/*override*/void* operator()( void* item ) { Harness::ConcurrencyTracker ct; if( is_serial() ) ASSERT( !my_is_running, "premature entry to serial stage" ); my_is_running = true; Buffer* b = get_buffer(item); if( b ) { if( is_ordered() ) { if( b->sequence_number == Buffer::unused ) b->sequence_number = current_token-1; else ASSERT( b->sequence_number==current_token-1, "item arrived out of order" ); } else if( is_serial() ) { if( b->sequence_number != current_token-1 && b->sequence_number != Buffer::unused ) out_of_order_count++; } ASSERT( b->id < StreamSize, NULL ); ASSERT( !my_done[b->id], "duplicate processing of token?" ); ASSERT( b->is_busy, NULL ); my_done[b->id] = true; if( my_is_last ) { b->id = Buffer::unused; b->sequence_number = Buffer::unused; __TBB_store_with_release(b->is_busy, false); } } my_is_running = false; return b; }
/*override*/Buffer* get_buffer( void* ) { unsigned long next_input; unsigned free_buffer = 0; { // lock protected scope tbb::spin_mutex::scoped_lock lock(input_lock); if( current_token>=StreamSize ) return NULL; next_input = current_token++; // once in a while, emulate waiting for input; this only makes sense for serial input if( is_serial() && WaitTest.required() ) WaitTest.probe( ); while( free_buffer<MaxBuffer ) if( __TBB_load_with_acquire(buffer[free_buffer].is_busy) ) ++free_buffer; else { buffer[free_buffer].is_busy = true; break; } } ASSERT( free_buffer<my_number_of_tokens, "premature reuse of buffer" ); Buffer* b = &buffer[free_buffer]; ASSERT( &buffer[0] <= b, NULL ); ASSERT( b <= &buffer[MaxBuffer-1], NULL ); ASSERT( b->id == Buffer::unused, NULL); b->id = next_input; ASSERT( b->sequence_number == Buffer::unused, NULL); return b; }
static struct ir_remote * read_config_recursive(FILE *f, const char *name, int depth) { char buf[LINE_LEN+1], *key, *val, *val2; int len,argc; struct ir_remote *top_rem=NULL,*rem=NULL; struct void_array codes_list,raw_codes,signals; struct ir_ncode raw_code={NULL,0,0,NULL}; struct ir_ncode name_code={NULL,0,0,NULL}; struct ir_ncode *code; int mode=ID_none; line=0; parse_error=0; LOGPRINTF(2, "parsing '%s'", name); while(fgets(buf,LINE_LEN,f)!=NULL) { line++; len=strlen(buf); if(len==LINE_LEN && buf[len-1]!='\n') { logprintf(LOG_ERR,"line %d too long in config file", line); parse_error=1; break; } if(len>0) { len--; if(buf[len]=='\n') buf[len]=0; } if(len>0) { len--; if(buf[len]=='\r') buf[len]=0; } /* ignore comments */ if(buf[0]=='#'){ continue; } key=strtok(buf, whitespace); /* ignore empty lines */ if(key==NULL) continue; val=strtok(NULL, whitespace); if(val!=NULL){ val2=strtok(NULL, whitespace); LOGPRINTF(3,"\"%s\" \"%s\"",key,val); if (strcasecmp("include",key)==0){ FILE* childFile; const char *childName; const char *fullPath; char result[FILENAME_MAX+1]; if (depth > MAX_INCLUDES) { logprintf(LOG_ERR,"error opening child file defined at %s:%d",name,line); logprintf(LOG_ERR,"too many files included"); parse_error=-1; break; } childName = lirc_parse_include(val); if (!childName){ logprintf(LOG_ERR,"error parsing child file value defined at line %d:",line); logprintf(LOG_ERR,"invalid quoting"); parse_error=-1; break; } fullPath = lirc_parse_relative(result, sizeof(result), childName, name); if (!fullPath) { logprintf(LOG_ERR,"error composing relative file path defined at line %d:",line); logprintf(LOG_ERR,"resulting path too long"); parse_error=-1; break; } childFile = fopen(fullPath, "r"); if (childFile == NULL){ logprintf(LOG_ERR,"error opening child file '%s' defined at line %d:",fullPath, line); logprintf(LOG_ERR,"ignoring this child file for now."); } else{ int save_line = line; if (!top_rem){ /* create first remote */ LOGPRINTF(2,"creating first remote"); rem = read_config_recursive(childFile, fullPath, depth + 1); if(rem != (void *) -1 && rem != NULL) { top_rem = rem; } else { rem = NULL; } }else{ /* create new remote */ LOGPRINTF(2,"creating next remote"); rem->next=read_config_recursive(childFile, fullPath, depth + 1); if(rem->next != (void *) -1 && rem->next != NULL) { rem=rem->next; } else { rem->next = NULL; } } fclose(childFile); line = save_line; } }else if (strcasecmp("begin",key)==0){ if (strcasecmp("codes", val)==0){ /* init codes mode */ LOGPRINTF(2," begin codes"); if (!checkMode(mode, ID_remote, "begin codes")) break; if (rem->codes){ logprintf(LOG_ERR,"error in configfile line %d:",line); logprintf(LOG_ERR,"codes are already defined"); parse_error=1; break; } init_void_array(&codes_list,30, sizeof(struct ir_ncode)); mode=ID_codes; }else if(strcasecmp("raw_codes",val)==0){ /* init raw_codes mode */ LOGPRINTF(2," begin raw_codes"); if(!checkMode(mode, ID_remote, "begin raw_codes")) break; if (rem->codes){ logprintf(LOG_ERR,"error in configfile line %d:",line); logprintf(LOG_ERR,"codes are already defined"); parse_error=1; break; } set_protocol(rem, RAW_CODES); raw_code.code=0; init_void_array(&raw_codes,30, sizeof(struct ir_ncode)); mode=ID_raw_codes; }else if(strcasecmp("remote",val)==0){ /* create new remote */ LOGPRINTF(1,"parsing remote"); if(!checkMode(mode, ID_none, "begin remote")) break; mode=ID_remote; if (!top_rem){ /* create first remote */ LOGPRINTF(2,"creating first remote"); rem=top_rem=s_malloc(sizeof(struct ir_remote)); }else{ /* create new remote */ LOGPRINTF(2,"creating next remote"); rem->next=s_malloc(sizeof(struct ir_remote));; rem=rem->next; } }else if(mode==ID_codes){ code=defineCode(key, val, &name_code); while(!parse_error && val2!=NULL) { struct ir_code_node *node; if(val2[0]=='#') break; /* comment */ node=defineNode(code, val2); val2=strtok(NULL, whitespace); } code->current=NULL; add_void_array(&codes_list, code); }else{ logprintf(LOG_ERR,"error in configfile line %d:",line); logprintf(LOG_ERR,"unknown section \"%s\"",val); parse_error=1; } if(!parse_error && val2!=NULL) { logprintf(LOG_WARNING,"garbage after " "'%s' token in line %d ignored", val,line); } }else if (strcasecmp("end",key)==0){ if (strcasecmp("codes", val)==0){ /* end Codes mode */ LOGPRINTF(2," end codes"); if (!checkMode(mode, ID_codes, "end codes")) break; rem->codes=get_void_array(&codes_list); mode=ID_remote; /* switch back */ }else if(strcasecmp("raw_codes",val)==0){ /* end raw codes mode */ LOGPRINTF(2," end raw_codes"); if(mode==ID_raw_name){ raw_code.signals=get_void_array(&signals); raw_code.length=signals.nr_items; if(raw_code.length%2==0) { logprintf(LOG_ERR,"error in configfile line %d:",line); logprintf(LOG_ERR,"bad signal length"); parse_error=1; } if(!add_void_array(&raw_codes, &raw_code)) break; mode=ID_raw_codes; } if(!checkMode(mode,ID_raw_codes, "end raw_codes")) break; rem->codes=get_void_array(&raw_codes); mode=ID_remote; /* switch back */ }else if(strcasecmp("remote",val)==0){ /* end remote mode */ LOGPRINTF(2,"end remote"); /* print_remote(rem); */ if (!checkMode(mode,ID_remote, "end remote")) break; if(!sanityChecks(rem)) { parse_error=1; break; } # ifdef DYNCODES if(rem->dyncodes_name==NULL) { rem->dyncodes_name=s_strdup("unknown"); } rem->dyncodes[0].name=rem->dyncodes_name; rem->dyncodes[1].name=rem->dyncodes_name; # endif /* not really necessary because we clear the alloced memory */ rem->next=NULL; rem->last_code=NULL; mode=ID_none; /* switch back */ }else if(mode==ID_codes){ code=defineCode(key, val, &name_code); while(!parse_error && val2!=NULL) { struct ir_code_node *node; if(val2[0]=='#') break; /* comment */ node=defineNode(code, val2); val2=strtok(NULL, whitespace); } code->current=NULL; add_void_array(&codes_list, code); }else{ logprintf(LOG_ERR,"error in configfile line %d:",line); logprintf(LOG_ERR,"unknown section %s",val); parse_error=1; } if(!parse_error && val2!=NULL) { logprintf(LOG_WARNING,"garbage after '%s'" " token in line %d ignored", val,line); } } else { switch (mode){ case ID_remote: argc=defineRemote(key, val, val2, rem); if(!parse_error && ((argc==1 && val2!=NULL) || (argc==2 && val2!=NULL && strtok(NULL, whitespace)!=NULL))) { logprintf(LOG_WARNING,"garbage after '%s'" " token in line %d ignored", key,line); } break; case ID_codes: code=defineCode(key, val, &name_code); while(!parse_error && val2!=NULL) { struct ir_code_node *node; if(val2[0]=='#') break; /* comment */ node=defineNode(code, val2); val2=strtok(NULL, whitespace); } code->current=NULL; add_void_array(&codes_list, code); break; case ID_raw_codes: case ID_raw_name: if(strcasecmp("name",key)==0){ LOGPRINTF(3,"Button: \"%s\"",val); if(mode==ID_raw_name) { raw_code.signals=get_void_array(&signals); raw_code.length=signals.nr_items; if(raw_code.length%2==0) { logprintf(LOG_ERR,"error in configfile line %d:",line); logprintf(LOG_ERR,"bad signal length"); parse_error=1; } if(!add_void_array(&raw_codes, &raw_code)) break; } if(!(raw_code.name=s_strdup(val))){ break; } raw_code.code++; init_void_array(&signals,50,sizeof(lirc_t)); mode=ID_raw_name; if(!parse_error && val2!=NULL) { logprintf(LOG_WARNING,"garbage after '%s'" " token in line %d ignored", key,line); } }else{ if(mode==ID_raw_codes) { logprintf(LOG_ERR,"no name for signal defined at line %d",line); parse_error=1; break; } if(!addSignal(&signals, key)) break; if(!addSignal(&signals, val)) break; if (val2){ if (!addSignal(&signals, val2)){ break; } } while ((val=strtok(NULL, whitespace))){ if (!addSignal(&signals, val)) break; } } break; } } }else if(mode==ID_raw_name){ if(!addSignal(&signals, key)){ break; } }else{ logprintf(LOG_ERR,"error in configfile line %d", line); parse_error=1; break; } if (parse_error){ break; } } if(mode!=ID_none) { switch(mode) { case ID_raw_name: if(raw_code.name!=NULL) { free(raw_code.name); if(get_void_array(&signals)!=NULL) free(get_void_array(&signals)); } case ID_raw_codes: rem->codes=get_void_array(&raw_codes); break; case ID_codes: rem->codes=get_void_array(&codes_list); break; } if(!parse_error) { logprintf(LOG_ERR,"unexpected end of file"); parse_error=1; } } if (parse_error){ static int print_error = 1; if(print_error) { logprintf(LOG_ERR, "reading of file '%s' failed", name); print_error = 0; } free_config(top_rem); if(depth == 0) print_error = 1; return((void *) -1); } /* kick reverse flag */ /* handle RC6 flag to be backwards compatible: previous RC-6 config files did not set rc6_mask */ rem=top_rem; while(rem!=NULL) { if((!is_raw(rem)) && rem->flags&REVERSE) { struct ir_ncode *codes; if(has_pre(rem)) { rem->pre_data=reverse(rem->pre_data, rem->pre_data_bits); } if(has_post(rem)) { rem->post_data=reverse(rem->post_data, rem->post_data_bits); } codes=rem->codes; while(codes->name!=NULL) { codes->code=reverse(codes->code,rem->bits); codes++; } rem->flags=rem->flags&(~REVERSE); rem->flags=rem->flags|COMPAT_REVERSE; /* don't delete the flag because we still need it to remain compatible with older versions */ } if(rem->flags&RC6 && rem->rc6_mask==0 && rem->toggle_bit>0) { int all_bits=bit_count(rem); rem->rc6_mask=((ir_code) 1)<<(all_bits-rem->toggle_bit); } if(rem->toggle_bit > 0) { int all_bits=bit_count(rem); if(has_toggle_bit_mask(rem)) { logprintf(LOG_WARNING, "%s uses both toggle_bit and " "toggle_bit_mask", rem->name); } else { rem->toggle_bit_mask=((ir_code) 1)<<(all_bits-rem->toggle_bit); } rem->toggle_bit = 0; } if(has_toggle_bit_mask(rem)) { if(!is_raw(rem) && rem->codes) { rem->toggle_bit_mask_state = (rem->codes->code & rem->toggle_bit_mask); if(rem->toggle_bit_mask_state) { /* start with state set to 0 for backwards compatibility */ rem->toggle_bit_mask_state ^= rem->toggle_bit_mask; } } } if(is_serial(rem)) { lirc_t base; if(rem->baud>0) { base=1000000/rem->baud; if(rem->pzero==0 && rem->szero==0) { rem->pzero=base; } if(rem->pone==0 && rem->sone==0) { rem->sone=base; } } if(rem->bits_in_byte==0) { rem->bits_in_byte=8; } } if(rem->min_code_repeat>0) { if(!has_repeat(rem) || rem->min_code_repeat>rem->min_repeat) { logprintf(LOG_WARNING, "invalid min_code_repeat value"); rem->min_code_repeat = 0; } } calculate_signal_lengths(rem); rem=rem->next; } top_rem = sort_by_bit_count(top_rem); # if defined(DEBUG) && !defined(DAEMONIZE) /*fprint_remotes(stderr, top_rem);*/ # endif return (top_rem); }
void fprint_remote_head(FILE *f, struct ir_remote *rem) { fprintf(f, "begin remote\n\n"); if(!is_raw(rem)){ fprintf(f, " name %s\n",rem->name); fprintf(f, " bits %5d\n",rem->bits); fprint_flags(f,rem->flags); fprintf(f, " eps %5d\n",rem->eps); fprintf(f, " aeps %5d\n\n",rem->aeps); if(has_header(rem)) { fprintf(f, " header %5lu %5lu\n", (unsigned long) rem->phead, (unsigned long) rem->shead); } if(rem->pthree!=0 || rem->sthree!=0) fprintf(f, " three %5lu %5lu\n", (unsigned long) rem->pthree, (unsigned long) rem->sthree); if(rem->ptwo!=0 || rem->stwo!=0) fprintf(f, " two %5lu %5lu\n", (unsigned long) rem->ptwo, (unsigned long) rem->stwo); fprintf(f, " one %5lu %5lu\n", (unsigned long) rem->pone, (unsigned long) rem->sone); fprintf(f, " zero %5lu %5lu\n", (unsigned long) rem->pzero, (unsigned long) rem->szero); if(rem->ptrail!=0) { fprintf(f, " ptrail %5lu\n", (unsigned long) rem->ptrail); } if(rem->plead!=0) { fprintf(f, " plead %5lu\n", (unsigned long) rem->plead); } if(has_foot(rem)) { fprintf(f, " foot %5lu %5lu\n", (unsigned long) rem->pfoot, (unsigned long) rem->sfoot); } if(has_repeat(rem)) { fprintf(f, " repeat %5lu %5lu\n", (unsigned long) rem->prepeat, (unsigned long) rem->srepeat); } if(rem->pre_data_bits>0) { fprintf(f, " pre_data_bits %d\n",rem->pre_data_bits); # ifdef LONG_IR_CODE fprintf(f, " pre_data 0x%llX\n",rem->pre_data); # else fprintf(f, " pre_data 0x%lX\n",rem->pre_data); # endif } if(rem->post_data_bits>0) { fprintf(f, " post_data_bits %d\n",rem->post_data_bits); # ifdef LONG_IR_CODE fprintf(f, " post_data 0x%llX\n",rem->post_data); # else fprintf(f, " post_data 0x%lX\n",rem->post_data); # endif } if(rem->pre_p!=0 && rem->pre_s!=0) { fprintf(f, " pre %5lu %5lu\n", (unsigned long) rem->pre_p, (unsigned long) rem->pre_s); } if(rem->post_p!=0 && rem->post_s!=0) { fprintf(f, " post %5lu %5lu\n", (unsigned long) rem->post_p, (unsigned long) rem->post_s); } fprintf(f, " gap %lu\n", (unsigned long) rem->gap); if(has_repeat_gap(rem)) { fprintf(f, " repeat_gap %lu\n", (unsigned long) rem->repeat_gap); } if(rem->min_repeat>0) { fprintf(f, " min_repeat %d\n",rem->min_repeat); } if(rem->min_code_repeat>0) { fprintf(f, " min_code_repeat %d\n", rem->min_code_repeat); } # ifdef LONG_IR_CODE fprintf(f, " toggle_bit_mask 0x%llX\n", rem->toggle_bit_mask); # else fprintf(f, " toggle_bit_mask 0x%lX\n", rem->toggle_bit_mask); # endif if(has_toggle_mask(rem)) { # ifdef LONG_IR_CODE fprintf(f, " toggle_mask 0x%llX\n", rem->toggle_mask); # else fprintf(f, " toggle_mask 0x%lX\n", rem->toggle_mask); # endif } if(rem->rc6_mask!=0) { # ifdef LONG_IR_CODE fprintf(f, " rc6_mask 0x%llX\n", rem->rc6_mask); # else fprintf(f, " rc6_mask 0x%lX\n", rem->rc6_mask); # endif } if(is_serial(rem)) { fprintf(f, " baud %d\n",rem->baud); fprintf(f, " serial_mode %dN%d%s\n", rem->bits_in_byte, rem->stop_bits/2, rem->stop_bits%2 ? ".5":""); } } else { fprintf(f, " name %s\n",rem->name); fprint_flags(f,rem->flags); fprintf(f, " eps %5d\n",rem->eps); fprintf(f, " aeps %5d\n\n",rem->aeps); fprintf(f, " ptrail %5lu\n",(unsigned long) rem->ptrail); fprintf(f, " repeat %5lu %5lu\n", (unsigned long) rem->prepeat, (unsigned long) rem->srepeat); fprintf(f, " gap %lu\n",(unsigned long) rem->gap); } if(rem->freq!=0) { fprintf(f, " frequency %u\n",rem->freq); } if(rem->duty_cycle!=0) { fprintf(f, " duty_cycle %u\n",rem->duty_cycle); } fprintf(f,"\n"); }
void print_line(int fd, struct cl_t *line, unsigned char *details, pid_t pid, int index, time_t until) /* print some basic fields of a line, and some more if details == 1 */ { char buf[TERM_LEN]; int len = 0; struct tm *ftime; len = snprintf(buf, sizeof(buf), "%-5ld", line->cl_id); if ( bit_test(details, FIELD_USER) ) len += snprintf(buf+len, sizeof(buf)-len, " %-6s", line->cl_file->cf_user); if ( bit_test(details, FIELD_PID) ) len += snprintf(buf+len, sizeof(buf)-len, " %-7d", pid); if ( bit_test(details, FIELD_INDEX) ) len += snprintf(buf+len, sizeof(buf)-len, " %-5d", index); if ( bit_test(details, FIELD_RQ) ) len += snprintf(buf+len, sizeof(buf)-len, " %-4d", line->cl_numexe); if ( bit_test(details, FIELD_OPTIONS) ) { char opt[9]; int i = 0; opt[0] = '\0'; if ( is_lavg(line->cl_option) ) i += snprintf(opt+i, sizeof(opt)-i, "L%.*s", (is_lavg_sev(line->cl_option)) ? 0:1, "O"); if ( is_serial(line->cl_option) ) i += snprintf(opt+i, sizeof(opt)-i, "%.*sS%.*s", i, ",", (is_serial_sev(line->cl_option)) ? 0:1, "O"); if ( is_exe_sev(line->cl_option) ) i += snprintf(opt+i, sizeof(opt)-i, "%.*sES", i, ","); len += snprintf(buf+len, sizeof(buf)-len, " %-9s", opt); } if ( bit_test(details, FIELD_LAVG) ) { len += snprintf(buf+len, sizeof(buf)-len, " %.1f,%.1f,%.1f", ((double)((line->cl_lavg)[0]))/10, ((double)((line->cl_lavg)[1]))/10, ((double)((line->cl_lavg)[2]))/10); if ( until > 0 ) { ftime = localtime( &until ); len += snprintf(buf+len, sizeof(buf)-len, " %02d/%02d/%d %02d:%02d %s", (ftime->tm_mon + 1), ftime->tm_mday, (ftime->tm_year + 1900), ftime->tm_hour, ftime->tm_min, (is_strict(line->cl_option)) ? "Y":"N"); } else len += snprintf(buf+len, sizeof(buf)-len, " %18s", " (no until set) "); } if ( bit_test(details, FIELD_SCHEDULE) ) { ftime = localtime( &(line->cl_nextexe) ); len += snprintf(buf+len, sizeof(buf)-len, " %02d/%02d/%d %02d:%02d", (ftime->tm_mon + 1), ftime->tm_mday, (ftime->tm_year + 1900), ftime->tm_hour, ftime->tm_min ); } len += snprintf(buf+len, sizeof(buf)-len, " %s\n", line->cl_shell); if ( send(fd, buf, (len < sizeof(buf)) ? len : sizeof(buf), 0) < 0 ) error_e("error in send()"); }
void fprint_remote_head(FILE* f, const struct ir_remote* rem) { fprintf(f, "begin remote\n\n"); fprintf(f, " name %s\n", rem->name); if (rem->manual_sort) fprintf(f, " manual_sort %d\n", rem->manual_sort); if (rem->driver) fprintf(f, " driver %s\n", rem->driver); if (!is_raw(rem)) fprintf(f, " bits %5d\n", rem->bits); fprint_flags(f, rem->flags); fprintf(f, " eps %5d\n", rem->eps); fprintf(f, " aeps %5d\n\n", rem->aeps); if (!is_raw(rem)) { if (has_header(rem)) fprintf(f, " header %5u %5u\n", (__u32)rem->phead, (__u32)rem->shead); if (rem->pthree != 0 || rem->sthree != 0) fprintf(f, " three %5u %5u\n", (__u32)rem->pthree, (__u32)rem->sthree); if (rem->ptwo != 0 || rem->stwo != 0) fprintf(f, " two %5u %5u\n", (__u32)rem->ptwo, (__u32)rem->stwo); fprintf(f, " one %5u %5u\n", (__u32)rem->pone, (__u32)rem->sone); fprintf(f, " zero %5u %5u\n", (__u32)rem->pzero, (__u32)rem->szero); } if (rem->ptrail != 0) fprintf(f, " ptrail %5u\n", (__u32)rem->ptrail); if (!is_raw(rem)) { if (rem->plead != 0) fprintf(f, " plead %5u\n", (__u32)rem->plead); if (has_foot(rem)) fprintf(f, " foot %5u %5u\n", (__u32)rem->pfoot, (__u32)rem->sfoot); } if (has_repeat(rem)) fprintf(f, " repeat %5u %5u\n", (__u32)rem->prepeat, (__u32)rem->srepeat); if (!is_raw(rem)) { if (rem->pre_data_bits > 0) { fprintf(f, " pre_data_bits %d\n", rem->pre_data_bits); fprintf(f, " pre_data 0x%llX\n", (unsigned long long)rem->pre_data); } if (rem->post_data_bits > 0) { fprintf(f, " post_data_bits %d\n", rem->post_data_bits); fprintf(f, " post_data 0x%llX\n", (unsigned long long)rem->post_data); } if (rem->pre_p != 0 && rem->pre_s != 0) fprintf(f, " pre %5u %5u\n", (__u32)rem->pre_p, (__u32)rem->pre_s); if (rem->post_p != 0 && rem->post_s != 0) fprintf(f, " post %5u %5u\n", (__u32)rem->post_p, (__u32)rem->post_s); } fprint_remote_gap(f, rem); if (has_repeat_gap(rem)) fprintf(f, " repeat_gap %u\n", (__u32)rem->repeat_gap); if (rem->suppress_repeat > 0) fprintf(f, " suppress_repeat %d\n", rem->suppress_repeat); if (rem->min_repeat > 0) { fprintf(f, " min_repeat %d\n", rem->min_repeat); if (rem->suppress_repeat == 0) { fprintf(f, "# suppress_repeat %d\n", rem->min_repeat); fprintf(f, "# uncomment to suppress unwanted repeats\n"); } } if (!is_raw(rem)) { if (rem->min_code_repeat > 0) fprintf(f, " min_code_repeat %d\n", rem->min_code_repeat); fprintf(f, " toggle_bit_mask 0x%llX\n", (unsigned long long)rem->toggle_bit_mask); if (has_toggle_mask(rem)) fprintf(f, " toggle_mask 0x%llX\n", (unsigned long long)rem->toggle_mask); if (rem->repeat_mask != 0) fprintf(f, " repeat_mask 0x%llX\n", (unsigned long long)rem->repeat_mask); if (rem->rc6_mask != 0) fprintf(f, " rc6_mask 0x%llX\n", (unsigned long long)rem->rc6_mask); if (has_ignore_mask(rem)) fprintf(f, " ignore_mask 0x%llX\n", (unsigned long long)rem->ignore_mask); if (is_serial(rem)) { fprintf(f, " baud %d\n", rem->baud); fprintf(f, " serial_mode %dN%d%s\n", rem->bits_in_byte, rem->stop_bits / 2, rem->stop_bits % 2 ? ".5" : ""); } } if (rem->freq != 0) fprintf(f, " frequency %u\n", rem->freq); if (rem->duty_cycle != 0) fprintf(f, " duty_cycle %u\n", rem->duty_cycle); fprintf(f, "\n"); }
int init_send(struct ir_remote *remote,struct ir_ncode *code) { int i, repeat=0; if(is_grundig(remote) || is_goldstar(remote) || is_serial(remote) || is_bo(remote)) { logprintf(LOG_ERR,"sorry, can't send this protocol yet"); return(0); } clear_send_buffer(); if(is_biphase(remote)) { send_buffer.is_biphase=1; } if(repeat_remote==NULL) { remote->repeat_countdown=remote->min_repeat; } else { repeat = 1; } init_send_loop: if(repeat && has_repeat(remote)) { if(remote->flags&REPEAT_HEADER && has_header(remote)) { send_header(remote); } send_repeat(remote); } else { if(!is_raw(remote)) { ir_code next_code; if(code->transmit_state == NULL) { next_code = code->code; } else { next_code = code->transmit_state->code; } send_code(remote, next_code, repeat); if(has_toggle_mask(remote)) { remote->toggle_mask_state++; if(remote->toggle_mask_state==4) { remote->toggle_mask_state=2; } } send_buffer.data=send_buffer._data; } else { if(code->signals==NULL) { logprintf(LOG_ERR, "no signals for raw send"); return 0; } if(send_buffer.wptr>0) { send_signals(code->signals, code->length); } else { send_buffer.data=code->signals; send_buffer.wptr=code->length; for(i=0; i<code->length; i++) { send_buffer.sum+=code->signals[i]; } } } } sync_send_buffer(); if(bad_send_buffer()) { logprintf(LOG_ERR,"buffer too small"); return(0); } if(has_repeat_gap(remote) && repeat && has_repeat(remote)) { remote->min_remaining_gap=remote->repeat_gap; remote->max_remaining_gap=remote->repeat_gap; } else if(is_const(remote)) { if(min_gap(remote)>send_buffer.sum) { remote->min_remaining_gap=min_gap(remote)-send_buffer.sum; remote->max_remaining_gap=max_gap(remote)-send_buffer.sum; } else { logprintf(LOG_ERR,"too short gap: %u",remote->gap); remote->min_remaining_gap=min_gap(remote); remote->max_remaining_gap=max_gap(remote); return(0); } } else { remote->min_remaining_gap=min_gap(remote); remote->max_remaining_gap=max_gap(remote); } /* update transmit state */ if(code->next != NULL) { if(code->transmit_state == NULL) { code->transmit_state = code->next; } else { code->transmit_state = code->transmit_state->next; } } if((remote->repeat_countdown>0 || code->transmit_state != NULL) && remote->min_remaining_gap<LIRCD_EXACT_GAP_THRESHOLD) { if(send_buffer.data!=send_buffer._data) { lirc_t *signals; int n; LOGPRINTF(1, "unrolling raw signal optimisation"); signals=send_buffer.data; n=send_buffer.wptr; send_buffer.data=send_buffer._data; send_buffer.wptr=0; send_signals(signals, n); } LOGPRINTF(1, "concatenating low gap signals"); if(code->next == NULL || code->transmit_state == NULL) { remote->repeat_countdown--; } send_space(remote->min_remaining_gap); flush_send_buffer(); send_buffer.sum=0; repeat = 1; goto init_send_loop; } LOGPRINTF(3, "transmit buffer ready"); return(1); }