static isl_map* build_access_function (scoplib_scop_p scop, scoplib_statement_p s, scoplib_matrix_p m, isl_space* space, isl_ctx* ctxt, int* row_pos, int array_id) { isl_map* ret = NULL; int i; isl_val* tmp = isl_val_int_from_si (ctxt, 0); for (i = *row_pos; i < m->NbRows; ++i) { if (SCOPVAL_get_si(m->p[i][0]) == array_id) { ret = isl_map_universe (isl_space_copy (space)); int pos = 0; do { isl_local_space* ls = isl_local_space_from_space (isl_space_copy (space)); isl_constraint* cst = isl_equality_alloc (isl_local_space_copy (ls)); // Set input dimensions. int k; for (k = 0; k < s->nb_iterators; ++k) { tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][k+1])); cst = isl_constraint_set_coefficient_val (cst, isl_dim_in, k, isl_val_copy(tmp)); } for (k = 0; k < scop->nb_parameters; ++k) { tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][k+1+s->nb_iterators])); cst = isl_constraint_set_coefficient_val (cst, isl_dim_param, k, isl_val_copy (tmp)); } tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][m->NbColumns - 1])); cst = isl_constraint_set_constant_val (cst, isl_val_copy(tmp)); // Set output dimension. tmp = isl_val_set_si (tmp, -1); isl_constraint_set_coefficient_val (cst, isl_dim_out, pos++, isl_val_copy (tmp)); // Insert constraint. ret = isl_map_add_constraint (ret, cst); ++i; } while (i < m->NbRows && SCOPVAL_get_si(m->p[i][0]) == 0); *row_pos = i; break; } } isl_val_free (tmp); return ret; }
static void pbb_strip_mine_time_depth (poly_bb_p pbb, int time_depth, int stride) { isl_space *d; isl_constraint *c; int iter, strip; /* STRIP is the dimension that iterates with stride STRIDE. */ /* ITER is the dimension that enumerates single iterations inside one strip that has at most STRIDE iterations. */ strip = time_depth; iter = strip + 2; pbb->transformed = isl_map_insert_dims (pbb->transformed, isl_dim_out, strip, 2); /* Lower bound of the striped loop. */ d = isl_map_get_space (pbb->transformed); c = isl_inequality_alloc (isl_local_space_from_space (d)); c = isl_constraint_set_coefficient_si (c, isl_dim_out, strip, -stride); c = isl_constraint_set_coefficient_si (c, isl_dim_out, iter, 1); pbb->transformed = isl_map_add_constraint (pbb->transformed, c); /* Upper bound of the striped loop. */ d = isl_map_get_space (pbb->transformed); c = isl_inequality_alloc (isl_local_space_from_space (d)); c = isl_constraint_set_coefficient_si (c, isl_dim_out, strip, stride); c = isl_constraint_set_coefficient_si (c, isl_dim_out, iter, -1); c = isl_constraint_set_constant_si (c, stride - 1); pbb->transformed = isl_map_add_constraint (pbb->transformed, c); /* Static scheduling for ITER level. This is mandatory to keep the 2d + 1 canonical scheduling format. */ d = isl_map_get_space (pbb->transformed); c = isl_equality_alloc (isl_local_space_from_space (d)); c = isl_constraint_set_coefficient_si (c, isl_dim_out, strip + 1, 1); pbb->transformed = isl_map_add_constraint (pbb->transformed, c); }
static void pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr) { poly_bb_p pbb = PDR_PBB (pdr); isl_map *map; isl_set *set; isl_aff *aff; isl_space *dc; isl_constraint *lma, *c; isl_int islstride; graphite_dim_t time_depth; unsigned offset, nt; unsigned i; /* XXX isl rewrite following comments. */ /* Builds a partial difference equations and inserts them into pointset powerset polyhedron P. Polyhedron is assumed to have the format: T|I|T'|I'|G|S|S'|l1|l2. TIME_DEPTH is the time dimension w.r.t. which we are differentiating. OFFSET represents the number of dimensions between columns t_{time_depth} and t'_{time_depth}. DIM_SCTR is the number of scattering dimensions. It is essentially the dimensionality of the T vector. The following equations are inserted into the polyhedron P: | t_1 = t_1' | ... | t_{time_depth-1} = t'_{time_depth-1} | t_{time_depth} = t'_{time_depth} + 1 | t_{time_depth+1} = t'_{time_depth + 1} | ... | t_{dim_sctr} = t'_{dim_sctr}. */ /* Add the equality: t_{time_depth} = t'_{time_depth} + 1. This is the core part of this alogrithm, since this constraint asks for the memory access stride (difference) between two consecutive points in time dimensions. */ /* Add equalities: | t1 = t1' | ... | t_{time_depth-1} = t'_{time_depth-1} | t_{time_depth+1} = t'_{time_depth+1} | ... | t_{dim_sctr} = t'_{dim_sctr} This means that all the time dimensions are equal except for time_depth, where the constraint is t_{depth} = t'_{depth} + 1 step. More to this: we should be careful not to add equalities to the 'coupled' dimensions, which happens when the one dimension is stripmined dimension, and the other dimension corresponds to the point loop inside stripmined dimension. */ /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript] ??? [P] not used for PDRs? pdr->extent: [a,S1..nb_subscript] pbb->domain: [P1..nb_param,I1..nb_domain] pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr] [T] includes local vars (currently unused) First we create [P,I] -> [T,a,S]. */ map = isl_map_flat_range_product (isl_map_copy (pbb->transformed), isl_map_copy (pdr->accesses)); /* Add a dimension for L: [P,I] -> [T,a,S,L].*/ map = isl_map_add_dims (map, isl_dim_out, 1); /* Build a constraint for "lma[S] - L == 0", effectively calculating L in terms of subscripts. */ lma = build_linearized_memory_access (map, pdr); /* And add it to the map, so we now have: [P,I] -> [T,a,S,L] : lma([S]) == L. */ map = isl_map_add_constraint (map, lma); /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */ map = isl_map_flat_product (map, isl_map_copy (map)); /* Now add the equality T[time_depth] == T'[time_depth]+1. This will force L' to be the linear address at T[time_depth] + 1. */ time_depth = psct_dynamic_dim (pbb, depth); /* Length of [a,S] plus [L] ... */ offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out); /* ... plus [T]. */ offset += isl_map_dim (pbb->transformed, isl_dim_out); c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map))); c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1); c = isl_constraint_set_coefficient_si (c, isl_dim_out, offset + time_depth, -1); c = isl_constraint_set_constant_si (c, 1); map = isl_map_add_constraint (map, c); /* Now we equate most of the T/T' elements (making PITaSL nearly the same is (PITaSL)', except for one dimension, namely for 'depth' (an index into [I]), after translating to index into [T]. Take care to not produce an empty map, which indicates we wanted to equate two dimensions that are already coupled via the above time_depth dimension. Happens with strip mining where several scatter dimension are interdependend. */ /* Length of [T]. */ nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb); for (i = 0; i < nt; i++) if (i != time_depth) { isl_map *temp = isl_map_equate (isl_map_copy (map), isl_dim_out, i, isl_dim_out, offset + i); if (isl_map_is_empty (temp)) isl_map_free (temp); else { isl_map_free (map); map = temp; } } /* Now maximize the expression L' - L. */ set = isl_map_range (map); dc = isl_set_get_space (set); aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc)); aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1); aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1); isl_int_init (islstride); isl_set_max (set, aff, &islstride); isl_int_get_gmp (islstride, stride); isl_int_clear (islstride); isl_aff_free (aff); isl_set_free (set); if (dump_file && (dump_flags & TDF_DETAILS)) { char *str; void (*gmp_free) (void *, size_t); fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d:", pbb_index (pbb), PDR_ID (pdr), (int) depth); str = mpz_get_str (0, 10, stride); fprintf (dump_file, " %s ", str); mp_get_memory_functions (NULL, NULL, &gmp_free); (*gmp_free) (str, strlen (str) + 1); } }
static isl_map* build_schedule (scoplib_scop_p scop, scoplib_statement_p s, isl_space* sp, isl_ctx* ctxt) { // Set up the space. isl_space* space_in = isl_space_domain (isl_space_copy (sp)); int dout = s->schedule->NbRows; isl_space* space_out = isl_space_set_alloc(ctxt, scop->nb_parameters, dout); int i; char buffer[32]; char* name; for (i = 0; i < dout; ++i) { sprintf (buffer, "t%d", i); name = strdup (buffer); space_out = isl_space_set_dim_name (space_out, isl_dim_set, i, name); } for (i = 0; i < scop->nb_parameters; ++i) { name = strdup (((SgVariableSymbol*)(scop->parameters[i]))->get_name().str()); space_out = isl_space_set_dim_name (space_out, isl_dim_param, i, name); } isl_space* space = isl_space_map_from_domain_and_range (isl_space_copy (space_in), isl_space_copy (space_out)); isl_map* ret = isl_map_universe (isl_space_copy (space)); isl_val* tmp = isl_val_int_from_si (ctxt, 0); scoplib_matrix_p m = s->schedule; for (i = 0; i < m->NbRows; ++i) { isl_local_space* ls = isl_local_space_from_space (isl_space_copy (space)); isl_constraint* cst; if (SCOPVAL_get_si(m->p[i][0]) == 0) cst = isl_equality_alloc (isl_local_space_copy (ls)); else cst = isl_inequality_alloc (isl_local_space_copy (ls)); // Set input dimensions. int k; for (k = 0; k < s->nb_iterators; ++k) { tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][k+1])); cst = isl_constraint_set_coefficient_val (cst, isl_dim_in, k, isl_val_copy (tmp)); } for (k = 0; k < scop->nb_parameters; ++k) { tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][k+1+s->nb_iterators])); cst = isl_constraint_set_coefficient_val (cst, isl_dim_param, k, isl_val_copy (tmp)); } tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][m->NbColumns - 1])); cst = isl_constraint_set_constant_val (cst, isl_val_copy (tmp)); // Set output dimension. tmp = isl_val_set_si (tmp, -1); isl_constraint_set_coefficient_val (cst, isl_dim_out, i, isl_val_copy (tmp)); // Insert constraint. ret = isl_map_add_constraint (ret, cst); } isl_val_free (tmp); return ret; }