static void expand_constraint(isl_vec *v, unsigned dim, isl_int *c, int *div_map, unsigned n_div) { int i; isl_seq_cpy(v->el, c, 1 + dim); isl_seq_clr(v->el + 1 + dim, v->size - (1 + dim)); for (i = 0; i < n_div; ++i) isl_int_set(v->el[1 + dim + div_map[i]], c[1 + dim + i]); }
/* Given a set of modulo constraints * * c + A y = 0 mod d * * this function computes a particular solution y_0 * * The input is given as a matrix B = [ c A ] and a vector d. * * The output is matrix containing the solution y_0 or * a zero-column matrix if the constraints admit no integer solution. * * The given set of constrains is equivalent to * * c + A y = -D x * * with D = diag d and x a fresh set of variables. * Reducing both c and A modulo d does not change the * value of y in the solution and may lead to smaller coefficients. * Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M. * Then * [ x ] * M [ y ] = - c * and so * [ x ] * [ H 0 ] U^{-1} [ y ] = - c * Let * [ A ] [ x ] * [ B ] = U^{-1} [ y ] * then * H A + 0 B = -c * * so B may be chosen arbitrarily, e.g., B = 0, and then * * [ x ] = [ -c ] * U^{-1} [ y ] = [ 0 ] * or * [ x ] [ -c ] * [ y ] = U [ 0 ] * specifically, * * y = U_{2,1} (-c) * * If any of the coordinates of this y are non-integer * then the constraints admit no integer solution and * a zero-column matrix is returned. */ static struct isl_mat *particular_solution(struct isl_mat *B, struct isl_vec *d) { int i, j; struct isl_mat *M = NULL; struct isl_mat *C = NULL; struct isl_mat *U = NULL; struct isl_mat *H = NULL; struct isl_mat *cst = NULL; struct isl_mat *T = NULL; M = isl_mat_alloc(B->ctx, B->n_row, B->n_row + B->n_col - 1); C = isl_mat_alloc(B->ctx, 1 + B->n_row, 1); if (!M || !C) goto error; isl_int_set_si(C->row[0][0], 1); for (i = 0; i < B->n_row; ++i) { isl_seq_clr(M->row[i], B->n_row); isl_int_set(M->row[i][i], d->block.data[i]); isl_int_neg(C->row[1 + i][0], B->row[i][0]); isl_int_fdiv_r(C->row[1+i][0], C->row[1+i][0], M->row[i][i]); for (j = 0; j < B->n_col - 1; ++j) isl_int_fdiv_r(M->row[i][B->n_row + j], B->row[i][1 + j], M->row[i][i]); } M = isl_mat_left_hermite(M, 0, &U, NULL); if (!M || !U) goto error; H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row); H = isl_mat_lin_to_aff(H); C = isl_mat_inverse_product(H, C); if (!C) goto error; for (i = 0; i < B->n_row; ++i) { if (!isl_int_is_divisible_by(C->row[1+i][0], C->row[0][0])) break; isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]); } if (i < B->n_row) cst = isl_mat_alloc(B->ctx, B->n_row, 0); else cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1); T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row); cst = isl_mat_product(T, cst); isl_mat_free(M); isl_mat_free(C); isl_mat_free(U); return cst; error: isl_mat_free(M); isl_mat_free(C); isl_mat_free(U); return NULL; }
/* Construct a zero sample of the same dimension as bset. * As a special case, if bset is zero-dimensional, this * function creates a zero-dimensional sample point. */ static struct isl_vec *zero_sample(struct isl_basic_set *bset) { unsigned dim; struct isl_vec *sample; dim = isl_basic_set_total_dim(bset); sample = isl_vec_alloc(bset->ctx, 1 + dim); if (sample) { isl_int_set_si(sample->el[0], 1); isl_seq_clr(sample->el + 1, dim); } isl_basic_set_free(bset); return sample; }
static int tab_add_divs(struct isl_tab *tab, __isl_keep isl_basic_map *bmap, int **div_map) { int i, j; struct isl_vec *vec; unsigned total; unsigned dim; if (!bmap) return -1; if (!bmap->n_div) return 0; if (!*div_map) *div_map = isl_alloc_array(bmap->ctx, int, bmap->n_div); if (!*div_map) return -1; total = isl_basic_map_total_dim(tab->bmap); dim = total - tab->bmap->n_div; vec = isl_vec_alloc(bmap->ctx, 2 + total + bmap->n_div); if (!vec) return -1; for (i = 0; i < bmap->n_div; ++i) { isl_seq_cpy(vec->el, bmap->div[i], 2 + dim); isl_seq_clr(vec->el + 2 + dim, tab->bmap->n_div); for (j = 0; j < i; ++j) isl_int_set(vec->el[2 + dim + (*div_map)[j]], bmap->div[i][2 + dim + j]); for (j = 0; j < tab->bmap->n_div; ++j) if (isl_seq_eq(tab->bmap->div[j], vec->el, 2 + dim + tab->bmap->n_div)) break; (*div_map)[i] = j; if (j == tab->bmap->n_div) { vec->size = 2 + dim + tab->bmap->n_div; if (isl_tab_add_div(tab, vec) < 0) goto error; } } isl_vec_free(vec); return 0; error: isl_vec_free(vec); return -1; }
__isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim) { isl_vec *vec; if (!dim) return NULL; vec = isl_vec_alloc(dim->ctx, 1 + isl_dim_total(dim)); if (!vec) goto error; isl_int_set_si(vec->el[0], 1); isl_seq_clr(vec->el + 1, vec->size - 1); return isl_point_alloc(dim, vec); error: isl_dim_free(dim); return NULL; }
/* Given a matrix that maps a (possibly) parametric domain to * a parametric domain, add in rows that map the "nparam" parameters onto * themselves. */ static __isl_give isl_mat *insert_parameter_rows(__isl_take isl_mat *mat, unsigned nparam) { int i; if (nparam == 0) return mat; if (!mat) return NULL; mat = isl_mat_insert_rows(mat, 1, nparam); if (!mat) return NULL; for (i = 0; i < nparam; ++i) { isl_seq_clr(mat->row[1 + i], mat->n_col); isl_int_set(mat->row[1 + i][1 + i], mat->row[0][0]); } return mat; }
/* Add stride constraints to "bset" based on the inverse mapping * that was plugged in. In particular, if morph maps x' to x, * the the constraints of the original input * * A x' + b >= 0 * * have been rewritten to * * A inv x + b >= 0 * * However, this substitution may loose information on the integrality of x', * so we need to impose that * * inv x * * is integral. If inv = B/d, this means that we need to impose that * * B x = 0 mod d * * or * * exists alpha in Z^m: B x = d alpha * */ static __isl_give isl_basic_set *add_strides(__isl_take isl_basic_set *bset, __isl_keep isl_morph *morph) { int i, div, k; isl_int gcd; if (isl_int_is_one(morph->inv->row[0][0])) return bset; isl_int_init(gcd); for (i = 0; 1 + i < morph->inv->n_row; ++i) { isl_seq_gcd(morph->inv->row[1 + i], morph->inv->n_col, &gcd); if (isl_int_is_divisible_by(gcd, morph->inv->row[0][0])) continue; div = isl_basic_set_alloc_div(bset); if (div < 0) goto error; k = isl_basic_set_alloc_equality(bset); if (k < 0) goto error; isl_seq_cpy(bset->eq[k], morph->inv->row[1 + i], morph->inv->n_col); isl_seq_clr(bset->eq[k] + morph->inv->n_col, bset->n_div); isl_int_set(bset->eq[k][morph->inv->n_col + div], morph->inv->row[0][0]); } isl_int_clear(gcd); return bset; error: isl_int_clear(gcd); isl_basic_set_free(bset); return NULL; }
/* Given a basic set, exploit the equalties in the a basic set to construct * a morphishm that maps the basic set to a lower-dimensional space. * Specifically, the morphism reduces the number of dimensions of type "type". * * This function is a slight generalization of isl_mat_variable_compression * in that it allows the input to be parametric and that it allows for the * compression of either parameters or set variables. * * We first select the equalities of interest, that is those that involve * variables of type "type" and no later variables. * Denote those equalities as * * -C(p) + M x = 0 * * where C(p) depends on the parameters if type == isl_dim_set and * is a constant if type == isl_dim_param. * * First compute the (left) Hermite normal form of M, * * M [U1 U2] = M U = H = [H1 0] * or * M = H Q = [H1 0] [Q1] * [Q2] * * with U, Q unimodular, Q = U^{-1} (and H lower triangular). * Define the transformed variables as * * x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x * [ x2' ] [Q2] * * The equalities then become * * -C(p) + H1 x1' = 0 or x1' = H1^{-1} C(p) = C'(p) * * If the denominator of the constant term does not divide the * the common denominator of the parametric terms, then every * integer point is mapped to a non-integer point and then the original set has no * integer solutions (since the x' are a unimodular transformation * of the x). In this case, an empty morphism is returned. * Otherwise, the transformation is given by * * x = U1 H1^{-1} C(p) + U2 x2' * * The inverse transformation is simply * * x2' = Q2 x * * Both matrices are extended to map the full original space to the full * compressed space. */ __isl_give isl_morph *isl_basic_set_variable_compression( __isl_keep isl_basic_set *bset, enum isl_dim_type type) { unsigned otype; unsigned ntype; unsigned orest; unsigned nrest; int f_eq, n_eq; isl_space *dim; isl_mat *H, *U, *Q, *C = NULL, *H1, *U1, *U2; isl_basic_set *dom, *ran; if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return isl_morph_empty(bset); isl_assert(bset->ctx, bset->n_div == 0, return NULL); otype = 1 + isl_space_offset(bset->dim, type); ntype = isl_basic_set_dim(bset, type); orest = otype + ntype; nrest = isl_basic_set_total_dim(bset) - (orest - 1); for (f_eq = 0; f_eq < bset->n_eq; ++f_eq) if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1) break; for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq) if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1) break; if (n_eq == 0) return isl_morph_identity(bset); H = isl_mat_sub_alloc6(bset->ctx, bset->eq, f_eq, n_eq, otype, ntype); H = isl_mat_left_hermite(H, 0, &U, &Q); if (!H || !U || !Q) goto error; Q = isl_mat_drop_rows(Q, 0, n_eq); Q = isl_mat_diagonal(isl_mat_identity(bset->ctx, otype), Q); Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest)); C = isl_mat_alloc(bset->ctx, 1 + n_eq, otype); if (!C) goto error; isl_int_set_si(C->row[0][0], 1); isl_seq_clr(C->row[0] + 1, otype - 1); isl_mat_sub_neg(C->ctx, C->row + 1, bset->eq + f_eq, n_eq, 0, 0, otype); H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); H1 = isl_mat_lin_to_aff(H1); C = isl_mat_inverse_product(H1, C); if (!C) goto error; isl_mat_free(H); if (!isl_int_is_one(C->row[0][0])) { int i; isl_int g; isl_int_init(g); for (i = 0; i < n_eq; ++i) { isl_seq_gcd(C->row[1 + i] + 1, otype - 1, &g); isl_int_gcd(g, g, C->row[0][0]); if (!isl_int_is_divisible_by(C->row[1 + i][0], g)) break; } isl_int_clear(g); if (i < n_eq) { isl_mat_free(C); isl_mat_free(U); isl_mat_free(Q); return isl_morph_empty(bset); } C = isl_mat_normalize(C); } U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, n_eq); U1 = isl_mat_lin_to_aff(U1); U2 = isl_mat_sub_alloc(U, 0, U->n_row, n_eq, U->n_row - n_eq); U2 = isl_mat_lin_to_aff(U2); isl_mat_free(U); C = isl_mat_product(U1, C); C = isl_mat_aff_direct_sum(C, U2); C = insert_parameter_rows(C, otype - 1); C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest)); dim = isl_space_copy(bset->dim); dim = isl_space_drop_dims(dim, type, 0, ntype); dim = isl_space_add_dims(dim, type, ntype - n_eq); ran = isl_basic_set_universe(dim); dom = copy_equalities(bset, f_eq, n_eq); return isl_morph_alloc(dom, ran, Q, C); error: isl_mat_free(C); isl_mat_free(H); isl_mat_free(U); isl_mat_free(Q); return NULL; }
__isl_give isl_basic_set *isl_basic_set_box_from_points( __isl_take isl_point *pnt1, __isl_take isl_point *pnt2) { isl_basic_set *bset; unsigned total; int i; int k; isl_int t; isl_int_init(t); if (!pnt1 || !pnt2) goto error; isl_assert(pnt1->dim->ctx, isl_dim_equal(pnt1->dim, pnt2->dim), goto error); if (isl_point_is_void(pnt1) && isl_point_is_void(pnt2)) { isl_dim *dim = isl_dim_copy(pnt1->dim); isl_point_free(pnt1); isl_point_free(pnt2); isl_int_clear(t); return isl_basic_set_empty(dim); } if (isl_point_is_void(pnt1)) { isl_point_free(pnt1); isl_int_clear(t); return isl_basic_set_from_point(pnt2); } if (isl_point_is_void(pnt2)) { isl_point_free(pnt2); isl_int_clear(t); return isl_basic_set_from_point(pnt1); } total = isl_dim_total(pnt1->dim); bset = isl_basic_set_alloc_dim(isl_dim_copy(pnt1->dim), 0, 0, 2 * total); for (i = 0; i < total; ++i) { isl_int_mul(t, pnt1->vec->el[1 + i], pnt2->vec->el[0]); isl_int_submul(t, pnt2->vec->el[1 + i], pnt1->vec->el[0]); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_clr(bset->ineq[k] + 1, total); if (isl_int_is_pos(t)) { isl_int_set_si(bset->ineq[k][1 + i], -1); isl_int_set(bset->ineq[k][0], pnt1->vec->el[1 + i]); } else { isl_int_set_si(bset->ineq[k][1 + i], 1); isl_int_neg(bset->ineq[k][0], pnt1->vec->el[1 + i]); } isl_int_fdiv_q(bset->ineq[k][0], bset->ineq[k][0], pnt1->vec->el[0]); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_clr(bset->ineq[k] + 1, total); if (isl_int_is_pos(t)) { isl_int_set_si(bset->ineq[k][1 + i], 1); isl_int_neg(bset->ineq[k][0], pnt2->vec->el[1 + i]); } else { isl_int_set_si(bset->ineq[k][1 + i], -1); isl_int_set(bset->ineq[k][0], pnt2->vec->el[1 + i]); } isl_int_fdiv_q(bset->ineq[k][0], bset->ineq[k][0], pnt2->vec->el[0]); } bset = isl_basic_set_finalize(bset); isl_point_free(pnt1); isl_point_free(pnt2); isl_int_clear(t); return bset; error: isl_point_free(pnt1); isl_point_free(pnt2); isl_int_clear(t); return NULL; }