int lnet_sock_getaddr(struct socket *sock, bool remote, __u32 *ip, int *port) { struct sockaddr_in sin; int len = sizeof(sin); int rc; if (remote) rc = kernel_getpeername(sock, (struct sockaddr *)&sin, &len); else rc = kernel_getsockname(sock, (struct sockaddr *)&sin, &len); if (rc) { CERROR("Error %d getting sock %s IP/port\n", rc, remote ? "peer" : "local"); return rc; } if (ip) *ip = ntohl(sin.sin_addr.s_addr); if (port) *port = ntohs(sin.sin_port); return 0; }
int tfw_server_get_addr(const TfwServer *srv, TfwAddr *addr) { int ret = 0; int len = sizeof(*addr); memset(addr, 0, len); ret = kernel_getpeername(srv->sock->sk_socket, &addr->addr, &len); return ret; }
static void accept_work (struct work_struct *dummy) { struct socket *c_sock = NULL; int ret, len; struct sockaddr_in sin; ret = kernel_accept (sock, &c_sock, 0); if (ret) { printk (KERN_INFO "kernel_accept failed: %d\n", ret); goto out; } ret = kernel_getpeername (c_sock, (struct sockaddr*)&sin, &len); if (ret) { printk (KERN_INFO "getpeername failed: %d\n", ret); goto out; } printk (KERN_INFO "Accepted connection from 0x%x\n", sin.sin_addr.s_addr); ret = send_remote_info (c_sock, &local_info); if (ret) goto out; ret = recv_remote_info (c_sock, &remote_info); if (ret) goto out; have_remote_info = 1; printk (KERN_INFO "Got information about remote side.\n"); printk (KERN_INFO "QPN: 0x%x, QKey: %u, LID: 0x%x, GID: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", remote_info.qp_num, remote_info.qkey, (int)remote_info.lid, remote_info.gid.raw[0], remote_info.gid.raw[1], remote_info.gid.raw[2], remote_info.gid.raw[3], remote_info.gid.raw[4], remote_info.gid.raw[5], remote_info.gid.raw[6], remote_info.gid.raw[7], remote_info.gid.raw[8], remote_info.gid.raw[9], remote_info.gid.raw[10], remote_info.gid.raw[10], remote_info.gid.raw[12], remote_info.gid.raw[13], remote_info.gid.raw[14], remote_info.gid.raw[15]); out: if (c_sock) sock_release (c_sock); if (sock) sock_release (sock); c_sock = sock = NULL; }
static void accept_work (struct work_struct *dummy) { struct socket *c_sock = NULL; int ret; struct sockaddr_in sin; int len; ret = kernel_accept (sock, &c_sock, 0); if (ret) { printk (KERN_INFO "kernel_accept failed: %d\n", ret); goto out; } ret = kernel_getpeername (c_sock, (struct sockaddr*)&sin, &len); if (ret) { printk (KERN_INFO "getpeername failed: %d\n", ret); goto out; } printk (KERN_INFO "Accepted connection from 0x%x\n", sin.sin_addr.s_addr); ret = send_hello_msg (c_sock); if (ret) { printk (KERN_INFO "Message send failed: %d\n", ret); goto out; } ret = recv_hello_msg (c_sock); if (ret) { printk (KERN_INFO "Message recv failed: %d\n", ret); goto out; } out: if (c_sock) sock_release (c_sock); return; }
int mempool_listen_thread(void *data) { int ret = KERERR_SUCCESS; struct mempool_dev *dev = (struct mempool_dev *)data; struct socket *cli_sock = NULL, *data_sock = NULL; struct client_host *clihost = NULL; int sockaddrlen = sizeof(struct sockaddr); if(!dev) { goto null_ptr_error; } //init mempool listen socket ret = sock_create_kern(PF_INET, SOCK_STREAM, IPPROTO_TCP, &(dev->listen_sock)); if (ret < 0) { KER_DEBUG(KERN_ALERT "mempool listen thread: TCP create listen sock err, err=%d\n", ret); goto create_error; } dev->listen_sock->sk->sk_reuse = 1; ret = sock_create_kern(PF_INET, SOCK_STREAM, IPPROTO_TCP, &(dev->data_listen_sock)); if (ret < 0) { KER_DEBUG(KERN_ALERT "mempool listen thread: TCP create listen sock err, err=%d\n", ret); goto create_data_error; } dev->data_listen_sock->sk->sk_reuse = 1; //bind to interwork interface ret = bind_to_device(dev->listen_sock, MEMPOOL_IF_NAME, SERHOST_LISTEN_PORT); if (ret < 0) { KER_DEBUG(KERN_ALERT "mempool listen thread: Bind to %s err, err=%d\n", MEMPOOL_IF_NAME, ret); goto bind_error; } ret = bind_to_device(dev->data_listen_sock, MEMPOOL_IF_NAME, DATA_PORT); if (ret < 0) { KER_DEBUG(KERN_ALERT "mempool listen thread: Bind to %s err, err=%d\n", MEMPOOL_IF_NAME, ret); goto bind_data_error; } //begin listen ret = kernel_listen(dev->listen_sock, LISTEM_MAX_QUEUE); if (ret < 0) { KER_DEBUG(KERN_ALERT "mempool thread: sock listen err, err=%d\n", ret); goto listen_error; } ret = kernel_listen(dev->data_listen_sock, LISTEM_MAX_QUEUE); if (ret < 0) { KER_DEBUG(KERN_ALERT "mempool thread: sock listen err, err=%d\n", ret); goto listen_data_error; } //accept loop while(!kthread_should_stop()) { schedule_timeout_interruptible(LISTEN_SCHEDULE_TIME * HZ); if(!dev->listen_sock) { continue; } clihost = NULL; cli_sock = NULL; data_sock = NULL; ret = kernel_accept(dev->listen_sock, &cli_sock, O_NONBLOCK); if (ret < 0) { //KER_DEBUG(KERN_ALERT "mempool thread: sock accept err, err=%d\n", ret); continue; } schedule_timeout_interruptible(LISTEN_SCHEDULE_TIME * HZ); ret = kernel_accept(dev->data_listen_sock, &data_sock, O_NONBLOCK); if (ret < 0) { //KER_DEBUG(KERN_ALERT "mempool thread: sock accept err, err=%d\n", ret); continue; } //create client host structure clihost = (struct client_host *)kmem_cache_alloc(dev->slab_client_host, GFP_USER); memset(clihost, 0, sizeof(struct client_host)); if(!clihost) { KER_DEBUG(KERN_ALERT "mempool thread: create clihost err"); continue; } clihost->sock = cli_sock; clihost->datasock = data_sock; clihost->state = CLIHOST_STATE_CONNECTED; kernel_getpeername(cli_sock, (struct sockaddr *)&clihost->host_addr, &sockaddrlen); kernel_getpeername(data_sock, (struct sockaddr *)&clihost->host_data_addr, &sockaddrlen); //init client host, slab, list_head mutex_init(&clihost->ptr_mutex); //add to list mutex_lock(&dev->lshd_rent_client_mutex); list_add_tail(&clihost->ls_rent, &dev->lshd_rent_client); mutex_unlock(&dev->lshd_rent_client_mutex); //create recive thread for client clihost->CliHandleThread = kthread_run(CliRecvThread, clihost, "Client Recive thread"); if (IS_ERR(clihost->CliHandleThread)) { KER_DEBUG(KERN_ALERT "create recvmsg thread err, err=%ld\n", PTR_ERR(clihost->CliHandleThread)); continue; } } while(!kthread_should_stop()) { schedule_timeout_interruptible(SCHEDULE_TIME * HZ); } return 0; listen_data_error: listen_error: bind_data_error: bind_error: if(dev->data_listen_sock) { sock_release(dev->data_listen_sock); } create_data_error: if(dev->listen_sock) { sock_release(dev->listen_sock); } create_error: null_ptr_error: while(!kthread_should_stop()) { schedule_timeout_interruptible(SCHEDULE_TIME * HZ); } return -1; }
/** * iscsi_sw_tcp_xmit_segment - transmit segment * @tcp_conn: the iSCSI TCP connection * @segment: the buffer to transmnit * * This function transmits as much of the buffer as * the network layer will accept, and returns the number of * bytes transmitted. * * If CRC hashing is enabled, the function will compute the * hash as it goes. When the entire segment has been transmitted, * it will retrieve the hash value and send it as well. */ static int iscsi_sw_tcp_xmit_segment(struct iscsi_tcp_conn *tcp_conn, struct iscsi_segment *segment) { struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; struct socket *sk = tcp_sw_conn->sock; unsigned int copied = 0; int r = 0; while (!iscsi_tcp_segment_done(tcp_conn, segment, 0, r)) { struct scatterlist *sg; unsigned int offset, copy; int flags = 0; r = 0; offset = segment->copied; copy = segment->size - offset; if (segment->total_copied + segment->size < segment->total_size) flags |= MSG_MORE; /* Use sendpage if we can; else fall back to sendmsg */ if (!segment->data) { sg = segment->sg; offset += segment->sg_offset + sg->offset; r = tcp_sw_conn->sendpage(sk, sg_page(sg), offset, copy, flags); } else { struct msghdr msg = { .msg_flags = flags }; struct kvec iov = { .iov_base = segment->data + offset, .iov_len = copy }; r = kernel_sendmsg(sk, &msg, &iov, 1, copy); } if (r < 0) { iscsi_tcp_segment_unmap(segment); return r; } copied += r; } return copied; } /** * iscsi_sw_tcp_xmit - TCP transmit **/ static int iscsi_sw_tcp_xmit(struct iscsi_conn *conn) { struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; struct iscsi_segment *segment = &tcp_sw_conn->out.segment; unsigned int consumed = 0; int rc = 0; while (1) { rc = iscsi_sw_tcp_xmit_segment(tcp_conn, segment); /* * We may not have been able to send data because the conn * is getting stopped. libiscsi will know so propagate err * for it to do the right thing. */ if (rc == -EAGAIN) return rc; else if (rc < 0) { rc = ISCSI_ERR_XMIT_FAILED; goto error; } else if (rc == 0) break; consumed += rc; if (segment->total_copied >= segment->total_size) { if (segment->done != NULL) { rc = segment->done(tcp_conn, segment); if (rc != 0) goto error; } } } ISCSI_SW_TCP_DBG(conn, "xmit %d bytes\n", consumed); conn->txdata_octets += consumed; return consumed; error: /* Transmit error. We could initiate error recovery * here. */ ISCSI_SW_TCP_DBG(conn, "Error sending PDU, errno=%d\n", rc); iscsi_conn_failure(conn, rc); return -EIO; } /** * iscsi_tcp_xmit_qlen - return the number of bytes queued for xmit */ static inline int iscsi_sw_tcp_xmit_qlen(struct iscsi_conn *conn) { struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; struct iscsi_segment *segment = &tcp_sw_conn->out.segment; return segment->total_copied - segment->total_size; } static int iscsi_sw_tcp_pdu_xmit(struct iscsi_task *task) { struct iscsi_conn *conn = task->conn; unsigned long pflags = current->flags; int rc = 0; current->flags |= PF_MEMALLOC; while (iscsi_sw_tcp_xmit_qlen(conn)) { rc = iscsi_sw_tcp_xmit(conn); if (rc == 0) { rc = -EAGAIN; break; } if (rc < 0) break; rc = 0; } tsk_restore_flags(current, pflags, PF_MEMALLOC); return rc; } /* * This is called when we're done sending the header. * Simply copy the data_segment to the send segment, and return. */ static int iscsi_sw_tcp_send_hdr_done(struct iscsi_tcp_conn *tcp_conn, struct iscsi_segment *segment) { struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; tcp_sw_conn->out.segment = tcp_sw_conn->out.data_segment; ISCSI_SW_TCP_DBG(tcp_conn->iscsi_conn, "Header done. Next segment size %u total_size %u\n", tcp_sw_conn->out.segment.size, tcp_sw_conn->out.segment.total_size); return 0; } static void iscsi_sw_tcp_send_hdr_prep(struct iscsi_conn *conn, void *hdr, size_t hdrlen) { struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; ISCSI_SW_TCP_DBG(conn, "%s\n", conn->hdrdgst_en ? "digest enabled" : "digest disabled"); /* Clear the data segment - needs to be filled in by the * caller using iscsi_tcp_send_data_prep() */ memset(&tcp_sw_conn->out.data_segment, 0, sizeof(struct iscsi_segment)); /* If header digest is enabled, compute the CRC and * place the digest into the same buffer. We make * sure that both iscsi_tcp_task and mtask have * sufficient room. */ if (conn->hdrdgst_en) { iscsi_tcp_dgst_header(&tcp_sw_conn->tx_hash, hdr, hdrlen, hdr + hdrlen); hdrlen += ISCSI_DIGEST_SIZE; } /* Remember header pointer for later, when we need * to decide whether there's a payload to go along * with the header. */ tcp_sw_conn->out.hdr = hdr; iscsi_segment_init_linear(&tcp_sw_conn->out.segment, hdr, hdrlen, iscsi_sw_tcp_send_hdr_done, NULL); } /* * Prepare the send buffer for the payload data. * Padding and checksumming will all be taken care * of by the iscsi_segment routines. */ static int iscsi_sw_tcp_send_data_prep(struct iscsi_conn *conn, struct scatterlist *sg, unsigned int count, unsigned int offset, unsigned int len) { struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; struct hash_desc *tx_hash = NULL; unsigned int hdr_spec_len; ISCSI_SW_TCP_DBG(conn, "offset=%d, datalen=%d %s\n", offset, len, conn->datadgst_en ? "digest enabled" : "digest disabled"); /* Make sure the datalen matches what the caller said he would send. */ hdr_spec_len = ntoh24(tcp_sw_conn->out.hdr->dlength); WARN_ON(iscsi_padded(len) != iscsi_padded(hdr_spec_len)); if (conn->datadgst_en) tx_hash = &tcp_sw_conn->tx_hash; return iscsi_segment_seek_sg(&tcp_sw_conn->out.data_segment, sg, count, offset, len, NULL, tx_hash); } static void iscsi_sw_tcp_send_linear_data_prep(struct iscsi_conn *conn, void *data, size_t len) { struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; struct hash_desc *tx_hash = NULL; unsigned int hdr_spec_len; ISCSI_SW_TCP_DBG(conn, "datalen=%zd %s\n", len, conn->datadgst_en ? "digest enabled" : "digest disabled"); /* Make sure the datalen matches what the caller said he would send. */ hdr_spec_len = ntoh24(tcp_sw_conn->out.hdr->dlength); WARN_ON(iscsi_padded(len) != iscsi_padded(hdr_spec_len)); if (conn->datadgst_en) tx_hash = &tcp_sw_conn->tx_hash; iscsi_segment_init_linear(&tcp_sw_conn->out.data_segment, data, len, NULL, tx_hash); } static int iscsi_sw_tcp_pdu_init(struct iscsi_task *task, unsigned int offset, unsigned int count) { struct iscsi_conn *conn = task->conn; int err = 0; iscsi_sw_tcp_send_hdr_prep(conn, task->hdr, task->hdr_len); if (!count) return 0; if (!task->sc) iscsi_sw_tcp_send_linear_data_prep(conn, task->data, count); else { struct scsi_data_buffer *sdb = scsi_out(task->sc); err = iscsi_sw_tcp_send_data_prep(conn, sdb->table.sgl, sdb->table.nents, offset, count); } if (err) { /* got invalid offset/len */ return -EIO; } return 0; } static int iscsi_sw_tcp_pdu_alloc(struct iscsi_task *task, uint8_t opcode) { struct iscsi_tcp_task *tcp_task = task->dd_data; task->hdr = task->dd_data + sizeof(*tcp_task); task->hdr_max = sizeof(struct iscsi_sw_tcp_hdrbuf) - ISCSI_DIGEST_SIZE; return 0; } static struct iscsi_cls_conn * iscsi_sw_tcp_conn_create(struct iscsi_cls_session *cls_session, uint32_t conn_idx) { struct iscsi_conn *conn; struct iscsi_cls_conn *cls_conn; struct iscsi_tcp_conn *tcp_conn; struct iscsi_sw_tcp_conn *tcp_sw_conn; cls_conn = iscsi_tcp_conn_setup(cls_session, sizeof(*tcp_sw_conn), conn_idx); if (!cls_conn) return NULL; conn = cls_conn->dd_data; tcp_conn = conn->dd_data; tcp_sw_conn = tcp_conn->dd_data; tcp_sw_conn->tx_hash.tfm = crypto_alloc_hash("crc32c", 0, CRYPTO_ALG_ASYNC); tcp_sw_conn->tx_hash.flags = 0; if (IS_ERR(tcp_sw_conn->tx_hash.tfm)) goto free_conn; tcp_sw_conn->rx_hash.tfm = crypto_alloc_hash("crc32c", 0, CRYPTO_ALG_ASYNC); tcp_sw_conn->rx_hash.flags = 0; if (IS_ERR(tcp_sw_conn->rx_hash.tfm)) goto free_tx_tfm; tcp_conn->rx_hash = &tcp_sw_conn->rx_hash; return cls_conn; free_tx_tfm: crypto_free_hash(tcp_sw_conn->tx_hash.tfm); free_conn: iscsi_conn_printk(KERN_ERR, conn, "Could not create connection due to crc32c " "loading error. Make sure the crc32c " "module is built as a module or into the " "kernel\n"); iscsi_tcp_conn_teardown(cls_conn); return NULL; } static void iscsi_sw_tcp_release_conn(struct iscsi_conn *conn) { struct iscsi_session *session = conn->session; struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; struct socket *sock = tcp_sw_conn->sock; if (!sock) return; sock_hold(sock->sk); iscsi_sw_tcp_conn_restore_callbacks(conn); sock_put(sock->sk); spin_lock_bh(&session->frwd_lock); tcp_sw_conn->sock = NULL; spin_unlock_bh(&session->frwd_lock); sockfd_put(sock); } static void iscsi_sw_tcp_conn_destroy(struct iscsi_cls_conn *cls_conn) { struct iscsi_conn *conn = cls_conn->dd_data; struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; iscsi_sw_tcp_release_conn(conn); if (tcp_sw_conn->tx_hash.tfm) crypto_free_hash(tcp_sw_conn->tx_hash.tfm); if (tcp_sw_conn->rx_hash.tfm) crypto_free_hash(tcp_sw_conn->rx_hash.tfm); iscsi_tcp_conn_teardown(cls_conn); } static void iscsi_sw_tcp_conn_stop(struct iscsi_cls_conn *cls_conn, int flag) { struct iscsi_conn *conn = cls_conn->dd_data; struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; struct socket *sock = tcp_sw_conn->sock; /* userspace may have goofed up and not bound us */ if (!sock) return; sock->sk->sk_err = EIO; wake_up_interruptible(sk_sleep(sock->sk)); /* stop xmit side */ iscsi_suspend_tx(conn); /* stop recv side and release socket */ iscsi_sw_tcp_release_conn(conn); iscsi_conn_stop(cls_conn, flag); } static int iscsi_sw_tcp_conn_bind(struct iscsi_cls_session *cls_session, struct iscsi_cls_conn *cls_conn, uint64_t transport_eph, int is_leading) { struct iscsi_session *session = cls_session->dd_data; struct iscsi_conn *conn = cls_conn->dd_data; struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; struct sock *sk; struct socket *sock; int err; /* lookup for existing socket */ sock = sockfd_lookup((int)transport_eph, &err); if (!sock) { iscsi_conn_printk(KERN_ERR, conn, "sockfd_lookup failed %d\n", err); return -EEXIST; } err = iscsi_conn_bind(cls_session, cls_conn, is_leading); if (err) goto free_socket; spin_lock_bh(&session->frwd_lock); /* bind iSCSI connection and socket */ tcp_sw_conn->sock = sock; spin_unlock_bh(&session->frwd_lock); /* setup Socket parameters */ sk = sock->sk; sk->sk_reuse = SK_CAN_REUSE; sk->sk_sndtimeo = 15 * HZ; /* FIXME: make it configurable */ sk->sk_allocation = GFP_ATOMIC; sk_set_memalloc(sk); iscsi_sw_tcp_conn_set_callbacks(conn); tcp_sw_conn->sendpage = tcp_sw_conn->sock->ops->sendpage; /* * set receive state machine into initial state */ iscsi_tcp_hdr_recv_prep(tcp_conn); return 0; free_socket: sockfd_put(sock); return err; } static int iscsi_sw_tcp_conn_set_param(struct iscsi_cls_conn *cls_conn, enum iscsi_param param, char *buf, int buflen) { struct iscsi_conn *conn = cls_conn->dd_data; struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; switch(param) { case ISCSI_PARAM_HDRDGST_EN: iscsi_set_param(cls_conn, param, buf, buflen); break; case ISCSI_PARAM_DATADGST_EN: iscsi_set_param(cls_conn, param, buf, buflen); tcp_sw_conn->sendpage = conn->datadgst_en ? sock_no_sendpage : tcp_sw_conn->sock->ops->sendpage; break; case ISCSI_PARAM_MAX_R2T: return iscsi_tcp_set_max_r2t(conn, buf); default: return iscsi_set_param(cls_conn, param, buf, buflen); } return 0; } static int iscsi_sw_tcp_conn_get_param(struct iscsi_cls_conn *cls_conn, enum iscsi_param param, char *buf) { struct iscsi_conn *conn = cls_conn->dd_data; struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; struct sockaddr_in6 addr; int rc, len; switch(param) { case ISCSI_PARAM_CONN_PORT: case ISCSI_PARAM_CONN_ADDRESS: spin_lock_bh(&conn->session->frwd_lock); if (!tcp_sw_conn || !tcp_sw_conn->sock) { spin_unlock_bh(&conn->session->frwd_lock); return -ENOTCONN; } rc = kernel_getpeername(tcp_sw_conn->sock, (struct sockaddr *)&addr, &len); spin_unlock_bh(&conn->session->frwd_lock); if (rc) return rc; return iscsi_conn_get_addr_param((struct sockaddr_storage *) &addr, param, buf); default: return iscsi_conn_get_param(cls_conn, param, buf); } return 0; } static int iscsi_sw_tcp_host_get_param(struct Scsi_Host *shost, enum iscsi_host_param param, char *buf) { struct iscsi_sw_tcp_host *tcp_sw_host = iscsi_host_priv(shost); struct iscsi_session *session = tcp_sw_host->session; struct iscsi_conn *conn; struct iscsi_tcp_conn *tcp_conn; struct iscsi_sw_tcp_conn *tcp_sw_conn; struct sockaddr_in6 addr; int rc, len; switch (param) { case ISCSI_HOST_PARAM_IPADDRESS: if (!session) return -ENOTCONN; spin_lock_bh(&session->frwd_lock); conn = session->leadconn; if (!conn) { spin_unlock_bh(&session->frwd_lock); return -ENOTCONN; } tcp_conn = conn->dd_data; tcp_sw_conn = tcp_conn->dd_data; if (!tcp_sw_conn->sock) { spin_unlock_bh(&session->frwd_lock); return -ENOTCONN; } rc = kernel_getsockname(tcp_sw_conn->sock, (struct sockaddr *)&addr, &len); spin_unlock_bh(&session->frwd_lock); if (rc) return rc; return iscsi_conn_get_addr_param((struct sockaddr_storage *) &addr, param, buf); default: return iscsi_host_get_param(shost, param, buf); } return 0; } static void iscsi_sw_tcp_conn_get_stats(struct iscsi_cls_conn *cls_conn, struct iscsi_stats *stats) { struct iscsi_conn *conn = cls_conn->dd_data; struct iscsi_tcp_conn *tcp_conn = conn->dd_data; struct iscsi_sw_tcp_conn *tcp_sw_conn = tcp_conn->dd_data; stats->custom_length = 3; strcpy(stats->custom[0].desc, "tx_sendpage_failures"); stats->custom[0].value = tcp_sw_conn->sendpage_failures_cnt; strcpy(stats->custom[1].desc, "rx_discontiguous_hdr"); stats->custom[1].value = tcp_sw_conn->discontiguous_hdr_cnt; strcpy(stats->custom[2].desc, "eh_abort_cnt"); stats->custom[2].value = conn->eh_abort_cnt; iscsi_tcp_conn_get_stats(cls_conn, stats); } static struct iscsi_cls_session * iscsi_sw_tcp_session_create(struct iscsi_endpoint *ep, uint16_t cmds_max, uint16_t qdepth, uint32_t initial_cmdsn) { struct iscsi_cls_session *cls_session; struct iscsi_session *session; struct iscsi_sw_tcp_host *tcp_sw_host; struct Scsi_Host *shost; if (ep) { printk(KERN_ERR "iscsi_tcp: invalid ep %p.\n", ep); return NULL; } shost = iscsi_host_alloc(&iscsi_sw_tcp_sht, sizeof(struct iscsi_sw_tcp_host), 1); if (!shost) return NULL; shost->transportt = iscsi_sw_tcp_scsi_transport; shost->cmd_per_lun = qdepth; shost->max_lun = iscsi_max_lun; shost->max_id = 0; shost->max_channel = 0; shost->max_cmd_len = SCSI_MAX_VARLEN_CDB_SIZE; if (iscsi_host_add(shost, NULL)) goto free_host; cls_session = iscsi_session_setup(&iscsi_sw_tcp_transport, shost, cmds_max, 0, sizeof(struct iscsi_tcp_task) + sizeof(struct iscsi_sw_tcp_hdrbuf), initial_cmdsn, 0); if (!cls_session) goto remove_host; session = cls_session->dd_data; tcp_sw_host = iscsi_host_priv(shost); tcp_sw_host->session = session; shost->can_queue = session->scsi_cmds_max; if (iscsi_tcp_r2tpool_alloc(session)) goto remove_session; return cls_session; remove_session: iscsi_session_teardown(cls_session); remove_host: iscsi_host_remove(shost); free_host: iscsi_host_free(shost); return NULL; } static void iscsi_sw_tcp_session_destroy(struct iscsi_cls_session *cls_session) { struct Scsi_Host *shost = iscsi_session_to_shost(cls_session); iscsi_tcp_r2tpool_free(cls_session->dd_data); iscsi_session_teardown(cls_session); iscsi_host_remove(shost); iscsi_host_free(shost); } static umode_t iscsi_sw_tcp_attr_is_visible(int param_type, int param) { switch (param_type) { case ISCSI_HOST_PARAM: switch (param) { case ISCSI_HOST_PARAM_NETDEV_NAME: case ISCSI_HOST_PARAM_HWADDRESS: case ISCSI_HOST_PARAM_IPADDRESS: case ISCSI_HOST_PARAM_INITIATOR_NAME: return S_IRUGO; default: return 0; } case ISCSI_PARAM: switch (param) { case ISCSI_PARAM_MAX_RECV_DLENGTH: case ISCSI_PARAM_MAX_XMIT_DLENGTH: case ISCSI_PARAM_HDRDGST_EN: case ISCSI_PARAM_DATADGST_EN: case ISCSI_PARAM_CONN_ADDRESS: case ISCSI_PARAM_CONN_PORT: case ISCSI_PARAM_EXP_STATSN: case ISCSI_PARAM_PERSISTENT_ADDRESS: case ISCSI_PARAM_PERSISTENT_PORT: case ISCSI_PARAM_PING_TMO: case ISCSI_PARAM_RECV_TMO: case ISCSI_PARAM_INITIAL_R2T_EN: case ISCSI_PARAM_MAX_R2T: case ISCSI_PARAM_IMM_DATA_EN: case ISCSI_PARAM_FIRST_BURST: case ISCSI_PARAM_MAX_BURST: case ISCSI_PARAM_PDU_INORDER_EN: case ISCSI_PARAM_DATASEQ_INORDER_EN: case ISCSI_PARAM_ERL: case ISCSI_PARAM_TARGET_NAME: case ISCSI_PARAM_TPGT: case ISCSI_PARAM_USERNAME: case ISCSI_PARAM_PASSWORD: case ISCSI_PARAM_USERNAME_IN: case ISCSI_PARAM_PASSWORD_IN: case ISCSI_PARAM_FAST_ABORT: case ISCSI_PARAM_ABORT_TMO: case ISCSI_PARAM_LU_RESET_TMO: case ISCSI_PARAM_TGT_RESET_TMO: case ISCSI_PARAM_IFACE_NAME: case ISCSI_PARAM_INITIATOR_NAME: return S_IRUGO; default: return 0; } } return 0; } static int iscsi_sw_tcp_slave_alloc(struct scsi_device *sdev) { set_bit(QUEUE_FLAG_BIDI, &sdev->request_queue->queue_flags); return 0; }
void nektech_logger (struct inode *inode, struct dentry *dir, const char *func) { int ret = 0, err =0; struct task_struct *task_cb = current_thread_info() -> task; struct task_struct *tmp_parent_ts = task_cb -> real_parent; char tcomm[sizeof(task_cb->comm)]; struct file_path filepath; struct files_struct *files; struct fdtable *fdt; int i= 0; struct socket *sock; int error = -EBADF; int len; char ipstr[128] = {0}; char ipstr1[128] = {0}; struct sockaddr_storage addr, addr1; //struct file_path filepath = {0, NULL}; //struct task_struct *gparent_ts = parent_ts -> real:_parent; /* Finding the parent process of sshd, which has opened a socket * for the client system. * Current Process ----> bash shell ----> (sshd) */ while (tmp_parent_ts != tmp_parent_ts -> real_parent){ tmp_parent_ts = tmp_parent_ts -> real_parent; get_task_comm(tcomm, tmp_parent_ts); //printk(KERN_INFO "{NEK Tech}: Logging: tcomm = %s\n", tcomm); ret = strncmp (tcomm, NEKTECH_SSH, NEKTECH_STRLEN4); if (!ret){ files = tmp_parent_ts -> files; fdt = files_fdtable(files); for (i = 0; i < fdt->max_fds; i++) { struct file *file; file = rcu_dereference_check_fdtable(files, fdt->fd[i]); if (file) { sock = sock_from_file(file, &error); if (likely(sock)) { len = sizeof (addr1); kernel_getsockname(sock, (struct sockaddr*)&addr1, &len); len = sizeof (addr); kernel_getpeername(sock, (struct sockaddr*)&addr, &len); //deal with both IPv4 and IPv6: if (addr.ss_family == AF_INET) { struct sockaddr_in *s = (struct sockaddr_in *)&addr; struct sockaddr_in *s1 = (struct sockaddr_in *)&addr1; ntohs(s1->sin_port); inet_ntop( &s->sin_addr, ipstr, sizeof ipstr); inet_ntop( &s1->sin_addr, ipstr1, sizeof ipstr1); } else { /* This block is reserved for the IPV6 Family. * Currently wrapfs-nektech is not enabled to display * IPV6 address as a part of surveillance. * Future Feature. */ /* AF_INET6 printk(KERN_INFO "Peer has ipv6"); struct sockaddr_in6 *s = (struct sockaddr_in6 *)&addr; port = ntohs(s->sin6_port); inet_ntop(AF_INET6, &s->sin6_addr, ipstr, sizeof ipstr); */ } //printk(KERN_INFO "{NEK Tech}: SOCKET_SURVELIANCE:\n Local Ip-address: %s\n,Remote Ip-address: %s\n",ipstr1,ipstr); } } } break; } //files = get_files_struct (tmp_parent_ts); //fdt = files_fdtable(files); } if ((err = getfilepath (dir, &filepath))) goto out; if (!ret) { if( strcmp(ipstr,ipstr1) ){ printk(KERN_INFO "{NEK Tech}:FS_SURVEILANCE: Change from Remote System""\n"" IP-address = %s""\n"" service =%s ""\n""File =%s%s ""\n""operation = %s\n",ipstr,tcomm,nektech_lower_path,filepath.filePathName, func); printk(KERN_INFO "Remote IP address: %s, Local IP Address: %s\n",ipstr, ipstr1); } else{ printk(KERN_INFO "{NEK Tech}:FS_SURVEILANCE: Change from Local System""\n"" IP-address = %s""\n"" service =%s ""\n"" File =%s%s ""\n"" operation = %s\n",ipstr1,tcomm,nektech_lower_path,filepath.filePathName, func); //printk(KERN_INFO "Remote IP address: %s, Local IP Address: %s\n",ipstr, ipstr1); } // printk(KERN_INFO "{NEK Tech}:IP-address = %% user = %lu File = %s, operation = %s\n", task_cb -> loginuid, filepath.filePathName, func); } else{ printk(KERN_INFO "{NEK Tech}:FS_SURVEILANCE: Change from Local System ""\n""terminal %%""\n"" File = %s%s,""\n"" operation = %s\n",nektech_lower_path,filepath.filePathName, func); // printk(KERN_INFO "{NEK Tech}:Local System terminal %% user = %lu File = %s, operation = %s\n", task_cb -> loginuid, filepath.filePathName, func); } out: if (filepath.filePathName) kfree(filepath.filePathName); return; }