コード例 #1
0
ファイル: cluster.c プロジェクト: dvitsios/kmeans_pthreads
int cluster(int      numObjects,      /* number of input objects */
            int      numAttributes,   /* size of attribute of each object */
            float  **attributes,      /* [numObjects][numAttributes] */
            int      num_nclusters,
            int      NUM_THREADS,       /* in: number of threads  */
            float ***cluster_centres /* out: [best_nclusters][numAttributes] */
            )
{
    int     nclusters;
    float **tmp_cluster_centres;
    

    nclusters=num_nclusters;

    srand(7);
	
    tmp_cluster_centres = kmeans_clustering(attributes,
                                            numAttributes,
                                            numObjects,
                                            nclusters,
                                            NUM_THREADS);

                                            

   
    if (*cluster_centres) {
		free((*cluster_centres)[0]);
        free(*cluster_centres);
	}
	*cluster_centres = tmp_cluster_centres;


    return 0;
}
コード例 #2
0
ファイル: clustering.c プロジェクト: ChristianFrisson/XKin
/*!
 * \brief Compute depth interval defined by the hand. 
 *
 * Starting from the depth body image this function computes the depth
 * interval related to the hand, these two depth values are later used
 * as thresholds for the binarization procedure. This interval is
 * calculated through a K-means clustering of the body image.
 *
 * \param[in]      body depth image
 * \param[out]  hand depth min max values 
 */
void get_hand_interval (IplImage *body, int *interval)
{
	CvMat  *data, *par, *means;
	double var;
	int    min, count = cvCountNonZero(body);

	data  = cvCreateMat(count, 1, CV_32FC1);
	par   = cvCreateMat(count, 1, CV_8UC1);
	means = cvCreateMat(K, 1, CV_32FC1);

	fill_mat(body, data);

	min = kmeans_clustering(data, means, par);

	//var = get_cluster_var(data, par);

	interval[0] = min;
	interval[1] = (int)cvmGet(means, 0, 0); //- var;

	cvReleaseMat(&data);
	cvReleaseMat(&par);
	cvReleaseMat(&means);
}
コード例 #3
0
ファイル: cluster.c プロジェクト: Goursat/rodinia
/*---< cluster() >-----------------------------------------------------------*/
int cluster(int      numObjects,      /* number of input objects */
            int      numAttributes,   /* size of attribute of each object */
            float  **attributes,      /* [numObjects][numAttributes] */
            int      num_nclusters,
            float    threshold,       /* in:   */
            float ***cluster_centres /* out: [best_nclusters][numAttributes] */
    
            )
{
    int     nclusters;
    int    *membership;
    float **tmp_cluster_centres;

    membership = (int*) malloc(numObjects * sizeof(int));

    nclusters=num_nclusters;

    srand(7);
	
    tmp_cluster_centres = kmeans_clustering(attributes,
                                            numAttributes,
                                            numObjects,
                                            nclusters,
                                            threshold,
                                            membership);

    if (*cluster_centres) {
		free((*cluster_centres)[0]);
        free(*cluster_centres);
	}
	*cluster_centres = tmp_cluster_centres;

   
    free(membership);

    return 0;
}
コード例 #4
0
/*---< cluster() >-----------------------------------------------------------*/
int cluster(int      npoints,				/* number of data points */
		int      nfeatures,				/* number of attributes for each point */
		float  **features,			/* array: [npoints][nfeatures] */                  
		int      min_nclusters,			/* range of min to max number of clusters */
		int		 max_nclusters,
		float    threshold,				/* loop terminating factor */
		int     *best_nclusters,		/* out: number between min and max with lowest RMSE */
		float ***cluster_centres,		/* out: [best_nclusters][nfeatures] */
		float	*min_rmse,				/* out: minimum RMSE */
		int		 isRMSE,				/* calculate RMSE */
		int		 nloops					/* number of iteration for each number of clusters */
	   )
{    
	int		nclusters;						/* number of clusters k */	
	int		index =0;						/* number of iteration to reach the best RMSE */
	int		rmse;							/* RMSE for each clustering */
	int    *membership;						/* which cluster a data point belongs to */
	float **tmp_cluster_centres;			/* hold coordinates of cluster centers */
	int		i;

	/* allocate memory for membership */
	membership = (int*) malloc(npoints * sizeof(int));

	/* sweep k from min to max_nclusters to find the best number of clusters */
	for(nclusters = min_nclusters; nclusters <= max_nclusters; nclusters++)
	{
		if (nclusters > npoints) break;	/* cannot have more clusters than points */

		/* allocate device memory, invert data array (@ kmeans_cuda.cu) */
		allocateMemory(npoints, nfeatures, nclusters, features);

		/* iterate nloops times for each number of clusters */
		for(i = 0; i < nloops; i++)
		{
			/* initialize initial cluster centers, CUDA calls (@ kmeans_cuda.cu) */
			tmp_cluster_centres = kmeans_clustering(features,
					nfeatures,
					npoints,
					nclusters,
					threshold,
					membership);

			if (*cluster_centres) {
				free((*cluster_centres)[0]);
				free(*cluster_centres);
			}
			*cluster_centres = tmp_cluster_centres;


			/* find the number of clusters with the best RMSE */
			if(isRMSE)
			{
				rmse = rms_err(features,
						nfeatures,
						npoints,
						tmp_cluster_centres,
						nclusters);

				if(rmse < min_rmse_ref){
					min_rmse_ref = rmse;			//update reference min RMSE
					*min_rmse = min_rmse_ref;		//update return min RMSE
					*best_nclusters = nclusters;	//update optimum number of clusters
					index = i;						//update number of iteration to reach best RMSE
				}
			}			
		}

	}
	deallocateMemory();							/* free device memory (@ kmeans_cuda.cu) */
	free(membership);

	return index;
}