コード例 #1
0
ファイル: ceqv.cpp プロジェクト: pazthor/lean
 // If restricted is true, we don't use (e <-> true) rewrite
 list<expr_pair> apply(expr const & e, expr const & H, bool restrited) {
     expr c, Hdec, A, arg1, arg2;
     if (is_relation(e)) {
         return mk_singleton(e, H);
     } else if (is_standard(m_env) && is_not(m_env, e, arg1)) {
         expr new_e = mk_iff(arg1, mk_false());
         expr new_H = mk_app(mk_constant(get_iff_false_intro_name()), arg1, H);
         return mk_singleton(new_e, new_H);
     } else if (is_standard(m_env) && is_and(e, arg1, arg2)) {
         // TODO(Leo): we can extend this trick to any type that has only one constructor
         expr H1 = mk_app(mk_constant(get_and_elim_left_name()), arg1, arg2, H);
         expr H2 = mk_app(mk_constant(get_and_elim_right_name()), arg1, arg2, H);
         auto r1 = apply(arg1, H1, restrited);
         auto r2 = apply(arg2, H2, restrited);
         return append(r1, r2);
     } else if (is_pi(e)) {
         // TODO(dhs): keep name?
         expr local = m_tctx.mk_tmp_local(binding_domain(e), binding_info(e));
         expr new_e = instantiate(binding_body(e), local);
         expr new_H = mk_app(H, local);
         auto r = apply(new_e, new_H, restrited);
         unsigned len = length(r);
         if (len == 0) {
             return r;
         } else if (len == 1 && head(r).first == new_e && head(r).second == new_H) {
             return mk_singleton(e, H);
         } else {
             return lift(local, r);
         }
     } else if (is_standard(m_env) && is_ite(e, c, Hdec, A, arg1, arg2) && is_prop(e)) {
         // TODO(Leo): support HoTT mode if users request
         expr not_c = mk_app(mk_constant(get_not_name()), c);
         expr Hc    = m_tctx.mk_tmp_local(c);
         expr Hnc   = m_tctx.mk_tmp_local(not_c);
         expr H1    = mk_app({mk_constant(get_implies_of_if_pos_name()),
                              c, arg1, arg2, Hdec, e, Hc});
         expr H2    = mk_app({mk_constant(get_implies_of_if_neg_name()),
                              c, arg1, arg2, Hdec, e, Hnc});
         auto r1    = lift(Hc, apply(arg1, H1, restrited));
         auto r2    = lift(Hnc, apply(arg2, H2, restrited));
         return append(r1, r2);
     } else if (!restrited) {
         expr new_e = m_tctx.whnf(e);
         if (new_e != e) {
             if (auto r = apply(new_e, H, true))
                 return r;
         }
         if (is_standard(m_env) && is_prop(e)) {
             expr new_e = mk_iff(e, mk_true());
             expr new_H = mk_app(mk_constant(get_iff_true_intro_name()), e, H);
             return mk_singleton(new_e, new_H);
         } else {
             return list<expr_pair>();
         }
     } else {
         return list<expr_pair>();
     }
 }
コード例 #2
0
ファイル: assert_cc_action.cpp プロジェクト: pazthor/lean
action_result assert_cc_action(hypothesis_idx hidx) {
    if (!get_config().m_cc)
        return action_result::failed();
    congruence_closure & cc = get_cc();
    if (has_expr_metavar(curr_state().get_hypothesis_decl(hidx).get_type()))
        return action_result::failed();
    cc.add(hidx);
    // cc.display();
    if (cc.is_inconsistent()) {
        try {
            app_builder & b  = get_app_builder();
            expr false_proof = *cc.get_inconsistency_proof();
            trace_action("contradiction by congruence closure");
            return action_result(b.mk_false_rec(curr_state().get_target(), false_proof));
        } catch (app_builder_exception &) {
            return action_result::failed();
        }
    } else {
        expr const & target = curr_state().get_target();
        name R; expr lhs, rhs;
        if (is_relation_app(target, R, lhs, rhs) && cc.is_eqv(R, lhs, rhs)) {
            expr proof = *cc.get_eqv_proof(R, lhs, rhs);
            trace_action("equivalence by congruence closure");
            return action_result(proof);
        } else if (is_prop(target) && !is_false(target) && cc.proved(target)) {
            expr proof = *cc.get_proof(target);
            trace_action("equivalent to true by congruence closure");
            return action_result(proof);
        } else {
            return action_result::new_branch();
        }
    }
}
コード例 #3
0
action_result by_contradiction_action() {
    state &  s  = curr_state();
    expr target = whnf(s.get_target());
    if (!is_prop(target)) return action_result::failed();
    if (blast::is_false(target)) return action_result::failed();
    expr not_target;
    if (is_not(target, not_target)) {
        s.set_target(mk_arrow(not_target, mk_constant(get_false_name())));
        return intros_action(1);
    }
    blast_tmp_type_context tmp_tctx;
    optional<expr> target_decidable = tmp_tctx->mk_class_instance(mk_app(mk_constant(get_decidable_name()), target));
    if (!target_decidable) return action_result::failed();
    expr href = s.mk_hypothesis(get_app_builder().mk_not(target));
    auto pcell = new by_contradiction_proof_step_cell(href);
    s.push_proof_step(pcell);
    s.set_target(mk_constant(get_false_name()));
    trace_action("by_contradiction");
    return action_result::new_branch();
}
コード例 #4
0
ファイル: projection.cpp プロジェクト: bmalehorn/lean
environment mk_projections(environment const & env, name const & n, buffer<name> const & proj_names,
                           implicit_infer_kind infer_k, bool inst_implicit) {
    // Given an inductive datatype C A (where A represent parameters)
    //   intro : Pi A (x_1 : B_1[A]) (x_2 : B_2[A, x_1]) ..., C A
    //
    // we generate projections of the form
    //   proj_i A (c : C A) : B_i[A, (proj_1 A n), ..., (proj_{i-1} A n)]
    //     C.rec A (fun (x : C A), B_i[A, ...]) (fun (x_1 ... x_n), x_i) c
    auto p = get_nparam_intro_rule(env, n);
    name_generator ngen;
    unsigned nparams             = p.first;
    inductive::intro_rule intro  = p.second;
    expr intro_type              = inductive::intro_rule_type(intro);
    name rec_name                = inductive::get_elim_name(n);
    declaration ind_decl         = env.get(n);
    if (env.impredicative() && is_prop(ind_decl.get_type()))
        throw exception(sstream() << "projection generation, '" << n << "' is a proposition");
    declaration rec_decl         = env.get(rec_name);
    level_param_names lvl_params = ind_decl.get_univ_params();
    levels lvls                  = param_names_to_levels(lvl_params);
    buffer<expr> params; // datatype parameters
    for (unsigned i = 0; i < nparams; i++) {
        if (!is_pi(intro_type))
            throw_ill_formed(n);
        expr param = mk_local(ngen.next(), binding_name(intro_type), binding_domain(intro_type), binder_info());
        intro_type = instantiate(binding_body(intro_type), param);
        params.push_back(param);
    }
    expr C_A                     = mk_app(mk_constant(n, lvls), params);
    binder_info c_bi             = inst_implicit ? mk_inst_implicit_binder_info() : binder_info();
    expr c                       = mk_local(ngen.next(), name("c"), C_A, c_bi);
    buffer<expr> intro_type_args; // arguments that are not parameters
    expr it = intro_type;
    while (is_pi(it)) {
        expr local = mk_local(ngen.next(), binding_name(it), binding_domain(it), binding_info(it));
        intro_type_args.push_back(local);
        it = instantiate(binding_body(it), local);
    }
    buffer<expr> projs; // projections generated so far
    unsigned i = 0;
    environment new_env = env;
    for (name const & proj_name : proj_names) {
        if (!is_pi(intro_type))
            throw exception(sstream() << "generating projection '" << proj_name << "', '"
                            << n << "' does not have sufficient data");
        expr result_type   = binding_domain(intro_type);
        buffer<expr> proj_args;
        proj_args.append(params);
        proj_args.push_back(c);
        expr type_former   = Fun(c, result_type);
        expr minor_premise = Fun(intro_type_args, mk_var(intro_type_args.size() - i - 1));
        expr major_premise = c;
        type_checker tc(new_env);
        level l            = sort_level(tc.ensure_sort(tc.infer(result_type).first).first);
        levels rec_lvls    = append(to_list(l), lvls);
        expr rec           = mk_constant(rec_name, rec_lvls);
        buffer<expr> rec_args;
        rec_args.append(params);
        rec_args.push_back(type_former);
        rec_args.push_back(minor_premise);
        rec_args.push_back(major_premise);
        expr rec_app      = mk_app(rec, rec_args);
        expr proj_type    = Pi(proj_args, result_type);
        proj_type         = infer_implicit_params(proj_type, nparams, infer_k);
        expr proj_val     = Fun(proj_args, rec_app);
        bool opaque       = false;
        bool use_conv_opt = false;
        declaration new_d = mk_definition(env, proj_name, lvl_params, proj_type, proj_val,
                                          opaque, rec_decl.get_module_idx(), use_conv_opt);
        new_env = module::add(new_env, check(new_env, new_d));
        new_env = set_reducible(new_env, proj_name, reducible_status::Reducible);
        new_env = add_unfold_c_hint(new_env, proj_name, nparams);
        new_env = save_projection_info(new_env, proj_name, inductive::intro_rule_name(intro), nparams, i, inst_implicit);
        expr proj         = mk_app(mk_app(mk_constant(proj_name, lvls), params), c);
        intro_type        = instantiate(binding_body(intro_type), proj);
        i++;
    }
    return new_env;
}