static DD4hep::Geometry::Ref_t createTkLayoutTrackerEndcap(DD4hep::Geometry::LCDD& lcdd, DD4hep::XML::Handle_t xmlElement, DD4hep::Geometry::SensitiveDetector sensDet) { // shorthands DD4hep::XML::DetElement xmlDet = static_cast<DD4hep::XML::DetElement>(xmlElement); Dimension dimensions(xmlDet.dimensions()); // get sensitive detector type from xml DD4hep::XML::Dimension sdTyp = xmlElement.child("sensitive"); // retrieve the type sensDet.setType(sdTyp.typeStr()); // set for the whole detector // definition of top volume std::string detName = xmlDet.nameStr(); DetElement GenericTrackerEndcapWorld(detName, xmlDet.id()); // envelope volume with the max dimensions of tracker for visualization etc. // contains both endcaps, in forward and in backwards direction // the part between -z1 and z1 is subtracted from the envelope DD4hep::Geometry::Tube posnegEnvelopeShape_add(dimensions.rmin(), dimensions.rmax(), dimensions.zmax()); // make the negative shape slighly larger in the radial direction // to be sure that everything is subtracted between -z1 and z1 DD4hep::Geometry::Box posnegEnvelopeShape_subtract( dimensions.rmax() * 1.001, dimensions.rmax() * 1.001, dimensions.zmin()); DD4hep::Geometry::SubtractionSolid posnegEnvelopeShape(posnegEnvelopeShape_add, posnegEnvelopeShape_subtract); Volume posnegEnvelopeVolume(detName, posnegEnvelopeShape, lcdd.air()); posnegEnvelopeVolume.setVisAttributes(lcdd.invisible()); // envelope volume for one of the endcaps, either forward or backward DD4hep::Geometry::Tube envelopeShape( dimensions.rmin(), dimensions.rmax(), 0.5 * (dimensions.zmax() - dimensions.zmin())); Volume envelopeVolume(detName, envelopeShape, lcdd.air()); envelopeVolume.setVisAttributes(lcdd.invisible()); Component xDiscs = xmlElement.child("discs"); Component xFirstDisc = xDiscs.child("discZPls"); Component xFirstDiscRings = xFirstDisc.child("rings"); // create disc volume double discThickness = (xFirstDisc.zmax() - xFirstDisc.zmin()); DD4hep::Geometry::Tube discShape(dimensions.rmin(), dimensions.rmax(), 0.5 * discThickness); Volume discVolume("disc", discShape, lcdd.air()); discVolume.setVisAttributes(lcdd.invisible()); // generate rings and place in discs int moduleCounter = 0; for (DD4hep::XML::Collection_t xRingColl(xFirstDiscRings, _U(ring)); nullptr != xRingColl; ++xRingColl) { Component xRing = static_cast<Component>(xRingColl); Component xRingModules = xRing.child("modules"); Component xModuleOdd = xRingModules.child("moduleOdd"); Component xModuleEven = xRingModules.child("moduleEven"); Component xModuleProperties = xRing.child("moduleProperties"); Component xModulePropertiesComp = xModuleProperties.child("components"); Component xSensorProperties = xRing.child("sensorProperties"); Volume moduleVolume("module", DD4hep::Geometry::Trapezoid(0.5 * xModuleProperties.attr<double>("modWidthMin"), 0.5 * xModuleProperties.attr<double>("modWidthMax"), 0.5 * xModuleProperties.attr<double>("modThickness"), 0.5 * xModuleProperties.attr<double>("modThickness"), 0.5 * xSensorProperties.attr<double>("sensorLength")), lcdd.material("Air")); // place components in module double integratedCompThickness = 0; int componentCounter = 0; for (DD4hep::XML::Collection_t xCompColl(xModulePropertiesComp, _U(component)); nullptr != xCompColl; ++xCompColl) { Component xComp = static_cast<Component>(xCompColl); Volume componentVolume("component", DD4hep::Geometry::Trapezoid(0.5 * xModuleProperties.attr<double>("modWidthMin"), 0.5 * xModuleProperties.attr<double>("modWidthMax"), 0.5 * xComp.thickness(), 0.5 * xComp.thickness(), 0.5 * xSensorProperties.attr<double>("sensorLength")), lcdd.material(xComp.materialStr())); PlacedVolume placedComponentVolume = moduleVolume.placeVolume( componentVolume, DD4hep::Geometry::Position( 0, integratedCompThickness - 0.5 * xModuleProperties.attr<double>("modThickness"), 0)); placedComponentVolume.addPhysVolID("component", componentCounter); componentVolume.setSensitiveDetector(sensDet); integratedCompThickness += xComp.thickness(); ++componentCounter; } unsigned int nPhi = xRing.attr<int>("nModules"); double lX, lY, lZ; double phi = 0; double phiTilt, thetaTilt; for (unsigned int phiIndex = 0; phiIndex < nPhi; ++phiIndex) { if (0 == phiIndex % 2) { // the rotation for the odd module is already taken care // of by the position in tklayout xml phi = 2 * dd4hep::pi * static_cast<double>(phiIndex) / static_cast<double>(nPhi); lX = xModuleEven.X(); lY = xModuleEven.Y(); lZ = xModuleEven.Z() - dimensions.zmin() - discThickness * 0.5; phiTilt = xModuleEven.attr<double>("phiTilt"); thetaTilt = xModuleEven.attr<double>("thetaTilt"); } else { lX = xModuleOdd.X(); lY = xModuleOdd.Y(); lZ = xModuleOdd.Z() - dimensions.zmin() - discThickness * 0.5; phiTilt = xModuleOdd.attr<double>("phiTilt"); thetaTilt = xModuleOdd.attr<double>("thetaTilt"); } // position module in the x-y plane, smaller end inward // and incorporate phi tilt if any DD4hep::Geometry::RotationY lRotation1(M_PI * 0.5); DD4hep::Geometry::RotationX lRotation2(M_PI * 0.5 + phiTilt); // align radially DD4hep::Geometry::RotationZ lRotation3(atan(lY / lX)); // theta tilt, if any -- note the different convention between // tklayout and here, thus the subtraction of pi / 2 DD4hep::Geometry::RotationY lRotation4(thetaTilt - M_PI * 0.5); DD4hep::Geometry::RotationZ lRotation_PhiPos(phi); // position in disk DD4hep::Geometry::Translation3D lTranslation(lX, lY, lZ); DD4hep::Geometry::Transform3D myTrafo(lRotation4 * lRotation3 * lRotation2 * lRotation1, lTranslation); PlacedVolume placedModuleVolume = discVolume.placeVolume(moduleVolume, lRotation_PhiPos * myTrafo); placedModuleVolume.addPhysVolID("module", moduleCounter); ++moduleCounter; } } unsigned int discCounter = 0; double currentZ; for (DD4hep::XML::Collection_t xDiscColl(xDiscs, "discZPls"); nullptr != xDiscColl; ++xDiscColl) { Component xDisc = static_cast<Component>(xDiscColl); currentZ = xDisc.z() - dimensions.zmin() - 0.5 * (dimensions.zmax() - dimensions.zmin()); PlacedVolume placedDiscVolume = envelopeVolume.placeVolume(discVolume, DD4hep::Geometry::Position(0, 0, currentZ)); placedDiscVolume.addPhysVolID("disc", discCounter); ++discCounter; } // top of the hierarchy Volume motherVol = lcdd.pickMotherVolume(GenericTrackerEndcapWorld); PlacedVolume placedEnvelopeVolume = motherVol.placeVolume(posnegEnvelopeVolume); placedEnvelopeVolume.addPhysVolID("system", xmlDet.id()); // place everything twice -- forward / backward DD4hep::Geometry::Translation3D lTranslation_posEnvelope( 0, 0, -dimensions.zmin() - 0.5 * (dimensions.zmax() - dimensions.zmin())); PlacedVolume placedGenericTrackerEndcap_pos = posnegEnvelopeVolume.placeVolume( envelopeVolume, DD4hep::Geometry::Position(0, 0, dimensions.zmin() + 0.5 * (dimensions.zmax() - dimensions.zmin()))); PlacedVolume placedGenericTrackerEndcap_neg = posnegEnvelopeVolume.placeVolume( envelopeVolume, lTranslation_posEnvelope * DD4hep::Geometry::RotationX(dd4hep::pi)); placedGenericTrackerEndcap_pos.addPhysVolID("posneg", 0); placedGenericTrackerEndcap_neg.addPhysVolID("posneg", 1); GenericTrackerEndcapWorld.setPlacement(placedEnvelopeVolume); return GenericTrackerEndcapWorld; }
static DD4hep::Geometry::Ref_t createGenericTrackerBarrel(DD4hep::Geometry::LCDD& lcdd, DD4hep::XML::Handle_t xmlElement, DD4hep::Geometry::SensitiveDetector sensDet) { // shorthands DD4hep::XML::DetElement xmlDet = static_cast<DD4hep::XML::DetElement>(xmlElement); Dimension dimensions(xmlDet.dimensions()); // get sensitive detector type from xml DD4hep::XML::Dimension sdTyp = xmlElement.child("sensitive"); if (xmlDet.isSensitive()) { // sensitive detector used for all sensitive parts of this detector sensDet.setType(sdTyp.typeStr()); } // definition of top volume // has min/max dimensions of tracker for visualization etc. std::string detectorName = xmlDet.nameStr(); DetElement topDetElement(detectorName, xmlDet.id()); DD4hep::Geometry::Tube topVolumeShape(dimensions.rmin(), dimensions.rmax(), dimensions.dz()); Volume topVolume(detectorName, topVolumeShape, lcdd.air()); topVolume.setVisAttributes(lcdd.invisible()); // counts all layers - incremented in the inner loop over repeat - tags unsigned int layerCounter = 0; // loop over 'layer' nodes in xml for (DD4hep::XML::Collection_t xLayerColl(xmlElement, _U(layers)); nullptr != xLayerColl; ++xLayerColl) { DD4hep::XML::Component xLayer = static_cast<DD4hep::XML::Component>(xLayerColl); DD4hep::XML::Component xModuleComponents = xmlElement.child("module_components"); DD4hep::XML::Component xModule = utils::getNodeByStrAttr(xmlElement, "module", "name", xLayer.attr<std::string>("module")); // optional parameters double stereo_offset = utils::getAttrValueWithFallback(xLayer, "stereo_offset", 0.0); double module_twist_angle = utils::getAttrValueWithFallback(xLayer, "module_twist_angle", 0.1 * M_PI); double stereo_module_overlap = utils::getAttrValueWithFallback(xLayer, "stereo_module_overlap", 0.0); // get total thickness of module unsigned int idxSubMod = 0; double totalModuleComponentThickness = 0; for (DD4hep::XML::Collection_t xCompColl(xModuleComponents, _U(module_component)); nullptr != xCompColl; ++xCompColl, ++idxSubMod) { DD4hep::XML::Component xComp = static_cast<DD4hep::XML::Component>(xCompColl); totalModuleComponentThickness += xComp.thickness(); } // now that thickness is known: define module components volumes idxSubMod = 0; double integratedModuleComponentThickness = 0; std::vector<Volume> moduleComponentVector; for (DD4hep::XML::Collection_t xCompColl(xModuleComponents, _U(module_component)); nullptr != xCompColl; ++xCompColl, ++idxSubMod) { DD4hep::XML::Component xComp = static_cast<DD4hep::XML::Component>(xCompColl); std::string moduleComponentName = "layer" + std::to_string(layerCounter) + "_rod_module_component" + std::to_string(idxSubMod) + "_" + xComp.materialStr(); Volume moduleComponentVolume(moduleComponentName, DD4hep::Geometry::Box(xModule.width(), xComp.thickness(), xModule.length()), lcdd.material(xComp.materialStr())); moduleComponentVolume.setVisAttributes(lcdd, xComp.visStr()); if (xComp.isSensitive()) { moduleComponentVolume.setSensitiveDetector(sensDet); } moduleComponentVector.push_back(moduleComponentVolume); } // definition of module volume (smallest independent subdetector) // define the module whose name was given in the "layer" xml Element Volume moduleVolume("module", DD4hep::Geometry::Box(xModule.width(), xModule.thickness(), xModule.length()), lcdd.material("Air")); moduleVolume.setVisAttributes(lcdd, xModule.visStr()); // definition of rod volume (longitudinal arrangement of modules) Volume rodVolume("GenericTrackerBarrel_layer" + std::to_string(layerCounter) + "_rod", DD4hep::Geometry::Box(xModule.width(), xModule.thickness(), xLayer.dz()), lcdd.material("Air")); rodVolume.setVisAttributes(lcdd.invisible()); /// @todo: allow for more than one type of module components // analogous to module // place module substructure in module std::string moduleComponentName = "moduleComponent"; idxSubMod = 0; for (DD4hep::XML::Collection_t xCompColl(xModuleComponents, _U(module_component)); nullptr != xCompColl; ++xCompColl, ++idxSubMod) { DD4hep::XML::Component xComp = static_cast<DD4hep::XML::Component>(xCompColl); DD4hep::Geometry::Position offset(0, -0.5 * totalModuleComponentThickness + integratedModuleComponentThickness, 0); integratedModuleComponentThickness += xComp.thickness(); PlacedVolume placedModuleComponentVolume = moduleVolume.placeVolume(moduleComponentVector[idxSubMod], offset); placedModuleComponentVolume.addPhysVolID("module_component", idxSubMod); } // handle repeat attribute in xml // "repeat" layers equidistant between rmin and rmax double numRepeat = xLayer.repeat(); double layerThickness = (xLayer.rmax() - xLayer.rmin()) / numRepeat; double layer_rmin = xLayer.rmin(); unsigned int nPhi = 0; double r = 0; double phi = 0; // loop over repeated layers defined by one layer tag for (unsigned int repeatIndex = 0; repeatIndex < numRepeat; ++repeatIndex) { ++layerCounter; // let r be the middle between two equidistant layer boundaries r = layer_rmin + (0.5 + repeatIndex) * layerThickness; // definition of layer volumes DD4hep::Geometry::Tube layerShape(r - 0.5*layerThickness, r + 0.5*layerThickness, xLayer.dz()); std::string layerName = "layer" + std::to_string(layerCounter); Volume layerVolume(layerName, layerShape, lcdd.material("Silicon")); layerVolume.setVisAttributes(lcdd.invisible()); PlacedVolume placedLayerVolume = topVolume.placeVolume(layerVolume); placedLayerVolume.addPhysVolID("layer", layerCounter); // approximation of tklayout values double phiOverlapFactor = utils::getAttrValueWithFallback(xLayer, "phi_overlap_factor", 1.15); nPhi = static_cast<unsigned int>( phiOverlapFactor * 2 * M_PI * r / (2 * xModule.width())); for (unsigned int phiIndex = 0; phiIndex < nPhi; ++phiIndex) { phi = 2 * M_PI * static_cast<double>(phiIndex) / static_cast<double>(nPhi); DD4hep::Geometry::Translation3D lTranslation(r * cos(phi), r * sin(phi), 0); DD4hep::Geometry::RotationZ lRotation(phi + module_twist_angle + 0.5 * M_PI); PlacedVolume placedRodVolume = layerVolume.placeVolume(rodVolume, lTranslation * lRotation); placedRodVolume.addPhysVolID("rod", phiIndex); } } // placement of modules within rods unsigned int zRepeat = static_cast<int>(xLayer.dz() / (xModule.length() - stereo_module_overlap)); // stereo overlap for (unsigned int zIndex = 0; zIndex < zRepeat; ++zIndex) { stereo_offset *= -1.; DD4hep::Geometry::Position moduleOffset(0, stereo_offset, zIndex * 2 * (xModule.length() - stereo_module_overlap) - xLayer.dz() + xModule.length() - stereo_module_overlap); PlacedVolume placedModuleVolume = rodVolume.placeVolume(moduleVolume, moduleOffset); placedModuleVolume.addPhysVolID("module", zIndex); } } Volume motherVol = lcdd.pickMotherVolume(topDetElement); PlacedVolume placedGenericTrackerBarrel = motherVol.placeVolume(topVolume); placedGenericTrackerBarrel.addPhysVolID("system", topDetElement.id()); topDetElement.setPlacement(placedGenericTrackerBarrel); return topDetElement; }