/*
 * This gets called when the inode's version needs to be changed from 1 to 2.
 * Currently this happens when the nlink field overflows the old 16-bit value
 * or when chproj is called to change the project for the first time.
 * As a side effect the superblock version will also get rev'd
 * to contain the NLINK bit.
 */
void
xfs_bump_ino_vers2(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp;
	unsigned long		s;

	ASSERT(ismrlocked (&ip->i_lock, MR_UPDATE));
	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1);

	ip->i_d.di_version = XFS_DINODE_VERSION_2;
	ip->i_d.di_onlink = 0;
	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
	mp = tp->t_mountp;
	if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
		s = XFS_SB_LOCK(mp);
		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
			XFS_SB_VERSION_ADDNLINK(&mp->m_sb);
			XFS_SB_UNLOCK(mp, s);
			xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
		} else {
			XFS_SB_UNLOCK(mp, s);
		}
	}
	/* Caller must log the inode */
}
コード例 #2
0
/*
 * This is called to mark the fields indicated in fieldmask as needing
 * to be logged when the transaction is committed.  The inode must
 * already be associated with the given transaction.
 *
 * The values for fieldmask are defined in xfs_inode_item.h.  We always
 * log all of the core inode if any of it has changed, and we always log
 * all of the inline data/extents/b-tree root if any of them has changed.
 */
void
xfs_trans_log_inode(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip,
	uint		flags)
{
	xfs_log_item_desc_t	*lidp;

	ASSERT(ip->i_transp == tp);
	ASSERT(ip->i_itemp != NULL);
	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));

	lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)(ip->i_itemp));
	ASSERT(lidp != NULL);

	tp->t_flags |= XFS_TRANS_DIRTY;
	lidp->lid_flags |= XFS_LID_DIRTY;

	/*
	 * Always OR in the bits from the ili_last_fields field.
	 * This is to coordinate with the xfs_iflush() and xfs_iflush_done()
	 * routines in the eventual clearing of the ilf_fields bits.
	 * See the big comment in xfs_iflush() for an explanation of
	 * this coorination mechanism.
	 */
	flags |= ip->i_itemp->ili_last_fields;
	ip->i_itemp->ili_format.ilf_fields |= flags;
}
コード例 #3
0
ファイル: xfs_inode_item.c プロジェクト: kzlin129/tt-gpl
/*
 * This is called to pin the inode associated with the inode log
 * item in memory so it cannot be written out.  Do this by calling
 * xfs_ipin() to bump the pin count in the inode while holding the
 * inode pin lock.
 */
STATIC void
xfs_inode_item_pin(
	xfs_inode_log_item_t	*iip)
{
	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
	xfs_ipin(iip->ili_inode);
}
コード例 #4
0
ファイル: xfs_inode_item.c プロジェクト: kzlin129/tt-gpl
/*
 * This is called to asynchronously write the inode associated with this
 * inode log item out to disk. The inode will already have been locked by
 * a successful call to xfs_inode_item_trylock().
 */
STATIC void
xfs_inode_item_push(
	xfs_inode_log_item_t	*iip)
{
	xfs_inode_t	*ip;

	ip = iip->ili_inode;

	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
	ASSERT(valusema(&(ip->i_flock)) <= 0);
	/*
	 * Since we were able to lock the inode's flush lock and
	 * we found it on the AIL, the inode must be dirty.  This
	 * is because the inode is removed from the AIL while still
	 * holding the flush lock in xfs_iflush_done().  Thus, if
	 * we found it in the AIL and were able to obtain the flush
	 * lock without sleeping, then there must not have been
	 * anyone in the process of flushing the inode.
	 */
	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
	       iip->ili_format.ilf_fields != 0);

	/*
	 * Write out the inode.  The completion routine ('iflush_done') will
	 * pull it from the AIL, mark it clean, unlock the flush lock.
	 */
	(void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	return;
}
コード例 #5
0
ファイル: xfs_utils.c プロジェクト: Tigrouzen/k1099
/*
 * This gets called when the inode's version needs to be changed from 1 to 2.
 * Currently this happens when the nlink field overflows the old 16-bit value
 * or when chproj is called to change the project for the first time.
 * As a side effect the superblock version will also get rev'd
 * to contain the NLINK bit.
 */
void
xfs_bump_ino_vers2(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp;

	ASSERT(ismrlocked (&ip->i_lock, MR_UPDATE));
	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1);

	ip->i_d.di_version = XFS_DINODE_VERSION_2;
	ip->i_d.di_onlink = 0;
	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
	mp = tp->t_mountp;
	if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
		spin_lock(&mp->m_sb_lock);
		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
			xfs_sb_version_addnlink(&mp->m_sb);
			spin_unlock(&mp->m_sb_lock);
			xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
		} else {
			spin_unlock(&mp->m_sb_lock);
		}
	}
	/* Caller must log the inode */
}
コード例 #6
0
ファイル: xfs_frw.c プロジェクト: AhmadTux/freebsd
/*
 * This routine is called to handle zeroing any space in the last
 * block of the file that is beyond the EOF.  We do this since the
 * size is being increased without writing anything to that block
 * and we don't want anyone to read the garbage on the disk.
 */
STATIC int				/* error (positive) */
xfs_zero_last_block(
	xfs_vnode_t	*vp,
	xfs_iocore_t	*io,
	xfs_fsize_t	isize,
	xfs_fsize_t	end_size)
{
	xfs_fileoff_t	last_fsb;
	xfs_mount_t	*mp;
	int		nimaps;
	int		zero_offset;
	int		zero_len;
	int		error = 0;
	xfs_bmbt_irec_t	imap;
	xfs_off_t	loff;

	ASSERT(ismrlocked(io->io_lock, MR_UPDATE) != 0);

	mp = io->io_mount;

	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
	if (zero_offset == 0) {
		/*
		 * There are no extra bytes in the last block on disk to
		 * zero, so return.
		 */
		return 0;
	}

	last_fsb = XFS_B_TO_FSBT(mp, isize);
	nimaps = 1;
	error = XFS_BMAPI(mp, NULL, io, last_fsb, 1, 0, NULL, 0, &imap,
			  &nimaps, NULL, NULL);
	if (error) {
		return error;
	}
	ASSERT(nimaps > 0);
	/*
	 * If the block underlying isize is just a hole, then there
	 * is nothing to zero.
	 */
	if (imap.br_startblock == HOLESTARTBLOCK) {
		return 0;
	}
	/*
	 * Zero the part of the last block beyond the EOF, and write it
	 * out sync.  We need to drop the ilock while we do this so we
	 * don't deadlock when the buffer cache calls back to us.
	 */
	XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL| XFS_EXTSIZE_RD);
	loff = XFS_FSB_TO_B(mp, last_fsb);

	zero_len = mp->m_sb.sb_blocksize - zero_offset;

	error = xfs_iozero(vp, loff + zero_offset, zero_len, end_size);

	XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
	ASSERT(error >= 0);
	return error;
}
コード例 #7
0
/*ARGSUSED*/
void
xfs_trans_ihold(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip)
{
	ASSERT(ip->i_transp == tp);
	ASSERT(ip->i_itemp != NULL);
	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));

	ip->i_itemp->ili_flags |= XFS_ILI_HOLD;
}
コード例 #8
0
/*
 * Add the locked inode to the transaction.
 * The inode must be locked, and it cannot be associated with any
 * transaction.	 The caller must specify the locks already held
 * on the inode.
 */
void
xfs_trans_ijoin(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip,
	uint		lock_flags)
{
	xfs_inode_log_item_t	*iip;

	ASSERT(ip->i_transp == NULL);
	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
	ASSERT(lock_flags & XFS_ILOCK_EXCL);
	if (ip->i_itemp == NULL)
		xfs_inode_item_init(ip, ip->i_mount);
	iip = ip->i_itemp;
	ASSERT(iip->ili_flags == 0);
	ASSERT(iip->ili_ilock_recur == 0);
	ASSERT(iip->ili_iolock_recur == 0);

	/*
	 * Get a log_item_desc to point at the new item.
	 */
	(void) xfs_trans_add_item(tp, (xfs_log_item_t*)(iip));

	xfs_trans_inode_broot_debug(ip);

	/*
	 * If the IO lock is already held, mark that in the inode log item.
	 */
	if (lock_flags & XFS_IOLOCK_EXCL) {
		iip->ili_flags |= XFS_ILI_IOLOCKED_EXCL;
	} else if (lock_flags & XFS_IOLOCK_SHARED) {
		iip->ili_flags |= XFS_ILI_IOLOCKED_SHARED;
	}

	/*
	 * Initialize i_transp so we can find it with xfs_inode_incore()
	 * in xfs_trans_iget() above.
	 */
	ip->i_transp = tp;
}
コード例 #9
0
ファイル: xfs_lrw.c プロジェクト: JBTech/ralink_rt5350
int					/* error (positive) */
xfs_zero_eof(
	vnode_t		*vp,
	xfs_iocore_t	*io,
	xfs_off_t	offset,		/* starting I/O offset */
	xfs_fsize_t	isize,		/* current inode size */
	xfs_fsize_t	end_size)	/* terminal inode size */
{
	struct inode	*ip = LINVFS_GET_IP(vp);
	xfs_fileoff_t	start_zero_fsb;
	xfs_fileoff_t	end_zero_fsb;
	xfs_fileoff_t	prev_zero_fsb;
	xfs_fileoff_t	zero_count_fsb;
	xfs_fileoff_t	last_fsb;
	xfs_extlen_t	buf_len_fsb;
	xfs_extlen_t	prev_zero_count;
	xfs_mount_t	*mp;
	int		nimaps;
	int		error = 0;
	xfs_bmbt_irec_t	imap;
	loff_t		loff;
	size_t		lsize;

	ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
	ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));

	mp = io->io_mount;

	/*
	 * First handle zeroing the block on which isize resides.
	 * We only zero a part of that block so it is handled specially.
	 */
	error = xfs_zero_last_block(ip, io, offset, isize, end_size);
	if (error) {
		ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
		ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
		return error;
	}

	/*
	 * Calculate the range between the new size and the old
	 * where blocks needing to be zeroed may exist.  To get the
	 * block where the last byte in the file currently resides,
	 * we need to subtract one from the size and truncate back
	 * to a block boundary.  We subtract 1 in case the size is
	 * exactly on a block boundary.
	 */
	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
	if (last_fsb == end_zero_fsb) {
		/*
		 * The size was only incremented on its last block.
		 * We took care of that above, so just return.
		 */
		return 0;
	}

	ASSERT(start_zero_fsb <= end_zero_fsb);
	prev_zero_fsb = NULLFILEOFF;
	prev_zero_count = 0;
	while (start_zero_fsb <= end_zero_fsb) {
		nimaps = 1;
		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
		error = XFS_BMAPI(mp, NULL, io, start_zero_fsb, zero_count_fsb,
				  0, NULL, 0, &imap, &nimaps, NULL);
		if (error) {
			ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
			ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
			return error;
		}
		ASSERT(nimaps > 0);

		if (imap.br_state == XFS_EXT_UNWRITTEN ||
		    imap.br_startblock == HOLESTARTBLOCK) {
			/*
			 * This loop handles initializing pages that were
			 * partially initialized by the code below this
			 * loop. It basically zeroes the part of the page
			 * that sits on a hole and sets the page as P_HOLE
			 * and calls remapf if it is a mapped file.
			 */
			prev_zero_fsb = NULLFILEOFF;
			prev_zero_count = 0;
			start_zero_fsb = imap.br_startoff +
					 imap.br_blockcount;
			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
			continue;
		}

		/*
		 * There are blocks in the range requested.
		 * Zero them a single write at a time.  We actually
		 * don't zero the entire range returned if it is
		 * too big and simply loop around to get the rest.
		 * That is not the most efficient thing to do, but it
		 * is simple and this path should not be exercised often.
		 */
		buf_len_fsb = XFS_FILBLKS_MIN(imap.br_blockcount,
					      mp->m_writeio_blocks << 8);
		/*
		 * Drop the inode lock while we're doing the I/O.
		 * We'll still have the iolock to protect us.
		 */
		XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);

		loff = XFS_FSB_TO_B(mp, start_zero_fsb);
		lsize = XFS_FSB_TO_B(mp, buf_len_fsb);

		error = xfs_iozero(ip, loff, lsize, end_size);

		if (error) {
			goto out_lock;
		}

		prev_zero_fsb = start_zero_fsb;
		prev_zero_count = buf_len_fsb;
		start_zero_fsb = imap.br_startoff + buf_len_fsb;
		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));

		XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
	}

	return 0;

out_lock:

	XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
	ASSERT(error >= 0);
	return error;
}
コード例 #10
0
ファイル: xfs_refcache.c プロジェクト: AhmadTux/freebsd
/*
 * Insert the given inode into the reference cache.
 */
void
xfs_refcache_insert(
	xfs_inode_t	*ip)
{
	vnode_t		*vp;
	xfs_inode_t	*release_ip;
	xfs_inode_t	**refcache;

	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE));

	/*
	 * If an unmount is busy blowing entries out of the cache,
	 * then don't bother.
	 */
	if (xfs_refcache_busy) {
		return;
	}

	/*
	 * If we tuned the refcache down to zero, don't do anything.
	 */
	 if (!xfs_refcache_size) {
		return;
	}

	/*
	 * The inode is already in the refcache, so don't bother
	 * with it.
	 */
	if (ip->i_refcache != NULL) {
		return;
	}

	vp = XFS_ITOV(ip);
	/* ASSERT(vp->v_count > 0); */
	VN_HOLD(vp);

	/*
	 * We allocate the reference cache on use so that we don't
	 * waste the memory on systems not being used as NFS servers.
	 */
	if (xfs_refcache == NULL) {
		refcache = (xfs_inode_t **)kmem_zalloc(XFS_REFCACHE_SIZE_MAX *
						       sizeof(xfs_inode_t *),
						       KM_SLEEP);
	} else {
		refcache = NULL;
	}

	spin_lock(&xfs_refcache_lock);

	/*
	 * If we allocated memory for the refcache above and it still
	 * needs it, then use the memory we allocated.  Otherwise we'll
	 * free the memory below.
	 */
	if (refcache != NULL) {
		if (xfs_refcache == NULL) {
			xfs_refcache = refcache;
			refcache = NULL;
		}
	}

	/*
	 * If an unmount is busy clearing out the cache, don't add new
	 * entries to it.
	 */
	if (xfs_refcache_busy) {
		spin_unlock(&xfs_refcache_lock);
		VN_RELE(vp);
		/*
		 * If we allocated memory for the refcache above but someone
		 * else beat us to using it, then free the memory now.
		 */
		if (refcache != NULL) {
			kmem_free(refcache,
				  XFS_REFCACHE_SIZE_MAX * sizeof(xfs_inode_t *));
		}
		return;
	}
	release_ip = xfs_refcache[xfs_refcache_index];
	if (release_ip != NULL) {
		release_ip->i_refcache = NULL;
		xfs_refcache_count--;
		ASSERT(xfs_refcache_count >= 0);
	}
	xfs_refcache[xfs_refcache_index] = ip;
	ASSERT(ip->i_refcache == NULL);
	ip->i_refcache = &(xfs_refcache[xfs_refcache_index]);
	xfs_refcache_count++;
	ASSERT(xfs_refcache_count <= xfs_refcache_size);
	xfs_refcache_index++;
	if (xfs_refcache_index == xfs_refcache_size) {
		xfs_refcache_index = 0;
	}
	spin_unlock(&xfs_refcache_lock);

	/*
	 * Save the pointer to the inode to be released so that we can
	 * VN_RELE it once we've dropped our inode locks in xfs_rwunlock().
	 * The pointer may be NULL, but that's OK.
	 */
	ip->i_release = release_ip;

	/*
	 * If we allocated memory for the refcache above but someone
	 * else beat us to using it, then free the memory now.
	 */
	if (refcache != NULL) {
		kmem_free(refcache,
			  XFS_REFCACHE_SIZE_MAX * sizeof(xfs_inode_t *));
	}
}
コード例 #11
0
/*
 * Get and lock the inode for the caller if it is not already
 * locked within the given transaction.	 If it is already locked
 * within the transaction, just increment its lock recursion count
 * and return a pointer to it.
 *
 * For an inode to be locked in a transaction, the inode lock, as
 * opposed to the io lock, must be taken exclusively.  This ensures
 * that the inode can be involved in only 1 transaction at a time.
 * Lock recursion is handled on the io lock, but only for lock modes
 * of equal or lesser strength.	 That is, you can recur on the io lock
 * held EXCL with a SHARED request but not vice versa.	Also, if
 * the inode is already a part of the transaction then you cannot
 * go from not holding the io lock to having it EXCL or SHARED.
 *
 * Use the inode cache routine xfs_inode_incore() to find the inode
 * if it is already owned by this transaction.
 *
 * If we don't already own the inode, use xfs_iget() to get it.
 * Since the inode log item structure is embedded in the incore
 * inode structure and is initialized when the inode is brought
 * into memory, there is nothing to do with it here.
 *
 * If the given transaction pointer is NULL, just call xfs_iget().
 * This simplifies code which must handle both cases.
 */
int
xfs_trans_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	int			error;
	xfs_inode_t		*ip;
	xfs_inode_log_item_t	*iip;

	/*
	 * If the transaction pointer is NULL, just call the normal
	 * xfs_iget().
	 */
	if (tp == NULL) {
		return (xfs_iget(mp, NULL, ino, lock_flags, ipp, 0));
	}

	/*
	 * If we find the inode in core with this transaction
	 * pointer in its i_transp field, then we know we already
	 * have it locked.  In this case we just increment the lock
	 * recursion count and return the inode to the caller.
	 * Assert that the inode is already locked in the mode requested
	 * by the caller.  We cannot do lock promotions yet, so
	 * die if someone gets this wrong.
	 */
	if ((ip = xfs_inode_incore(tp->t_mountp, ino, tp)) != NULL) {
		/*
		 * Make sure that the inode lock is held EXCL and
		 * that the io lock is never upgraded when the inode
		 * is already a part of the transaction.
		 */
		ASSERT(ip->i_itemp != NULL);
		ASSERT(lock_flags & XFS_ILOCK_EXCL);
		ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
		ASSERT((!(lock_flags & XFS_IOLOCK_EXCL)) ||
		       ismrlocked(&ip->i_iolock, MR_UPDATE));
		ASSERT((!(lock_flags & XFS_IOLOCK_EXCL)) ||
		       (ip->i_itemp->ili_flags & XFS_ILI_IOLOCKED_EXCL));
		ASSERT((!(lock_flags & XFS_IOLOCK_SHARED)) ||
		       ismrlocked(&ip->i_iolock, (MR_UPDATE | MR_ACCESS)));
		ASSERT((!(lock_flags & XFS_IOLOCK_SHARED)) ||
		       (ip->i_itemp->ili_flags & XFS_ILI_IOLOCKED_ANY));

		if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
			ip->i_itemp->ili_iolock_recur++;
		}
		if (lock_flags & XFS_ILOCK_EXCL) {
			ip->i_itemp->ili_ilock_recur++;
		}
		*ipp = ip;
		return 0;
	}

	ASSERT(lock_flags & XFS_ILOCK_EXCL);
	error = xfs_iget(tp->t_mountp, tp, ino, lock_flags, &ip, 0);
	if (error) {
		return error;
	}
	ASSERT(ip != NULL);

	/*
	 * Get a log_item_desc to point at the new item.
	 */
	if (ip->i_itemp == NULL)
		xfs_inode_item_init(ip, mp);
	iip = ip->i_itemp;
	(void) xfs_trans_add_item(tp, (xfs_log_item_t *)(iip));

	xfs_trans_inode_broot_debug(ip);

	/*
	 * If the IO lock has been acquired, mark that in
	 * the inode log item so we'll know to unlock it
	 * when the transaction commits.
	 */
	ASSERT(iip->ili_flags == 0);
	if (lock_flags & XFS_IOLOCK_EXCL) {
		iip->ili_flags |= XFS_ILI_IOLOCKED_EXCL;
	} else if (lock_flags & XFS_IOLOCK_SHARED) {
		iip->ili_flags |= XFS_ILI_IOLOCKED_SHARED;
	}

	/*
	 * Initialize i_transp so we can find it with xfs_inode_incore()
	 * above.
	 */
	ip->i_transp = tp;

	*ipp = ip;
	return 0;
}
コード例 #12
0
ファイル: xfs_inode_item.c プロジェクト: kzlin129/tt-gpl
/*
 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
 * failed to get the inode flush lock but did get the inode locked SHARED.
 * Here we're trying to see if the inode buffer is incore, and if so whether it's
 * marked delayed write. If that's the case, we'll initiate a bawrite on that
 * buffer to expedite the process.
 *
 * We aren't holding the AIL_LOCK (or the flush lock) when this gets called,
 * so it is inherently race-y.
 */
STATIC void
xfs_inode_item_pushbuf(
	xfs_inode_log_item_t	*iip)
{
	xfs_inode_t	*ip;
	xfs_mount_t	*mp;
	xfs_buf_t	*bp;
	uint		dopush;

	ip = iip->ili_inode;

	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));

	/*
	 * The ili_pushbuf_flag keeps others from
	 * trying to duplicate our effort.
	 */
	ASSERT(iip->ili_pushbuf_flag != 0);
	ASSERT(iip->ili_push_owner == get_thread_id());

	/*
	 * If flushlock isn't locked anymore, chances are that the
	 * inode flush completed and the inode was taken off the AIL.
	 * So, just get out.
	 */
	if ((valusema(&(ip->i_flock)) > 0)  ||
	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
		iip->ili_pushbuf_flag = 0;
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
		return;
	}

	mp = ip->i_mount;
	bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);

	if (bp != NULL) {
		if (XFS_BUF_ISDELAYWRITE(bp)) {
			/*
			 * We were racing with iflush because we don't hold
			 * the AIL_LOCK or the flush lock. However, at this point,
			 * we have the buffer, and we know that it's dirty.
			 * So, it's possible that iflush raced with us, and
			 * this item is already taken off the AIL.
			 * If not, we can flush it async.
			 */
			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
				  (valusema(&(ip->i_flock)) <= 0));
			iip->ili_pushbuf_flag = 0;
			xfs_iunlock(ip, XFS_ILOCK_SHARED);
			xfs_buftrace("INODE ITEM PUSH", bp);
			if (XFS_BUF_ISPINNED(bp)) {
				xfs_log_force(mp, (xfs_lsn_t)0,
					      XFS_LOG_FORCE);
			}
			if (dopush) {
				xfs_bawrite(mp, bp);
			} else {
				xfs_buf_relse(bp);
			}
		} else {
			iip->ili_pushbuf_flag = 0;
			xfs_iunlock(ip, XFS_ILOCK_SHARED);
			xfs_buf_relse(bp);
		}
		return;
	}
	/*
	 * We have to be careful about resetting pushbuf flag too early (above).
	 * Even though in theory we can do it as soon as we have the buflock,
	 * we don't want others to be doing work needlessly. They'll come to
	 * this function thinking that pushing the buffer is their
	 * responsibility only to find that the buffer is still locked by
	 * another doing the same thing
	 */
	iip->ili_pushbuf_flag = 0;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
	return;
}
コード例 #13
0
ファイル: xfs_inode_item.c プロジェクト: kzlin129/tt-gpl
/*
 * Unlock the inode associated with the inode log item.
 * Clear the fields of the inode and inode log item that
 * are specific to the current transaction.  If the
 * hold flags is set, do not unlock the inode.
 */
STATIC void
xfs_inode_item_unlock(
	xfs_inode_log_item_t	*iip)
{
	uint		hold;
	uint		iolocked;
	uint		lock_flags;
	xfs_inode_t	*ip;

	ASSERT(iip != NULL);
	ASSERT(iip->ili_inode->i_itemp != NULL);
	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
		  XFS_ILI_IOLOCKED_EXCL)) ||
	       ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE));
	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
		  XFS_ILI_IOLOCKED_SHARED)) ||
	       ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS));
	/*
	 * Clear the transaction pointer in the inode.
	 */
	ip = iip->ili_inode;
	ip->i_transp = NULL;

	/*
	 * If the inode needed a separate buffer with which to log
	 * its extents, then free it now.
	 */
	if (iip->ili_extents_buf != NULL) {
		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
		ASSERT(ip->i_d.di_nextents > 0);
		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
		ASSERT(ip->i_df.if_bytes > 0);
		kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes);
		iip->ili_extents_buf = NULL;
	}
	if (iip->ili_aextents_buf != NULL) {
		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
		ASSERT(ip->i_d.di_anextents > 0);
		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
		ASSERT(ip->i_afp->if_bytes > 0);
		kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes);
		iip->ili_aextents_buf = NULL;
	}

	/*
	 * Figure out if we should unlock the inode or not.
	 */
	hold = iip->ili_flags & XFS_ILI_HOLD;

	/*
	 * Before clearing out the flags, remember whether we
	 * are holding the inode's IO lock.
	 */
	iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;

	/*
	 * Clear out the fields of the inode log item particular
	 * to the current transaction.
	 */
	iip->ili_ilock_recur = 0;
	iip->ili_iolock_recur = 0;
	iip->ili_flags = 0;

	/*
	 * Unlock the inode if XFS_ILI_HOLD was not set.
	 */
	if (!hold) {
		lock_flags = XFS_ILOCK_EXCL;
		if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
			lock_flags |= XFS_IOLOCK_EXCL;
		} else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
			lock_flags |= XFS_IOLOCK_SHARED;
		}
		xfs_iput(iip->ili_inode, lock_flags);
	}
}
コード例 #14
0
ファイル: xfs_iomap.c プロジェクト: xiandaicxsj/copyKvm
int
xfs_iomap_write_delay(
	xfs_inode_t	*ip,
	xfs_off_t	offset,
	size_t		count,
	int		ioflag,
	xfs_bmbt_irec_t *ret_imap,
	int		*nmaps)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_iocore_t	*io = &ip->i_iocore;
	xfs_fileoff_t	offset_fsb;
	xfs_fileoff_t	last_fsb;
	xfs_off_t	aligned_offset;
	xfs_fileoff_t	ioalign;
	xfs_fsblock_t	firstblock;
	xfs_extlen_t	extsz;
	xfs_fsize_t	isize;
	int		nimaps;
	xfs_bmbt_irec_t imap[XFS_WRITE_IMAPS];
	int		prealloc, fsynced = 0;
	int		error;

	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);

	/*
	 * Make sure that the dquots are there. This doesn't hold
	 * the ilock across a disk read.
	 */
	error = XFS_QM_DQATTACH(mp, ip, XFS_QMOPT_ILOCKED);
	if (error)
		return XFS_ERROR(error);

	if (XFS_IS_REALTIME_INODE(ip)) {
		if (!(extsz = ip->i_d.di_extsize))
			extsz = mp->m_sb.sb_rextsize;
	} else {
		extsz = ip->i_d.di_extsize;
	}

	offset_fsb = XFS_B_TO_FSBT(mp, offset);

retry:
	isize = ip->i_d.di_size;
	if (io->io_new_size > isize)
		isize = io->io_new_size;

	error = xfs_iomap_eof_want_preallocate(mp, io, isize, offset, count,
				ioflag, imap, XFS_WRITE_IMAPS, &prealloc);
	if (error)
		return error;

	if (prealloc) {
		aligned_offset = XFS_WRITEIO_ALIGN(mp, (offset + count - 1));
		ioalign = XFS_B_TO_FSBT(mp, aligned_offset);
		last_fsb = ioalign + mp->m_writeio_blocks;
	} else {
		last_fsb = XFS_B_TO_FSB(mp, ((xfs_ufsize_t)(offset + count)));
	}

	if (prealloc || extsz) {
		error = xfs_iomap_eof_align_last_fsb(mp, io, isize, extsz,
							&last_fsb);
		if (error)
			return error;
	}

	nimaps = XFS_WRITE_IMAPS;
	firstblock = NULLFSBLOCK;
	error = XFS_BMAPI(mp, NULL, io, offset_fsb,
			  (xfs_filblks_t)(last_fsb - offset_fsb),
			  XFS_BMAPI_DELAY | XFS_BMAPI_WRITE |
			  XFS_BMAPI_ENTIRE, &firstblock, 1, imap,
			  &nimaps, NULL, NULL);
	if (error && (error != ENOSPC))
		return XFS_ERROR(error);

	/*
	 * If bmapi returned us nothing, and if we didn't get back EDQUOT,
	 * then we must have run out of space - flush delalloc, and retry..
	 */
	if (nimaps == 0) {
		xfs_iomap_enter_trace(XFS_IOMAP_WRITE_NOSPACE,
					io, offset, count);
		if (xfs_flush_space(ip, &fsynced, &ioflag))
			return XFS_ERROR(ENOSPC);

		error = 0;
		goto retry;
	}

	if (unlikely(!imap[0].br_startblock && !(io->io_flags & XFS_IOCORE_RT)))
		return xfs_cmn_err_fsblock_zero(ip, &imap[0]);

	*ret_imap = imap[0];
	*nmaps = 1;

	return 0;
}
コード例 #15
0
ファイル: xfs_lrw.c プロジェクト: WiseMan787/ralink_sdk
int					/* error (positive) */
xfs_zero_eof(
	bhv_vnode_t	*vp,
	xfs_iocore_t	*io,
	xfs_off_t	offset,		/* starting I/O offset */
	xfs_fsize_t	isize)		/* current inode size */
{
	struct inode	*ip = vn_to_inode(vp);
	xfs_fileoff_t	start_zero_fsb;
	xfs_fileoff_t	end_zero_fsb;
	xfs_fileoff_t	zero_count_fsb;
	xfs_fileoff_t	last_fsb;
	xfs_fileoff_t	zero_off;
	xfs_fsize_t	zero_len;
	xfs_mount_t	*mp = io->io_mount;
	int		nimaps;
	int		error = 0;
	xfs_bmbt_irec_t	imap;

	ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
	ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
	ASSERT(offset > isize);

	/*
	 * First handle zeroing the block on which isize resides.
	 * We only zero a part of that block so it is handled specially.
	 */
	error = xfs_zero_last_block(ip, io, offset, isize);
	if (error) {
		ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
		ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
		return error;
	}

	/*
	 * Calculate the range between the new size and the old
	 * where blocks needing to be zeroed may exist.  To get the
	 * block where the last byte in the file currently resides,
	 * we need to subtract one from the size and truncate back
	 * to a block boundary.  We subtract 1 in case the size is
	 * exactly on a block boundary.
	 */
	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
	if (last_fsb == end_zero_fsb) {
		/*
		 * The size was only incremented on its last block.
		 * We took care of that above, so just return.
		 */
		return 0;
	}

	ASSERT(start_zero_fsb <= end_zero_fsb);
	while (start_zero_fsb <= end_zero_fsb) {
		nimaps = 1;
		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
		error = XFS_BMAPI(mp, NULL, io, start_zero_fsb, zero_count_fsb,
				  0, NULL, 0, &imap, &nimaps, NULL, NULL);
		if (error) {
			ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
			ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
			return error;
		}
		ASSERT(nimaps > 0);

		if (imap.br_state == XFS_EXT_UNWRITTEN ||
		    imap.br_startblock == HOLESTARTBLOCK) {
			/*
			 * This loop handles initializing pages that were
			 * partially initialized by the code below this
			 * loop. It basically zeroes the part of the page
			 * that sits on a hole and sets the page as P_HOLE
			 * and calls remapf if it is a mapped file.
			 */
			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
			continue;
		}

		/*
		 * There are blocks we need to zero.
		 * Drop the inode lock while we're doing the I/O.
		 * We'll still have the iolock to protect us.
		 */
		XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);

		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);

		if ((zero_off + zero_len) > offset)
			zero_len = offset - zero_off;

		error = xfs_iozero(ip, zero_off, zero_len);
		if (error) {
			goto out_lock;
		}

		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));

		XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
	}

	return 0;

out_lock:

	XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
	ASSERT(error >= 0);
	return error;
}
コード例 #16
0
int
xfs_iomap_write_delay(
	xfs_inode_t	*ip,
	xfs_off_t	offset,
	size_t		count,
	int		ioflag,
	xfs_bmbt_irec_t *ret_imap,
	int		*nmaps)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_iocore_t	*io = &ip->i_iocore;
	xfs_fileoff_t	offset_fsb;
	xfs_fileoff_t	last_fsb;
	xfs_fsize_t	isize;
	xfs_fsblock_t	firstblock;
	int		nimaps;
	int		error;
	xfs_bmbt_irec_t imap[XFS_WRITE_IMAPS];
	int		aeof;
	int		fsynced = 0;

	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);

	/*
	 * Make sure that the dquots are there. This doesn't hold
	 * the ilock across a disk read.
	 */

	error = XFS_QM_DQATTACH(mp, ip, XFS_QMOPT_ILOCKED);
	if (error)
		return XFS_ERROR(error);

retry:
	isize = ip->i_d.di_size;
	if (io->io_new_size > isize) {
		isize = io->io_new_size;
	}

	aeof = 0;
	offset_fsb = XFS_B_TO_FSBT(mp, offset);
	last_fsb = XFS_B_TO_FSB(mp, ((xfs_ufsize_t)(offset + count)));
	/*
	 * If the caller is doing a write at the end of the file,
	 * then extend the allocation (and the buffer used for the write)
	 * out to the file system's write iosize.  We clean up any extra
	 * space left over when the file is closed in xfs_inactive().
	 *
	 * For sync writes, we are flushing delayed allocate space to
	 * try to make additional space available for allocation near
	 * the filesystem full boundary - preallocation hurts in that
	 * situation, of course.
	 */
	if (!(ioflag & BMAPI_SYNC) && ((offset + count) > ip->i_d.di_size)) {
		xfs_off_t	aligned_offset;
		xfs_filblks_t   count_fsb;
		unsigned int	iosize;
		xfs_fileoff_t	ioalign;
		int		n;
		xfs_fileoff_t   start_fsb;

		/*
		 * If there are any real blocks past eof, then don't
		 * do any speculative allocation.
		 */
		start_fsb = XFS_B_TO_FSBT(mp,
					((xfs_ufsize_t)(offset + count - 1)));
		count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
		while (count_fsb > 0) {
			nimaps = XFS_WRITE_IMAPS;
			error = XFS_BMAPI(mp, NULL, io, start_fsb, count_fsb,
					0, &firstblock, 0, imap, &nimaps, NULL);
			if (error) {
				return error;
			}
			for (n = 0; n < nimaps; n++) {
				if ( !(io->io_flags & XFS_IOCORE_RT)  && 
					!imap[n].br_startblock) {
					cmn_err(CE_PANIC,"Access to block "
						"zero:  fs <%s> inode: %lld "
						"start_block : %llx start_off "
						": %llx blkcnt : %llx "
						"extent-state : %x \n",
						(ip->i_mount)->m_fsname,
						(long long)ip->i_ino,
						imap[n].br_startblock,
						imap[n].br_startoff,
						imap[n].br_blockcount,
						imap[n].br_state);
        			}
				if ((imap[n].br_startblock != HOLESTARTBLOCK) &&
				    (imap[n].br_startblock != DELAYSTARTBLOCK)) {
					goto write_map;
				}
				start_fsb += imap[n].br_blockcount;
				count_fsb -= imap[n].br_blockcount;
			}
		}
		iosize = mp->m_writeio_blocks;
		aligned_offset = XFS_WRITEIO_ALIGN(mp, (offset + count - 1));
		ioalign = XFS_B_TO_FSBT(mp, aligned_offset);
		last_fsb = ioalign + iosize;
		aeof = 1;
	}
write_map:
	nimaps = XFS_WRITE_IMAPS;
	firstblock = NULLFSBLOCK;

	/*
	 * If mounted with the "-o swalloc" option, roundup the allocation
	 * request to a stripe width boundary if the file size is >=
	 * stripe width and we are allocating past the allocation eof.
	 */
	if (!(io->io_flags & XFS_IOCORE_RT) && mp->m_swidth 
	    && (mp->m_flags & XFS_MOUNT_SWALLOC)
	    && (isize >= XFS_FSB_TO_B(mp, mp->m_swidth)) && aeof) {
		int eof;
		xfs_fileoff_t new_last_fsb;

		new_last_fsb = roundup_64(last_fsb, mp->m_swidth);
		error = xfs_bmap_eof(ip, new_last_fsb, XFS_DATA_FORK, &eof);
		if (error) {
			return error;
		}
		if (eof) {
			last_fsb = new_last_fsb;
		}
	/*
	 * Roundup the allocation request to a stripe unit (m_dalign) boundary
	 * if the file size is >= stripe unit size, and we are allocating past
	 * the allocation eof.
	 */
	} else if (!(io->io_flags & XFS_IOCORE_RT) && mp->m_dalign &&
		   (isize >= XFS_FSB_TO_B(mp, mp->m_dalign)) && aeof) {
		int eof;
		xfs_fileoff_t new_last_fsb;
		new_last_fsb = roundup_64(last_fsb, mp->m_dalign);
		error = xfs_bmap_eof(ip, new_last_fsb, XFS_DATA_FORK, &eof);
		if (error) {
			return error;
		}
		if (eof) {
			last_fsb = new_last_fsb;
		}
	/*
	 * Round up the allocation request to a real-time extent boundary
	 * if the file is on the real-time subvolume.
	 */
	} else if (io->io_flags & XFS_IOCORE_RT && aeof) {
		int eof;
		xfs_fileoff_t new_last_fsb;

		new_last_fsb = roundup_64(last_fsb, mp->m_sb.sb_rextsize);
		error = XFS_BMAP_EOF(mp, io, new_last_fsb, XFS_DATA_FORK, &eof);
		if (error) {
			return error;
		}
		if (eof)
			last_fsb = new_last_fsb;
	}
	error = xfs_bmapi(NULL, ip, offset_fsb,
			  (xfs_filblks_t)(last_fsb - offset_fsb),
			  XFS_BMAPI_DELAY | XFS_BMAPI_WRITE |
			  XFS_BMAPI_ENTIRE, &firstblock, 1, imap,
			  &nimaps, NULL);
	/*
	 * This can be EDQUOT, if nimaps == 0
	 */
	if (error && (error != ENOSPC)) {
		return XFS_ERROR(error);
	}
	/*
	 * If bmapi returned us nothing, and if we didn't get back EDQUOT,
	 * then we must have run out of space.
	 */
	if (nimaps == 0) {
		xfs_iomap_enter_trace(XFS_IOMAP_WRITE_NOSPACE,
					io, offset, count);
		if (xfs_flush_space(ip, &fsynced, &ioflag))
			return XFS_ERROR(ENOSPC);

		error = 0;
		goto retry;
	}

	*ret_imap = imap[0];
	*nmaps = 1;
	if ( !(io->io_flags & XFS_IOCORE_RT)  && !ret_imap->br_startblock) {
		cmn_err(CE_PANIC,"Access to block zero:  fs <%s> inode: %lld "
                        "start_block : %llx start_off : %llx blkcnt : %llx "
                        "extent-state : %x \n",
                        (ip->i_mount)->m_fsname,
                        (long long)ip->i_ino,
                        ret_imap->br_startblock, ret_imap->br_startoff,
                        ret_imap->br_blockcount,ret_imap->br_state);
	}
	return 0;
}