0) /* implement default */ opts.read_write = DO_READ|DO_WRITE; /* Mutually exclusive arguments. */ if((linebuf && opts.packet_bytes) || (opts.redir_stderr && !opts.use_stdio)) { goto badarg; } /* * Parse the first argument and start the appropriate driver. */ if (is_atom(name) || (i = is_string(name))) { /* a vanilla port */ if (is_atom(name)) { name_buf = (char *) erts_alloc(ERTS_ALC_T_TMP, atom_tab(atom_val(name))->len+1); sys_memcpy((void *) name_buf, (void *) atom_tab(atom_val(name))->name, atom_tab(atom_val(name))->len); name_buf[atom_tab(atom_val(name))->len] = '\0'; } else { name_buf = (char *) erts_alloc(ERTS_ALC_T_TMP, i + 1); if (intlist_to_buf(name, name_buf, i) != i) erl_exit(1, "%s:%d: Internal error\n", __FILE__, __LINE__); name_buf[i] = '\0'; } driver = &vanilla_driver; } else { if (is_not_tuple(name)) { goto badarg; /* Not a process or fd port */ } tp = tuple_val(name); arity = *tp++; if (arity == make_arityval(0)) { goto badarg; } if (*tp == am_spawn || *tp == am_spawn_driver) { /* A process port */ if (arity != make_arityval(2)) { goto badarg; } name = tp[1]; if (is_atom(name)) { name_buf = (char *) erts_alloc(ERTS_ALC_T_TMP, atom_tab(atom_val(name))->len+1); sys_memcpy((void *) name_buf, (void *) atom_tab(atom_val(name))->name, atom_tab(atom_val(name))->len); name_buf[atom_tab(atom_val(name))->len] = '\0'; } else if ((i = is_string(name))) { name_buf = (char *) erts_alloc(ERTS_ALC_T_TMP, i + 1); if (intlist_to_buf(name, name_buf, i) != i) erl_exit(1, "%s:%d: Internal error\n", __FILE__, __LINE__); name_buf[i] = '\0'; } else { goto badarg; } if (*tp == am_spawn_driver) { opts.spawn_type = ERTS_SPAWN_DRIVER; } driver = &spawn_driver; } else if (*tp == am_spawn_executable) { /* A program */ /* * {spawn_executable,Progname} */ if (arity != make_arityval(2)) { goto badarg; } name = tp[1]; if ((name_buf = erts_convert_filename_to_native(name,ERTS_ALC_T_TMP,0)) == NULL) { goto badarg; } opts.spawn_type = ERTS_SPAWN_EXECUTABLE; driver = &spawn_driver; } else if (*tp == am_fd) { /* An fd port */ int n; struct Sint_buf sbuf; char* p; if (arity != make_arityval(3)) { goto badarg; } if (is_not_small(tp[1]) || is_not_small(tp[2])) { goto badarg; } opts.ifd = unsigned_val(tp[1]); opts.ofd = unsigned_val(tp[2]); /* Syntesize name from input and output descriptor. */ name_buf = erts_alloc(ERTS_ALC_T_TMP, 2*sizeof(struct Sint_buf) + 2); p = Sint_to_buf(opts.ifd, &sbuf); n = sys_strlen(p); sys_strncpy(name_buf, p, n); name_buf[n] = '/'; p = Sint_to_buf(opts.ofd, &sbuf); sys_strcpy(name_buf+n+1, p); driver = &fd_driver; } else { goto badarg; } } if ((driver != &spawn_driver && opts.argv != NULL) || (driver == &spawn_driver && opts.spawn_type != ERTS_SPAWN_EXECUTABLE && opts.argv != NULL)) { /* Argument vector only if explicit spawn_executable */ goto badarg; } if (edir != NIL) { /* A working directory is expressed differently if spawn_executable, i.e. Unicode is handles for spawn_executable... */ if (opts.spawn_type != ERTS_SPAWN_EXECUTABLE) { Eterm iolist; DeclareTmpHeap(heap,4,p); int r; UseTmpHeap(4,p); heap[0] = edir; heap[1] = make_list(heap+2); heap[2] = make_small(0); heap[3] = NIL; iolist = make_list(heap); r = io_list_to_buf(iolist, (char*) dir, MAXPATHLEN); UnUseTmpHeap(4,p); if (r < 0) { goto badarg; } opts.wd = (char *) dir; } else { if ((opts.wd = erts_convert_filename_to_native(edir,ERTS_ALC_T_TMP,0)) == NULL) { goto badarg; } } } if (driver != &spawn_driver && opts.exit_status) { goto badarg; } if (IS_TRACED_FL(p, F_TRACE_SCHED_PROCS)) { trace_virtual_sched(p, am_out); } erts_smp_proc_unlock(p, ERTS_PROC_LOCK_MAIN); port_num = erts_open_driver(driver, p->id, name_buf, &opts, err_nump); #ifdef USE_VM_PROBES if (port_num >= 0 && DTRACE_ENABLED(port_open)) { DTRACE_CHARBUF(process_str, DTRACE_TERM_BUF_SIZE); DTRACE_CHARBUF(port_str, DTRACE_TERM_BUF_SIZE); dtrace_proc_str(p, process_str); erts_snprintf(port_str, sizeof(port_str), "%T", erts_port[port_num].id); DTRACE3(port_open, process_str, name_buf, port_str); } #endif erts_smp_proc_lock(p, ERTS_PROC_LOCK_MAIN); if (port_num < 0) { DEBUGF(("open_driver returned %d(%d)\n", port_num, *err_nump)); if (IS_TRACED_FL(p, F_TRACE_SCHED_PROCS)) { trace_virtual_sched(p, am_in); } OPEN_PORT_ERROR(port_num); } if (IS_TRACED_FL(p, F_TRACE_SCHED_PROCS)) { trace_virtual_sched(p, am_in); } if (binary_io) { erts_port_status_bor_set(&erts_port[port_num], ERTS_PORT_SFLG_BINARY_IO); } if (soft_eof) { erts_port_status_bor_set(&erts_port[port_num], ERTS_PORT_SFLG_SOFT_EOF); } if (linebuf && erts_port[port_num].linebuf == NULL){ erts_port[port_num].linebuf = allocate_linebuf(linebuf); erts_port_status_bor_set(&erts_port[port_num], ERTS_PORT_SFLG_LINEBUF_IO); } do_return: if (name_buf) erts_free(ERTS_ALC_T_TMP, (void *) name_buf); if (opts.argv) { free_args(opts.argv); } if (opts.wd && opts.wd != ((char *)dir)) { erts_free(ERTS_ALC_T_TMP, (void *) opts.wd); } return port_num; badarg: *err_nump = BADARG; OPEN_PORT_ERROR(-3); goto do_return; #undef OPEN_PORT_ERROR }
Eterm erts_msg_distext2heap(Process *pp, ErtsProcLocks *plcksp, ErlHeapFragment **bpp, Eterm *tokenp, ErtsDistExternal *dist_extp) { Eterm msg; Uint tok_sz = 0; Eterm *hp = NULL; Eterm *hp_end = NULL; ErlOffHeap *ohp; Sint sz; *bpp = NULL; sz = erts_decode_dist_ext_size(dist_extp); if (sz < 0) goto decode_error; if (is_not_nil(*tokenp)) { ErlHeapFragment *heap_frag = erts_dist_ext_trailer(dist_extp); tok_sz = heap_frag->used_size; sz += tok_sz; } if (pp) hp = erts_alloc_message_heap(sz, bpp, &ohp, pp, plcksp); else { *bpp = new_message_buffer(sz); hp = (*bpp)->mem; ohp = &(*bpp)->off_heap; } hp_end = hp + sz; msg = erts_decode_dist_ext(&hp, ohp, dist_extp); if (is_non_value(msg)) goto decode_error; if (is_not_nil(*tokenp)) { ErlHeapFragment *heap_frag = erts_dist_ext_trailer(dist_extp); *tokenp = copy_struct(*tokenp, tok_sz, &hp, ohp); erts_cleanup_offheap(&heap_frag->off_heap); } erts_free_dist_ext_copy(dist_extp); if (hp_end != hp) { if (!(*bpp)) { HRelease(pp, hp_end, hp); } else { Uint final_size = hp - &(*bpp)->mem[0]; Eterm brefs[2] = {msg, *tokenp}; ASSERT(sz - (hp_end - hp) == final_size); *bpp = erts_resize_message_buffer(*bpp, final_size, &brefs[0], 2); msg = brefs[0]; *tokenp = brefs[1]; } } return msg; decode_error: if (is_not_nil(*tokenp)) { ErlHeapFragment *heap_frag = erts_dist_ext_trailer(dist_extp); erts_cleanup_offheap(&heap_frag->off_heap); } erts_free_dist_ext_copy(dist_extp); if (*bpp) { free_message_buffer(*bpp); *bpp = NULL; } else if (hp) { HRelease(pp, hp_end, hp); } return THE_NON_VALUE; }
void erts_queue_dist_message(Process *rcvr, ErtsProcLocks *rcvr_locks, ErtsDistExternal *dist_ext, Eterm token) { ErlMessage* mp; #ifdef ERTS_SMP ErtsProcLocks need_locks; #endif ERTS_SMP_LC_ASSERT(*rcvr_locks == erts_proc_lc_my_proc_locks(rcvr)); mp = message_alloc(); #ifdef ERTS_SMP need_locks = ~(*rcvr_locks) & (ERTS_PROC_LOCK_MSGQ|ERTS_PROC_LOCK_STATUS); if (need_locks) { *rcvr_locks |= need_locks; if (erts_smp_proc_trylock(rcvr, need_locks) == EBUSY) { if (need_locks == ERTS_PROC_LOCK_MSGQ) { erts_smp_proc_unlock(rcvr, ERTS_PROC_LOCK_STATUS); need_locks = (ERTS_PROC_LOCK_MSGQ | ERTS_PROC_LOCK_STATUS); } erts_smp_proc_lock(rcvr, need_locks); } } if (rcvr->is_exiting || ERTS_PROC_PENDING_EXIT(rcvr)) { /* Drop message if receiver is exiting or has a pending exit ... */ if (is_not_nil(token)) { ErlHeapFragment *heap_frag; heap_frag = erts_dist_ext_trailer(mp->data.dist_ext); erts_cleanup_offheap(&heap_frag->off_heap); } erts_free_dist_ext_copy(dist_ext); message_free(mp); } else #endif if (IS_TRACED_FL(rcvr, F_TRACE_RECEIVE)) { /* Ahh... need to decode it in order to trace it... */ ErlHeapFragment *mbuf; Eterm msg; message_free(mp); msg = erts_msg_distext2heap(rcvr, rcvr_locks, &mbuf, &token, dist_ext); if (is_value(msg)) erts_queue_message(rcvr, rcvr_locks, mbuf, msg, token); } else { /* Enqueue message on external format */ ERL_MESSAGE_TERM(mp) = THE_NON_VALUE; ERL_MESSAGE_TOKEN(mp) = token; mp->next = NULL; mp->data.dist_ext = dist_ext; LINK_MESSAGE(rcvr, mp); notify_new_message(rcvr); } }