aes_rval aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]) { aes_32t ss[5]; #if defined( d_vars ) d_vars; #endif cx->ks[0] = ss[0] = word_in(key, 0); cx->ks[1] = ss[1] = word_in(key, 1); cx->ks[2] = ss[2] = word_in(key, 2); cx->ks[3] = ss[3] = word_in(key, 3); #if DEC_UNROLL == NONE { aes_32t i; for(i = 0; i < (11 * N_COLS - 5) / 4; ++i) ke4(cx->ks, i); kel4(cx->ks, 9); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 10 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #else kdf4(cx->ks, 0); kd4(cx->ks, 1); kd4(cx->ks, 2); kd4(cx->ks, 3); kd4(cx->ks, 4); kd4(cx->ks, 5); kd4(cx->ks, 6); kd4(cx->ks, 7); kd4(cx->ks, 8); kdl4(cx->ks, 9); #endif cx->rn = 10; #if defined( AES_ERR_CHK ) return aes_good; #endif }
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]) { uint_32t ss[5]; #if defined( d_vars ) d_vars; #endif cx->ks[v(40,(0))] = ss[0] = word_in(key, 0); cx->ks[v(40,(1))] = ss[1] = word_in(key, 1); cx->ks[v(40,(2))] = ss[2] = word_in(key, 2); cx->ks[v(40,(3))] = ss[3] = word_in(key, 3); #ifdef DEC_KS_UNROLL kdf4(cx->ks, 0); kd4(cx->ks, 1); kd4(cx->ks, 2); kd4(cx->ks, 3); kd4(cx->ks, 4); kd4(cx->ks, 5); kd4(cx->ks, 6); kd4(cx->ks, 7); kd4(cx->ks, 8); kdl4(cx->ks, 9); #else { uint_32t i; for(i = 0; i < 10; ++i) k4e(cx->ks, i); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 10 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #endif cx->inf.l = 0; cx->inf.b[0] = 10 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif return EXIT_SUCCESS; }
static void aes_decrypt_key128(const unsigned char *key, uint32_t rk[]) { uint32_t ss[5]; #if defined(d_vars) d_vars; #endif rk[v(40, (0))] = ss[0] = word_in(key, 0); rk[v(40, (1))] = ss[1] = word_in(key, 1); rk[v(40, (2))] = ss[2] = word_in(key, 2); rk[v(40, (3))] = ss[3] = word_in(key, 3); #ifdef DEC_KS_UNROLL kdf4(rk, 0); kd4(rk, 1); kd4(rk, 2); kd4(rk, 3); kd4(rk, 4); kd4(rk, 5); kd4(rk, 6); kd4(rk, 7); kd4(rk, 8); kdl4(rk, 9); #else { uint32_t i; for (i = 0; i < 10; ++i) k4e(rk, i); #if !(DEC_ROUND == NO_TABLES) for (i = MAX_AES_NB; i < 10 * MAX_AES_NB; ++i) rk[i] = inv_mcol(rk[i]); #endif } #endif /* DEC_KS_UNROLL */ }
aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]) { aes_32t ss[5]; #ifdef d_vars d_vars; #endif cx->ks[0] = ss[0] = word_in(in_key, 0); cx->ks[1] = ss[1] = word_in(in_key, 1); cx->ks[2] = ss[2] = word_in(in_key, 2); cx->ks[3] = ss[3] = word_in(in_key, 3); #if DEC_UNROLL == NONE { aes_32t i; for(i = 0; i < (11 * N_COLS - 1) / 4; ++i) ke4(cx->ks, i); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 10 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #else kdf4(cx->ks, 0); kd4(cx->ks, 1); kd4(cx->ks, 2); kd4(cx->ks, 3); kd4(cx->ks, 4); kd4(cx->ks, 5); kd4(cx->ks, 6); kd4(cx->ks, 7); kd4(cx->ks, 8); kdl4(cx->ks, 9); #endif /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */ /* key and must be non-zero for 128 and 192 bits keys */ cx->ks[53] = cx->ks[45] = 0; cx->ks[52] = 10; #ifdef AES_ERR_CHK return aes_good; #endif }
aes_rval aes_set_decrypt_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]) { aes_32t ss[8]; d_vars #if !defined(FIXED_TABLES) #ifdef GLOBALS if(!t_use(in,it)) gen_tabs(); #else if(!cx->t_ptr || !t_use(in,it)) gen_tabs(cx); #endif #endif #if !defined(BLOCK_SIZE) if(!cx->n_blk) cx->n_blk = 16; #else cx->n_blk = BLOCK_SIZE; #endif if(((klen & 7) || klen < 16 || klen > 32) && ((klen & 63) || klen < 128 || klen > 256)) { cx->n_rnd = 0; return aes_bad; } klen >>= (klen < 128 ? 2 : 5); cx->n_blk = (cx->n_blk & ~3) | 2; cx->k_sch[0] = ss[0] = word_in(in_key ); cx->k_sch[1] = ss[1] = word_in(in_key + 4); cx->k_sch[2] = ss[2] = word_in(in_key + 8); cx->k_sch[3] = ss[3] = word_in(in_key + 12); #if (BLOCK_SIZE == 16) && (DEC_UNROLL != NONE) switch(klen) { case 4: kdf4(cx->k_sch, 0); kd4(cx->k_sch, 1); kd4(cx->k_sch, 2); kd4(cx->k_sch, 3); kd4(cx->k_sch, 4); kd4(cx->k_sch, 5); kd4(cx->k_sch, 6); kd4(cx->k_sch, 7); kd4(cx->k_sch, 8); kdl4(cx->k_sch, 9); cx->n_rnd = 10; break; case 6: cx->k_sch[4] = ff(ss[4] = word_in(in_key + 16)); cx->k_sch[5] = ff(ss[5] = word_in(in_key + 20)); kdf6(cx->k_sch, 0); kd6(cx->k_sch, 1); kd6(cx->k_sch, 2); kd6(cx->k_sch, 3); kd6(cx->k_sch, 4); kd6(cx->k_sch, 5); kd6(cx->k_sch, 6); kdl6(cx->k_sch, 7); cx->n_rnd = 12; break; case 8: cx->k_sch[4] = ff(ss[4] = word_in(in_key + 16)); cx->k_sch[5] = ff(ss[5] = word_in(in_key + 20)); cx->k_sch[6] = ff(ss[6] = word_in(in_key + 24)); cx->k_sch[7] = ff(ss[7] = word_in(in_key + 28)); kdf8(cx->k_sch, 0); kd8(cx->k_sch, 1); kd8(cx->k_sch, 2); kd8(cx->k_sch, 3); kd8(cx->k_sch, 4); kd8(cx->k_sch, 5); kdl8(cx->k_sch, 6); cx->n_rnd = 14; break; default: ; } #else cx->n_rnd = (klen > nc ? klen : nc) + 6; { aes_32t i, l; l = (nc * cx->n_rnd + nc - 1) / klen; switch(klen) { case 4: for(i = 0; i < l; ++i) ke4(cx->k_sch, i); break; case 6: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); for(i = 0; i < l; ++i) ke6(cx->k_sch, i); break; case 8: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); cx->k_sch[6] = ss[6] = word_in(in_key + 24); cx->k_sch[7] = ss[7] = word_in(in_key + 28); for(i = 0; i < l; ++i) ke8(cx->k_sch, i); break; default: ; } #if (DEC_ROUND != NO_TABLES) for(i = nc; i < nc * cx->n_rnd; ++i) cx->k_sch[i] = inv_mcol(cx->k_sch[i]); #endif } #endif return aes_good; }