コード例 #1
0
ファイル: testing_sormbr.cpp プロジェクト: xulunfan/magma
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing sormbr
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float Cnorm, error, dwork[1];
    float c_neg_one = MAGMA_S_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t m, n, k, mi, ni, mm, nn, nq, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max;
    float *C, *R, *A, *work, *tau, *tauq, *taup;
    float *d, *e;
    magma_int_t status = 0;
    
    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    // need slightly looser bound (60*eps instead of 30*eps) for some tests
    opts.tolerance = max( 60., opts.tolerance );
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    // test all combinations of input parameters
    magma_vect_t  vect [] = { MagmaQ,          MagmaP       };
    magma_side_t  side [] = { MagmaLeft,       MagmaRight   };
    magma_trans_t trans[] = { MagmaTrans, MagmaNoTrans };

    printf("%%   M     N     K   vect side   trans   CPU Gflop/s (sec)   GPU Gflop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("%%==============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int ivect = 0; ivect < 2; ++ivect ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            nb  = magma_get_sgebrd_nb( m, n );
            ldc = m;
            // A is nq x k (vect=Q) or k x nq (vect=P)
            // where nq=m (left) or nq=n (right)
            nq  = (side[iside] == MagmaLeft ? m  : n );
            mm  = (vect[ivect] == MagmaQ    ? nq : k );
            nn  = (vect[ivect] == MagmaQ    ? k  : nq);
            lda = mm;
            
            // MBR calls either MQR or MLQ in various ways
            if ( vect[ivect] == MagmaQ ) {
                if ( nq >= k ) {
                    gflops = FLOPS_SORMQR( m, n, k, side[iside] ) / 1e9;
                }
                else {
                    if ( side[iside] == MagmaLeft ) {
                        mi = m - 1;
                        ni = n;
                    }
                    else {
                        mi = m;
                        ni = n - 1;
                    }
                    gflops = FLOPS_SORMQR( mi, ni, nq-1, side[iside] ) / 1e9;
                }
            }
            else {
                if ( nq > k ) {
                    gflops = FLOPS_SORMLQ( m, n, k, side[iside] ) / 1e9;
                }
                else {
                    if ( side[iside] == MagmaLeft ) {
                        mi = m - 1;
                        ni = n;
                    }
                    else {
                        mi = m;
                        ni = n - 1;
                    }
                    gflops = FLOPS_SORMLQ( mi, ni, nq-1, side[iside] ) / 1e9;
                }
            }
            
            // workspace for gebrd is (mm + nn)*nb
            // workspace for unmbr is m*nb or n*nb, depending on side
            lwork_max = max( (mm + nn)*nb, max( m*nb, n*nb ));
            // this rounds it up slightly if needed to agree with lwork query below
            lwork_max = int( real( magma_smake_lwork( lwork_max )));
            
            TESTING_MALLOC_CPU( C,    float, ldc*n );
            TESTING_MALLOC_CPU( R,    float, ldc*n );
            TESTING_MALLOC_CPU( A,    float, lda*nn );
            TESTING_MALLOC_CPU( work, float, lwork_max );
            TESTING_MALLOC_CPU( d,    float,             min(mm,nn) );
            TESTING_MALLOC_CPU( e,    float,             min(mm,nn) );
            TESTING_MALLOC_CPU( tauq, float, min(mm,nn) );
            TESTING_MALLOC_CPU( taup, float, min(mm,nn) );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_slarnv( &ione, ISEED, &size, C );
            lapackf77_slacpy( "Full", &m, &n, C, &ldc, R, &ldc );
            
            size = lda*nn;
            lapackf77_slarnv( &ione, ISEED, &size, A );
            
            // compute BRD factorization to get Householder vectors in A, tauq, taup
            //lapackf77_sgebrd( &mm, &nn, A, &lda, d, e, tauq, taup, work, &lwork_max, &info );
            magma_sgebrd( mm, nn, A, lda, d, e, tauq, taup, work, lwork_max, &info );
            if (info != 0) {
                printf("magma_sgebrd returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            if ( vect[ivect] == MagmaQ ) {
                tau = tauq;
            } else {
                tau = taup;
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_sormbr( lapack_vect_const( vect[ivect] ),
                              lapack_side_const( side[iside] ),
                              lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, work, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0) {
                printf("lapackf77_sormbr returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_sormbr( vect[ivect], side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, work, lwork, &info );
            if (info != 0) {
                printf("magma_sormbr (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            lwork = (magma_int_t) MAGMA_S_REAL( work[0] );
            if ( lwork < 0 || lwork > lwork_max ) {
                printf("Warning: optimal lwork %d > allocated lwork_max %d\n", (int) lwork, (int) lwork_max );
                lwork = lwork_max;
            }
            
            gpu_time = magma_wtime();
            magma_sormbr( vect[ivect], side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, work, lwork, &info );
            gpu_time = magma_wtime() - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0) {
                printf("magma_sormbr returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            size = ldc*n;
            blasf77_saxpy( &size, &c_neg_one, C, &ione, R, &ione );
            Cnorm = lapackf77_slange( "Fro", &m, &n, C, &ldc, dwork );
            error = lapackf77_slange( "Fro", &m, &n, R, &ldc, dwork ) / (magma_ssqrt(m*n) * Cnorm);
            
            printf( "%5d %5d %5d   %c   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_vect_const( vect[ivect] ),
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( work );
            TESTING_FREE_CPU( d );
            TESTING_FREE_CPU( e );
            TESTING_FREE_CPU( taup );
            TESTING_FREE_CPU( tauq );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}}  // end ivect, iside, itran
      printf( "\n" );
    }
    
    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
コード例 #2
0
ファイル: testing_cunmlq.cpp プロジェクト: xulunfan/magma
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing cunmlq
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float Cnorm, error, work[1];
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t mm, m, n, k, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max;
    magmaFloatComplex *C, *R, *A, *W, *tau;
    magma_int_t status = 0;
    
    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    // need slightly looser bound (60*eps instead of 30*eps) for some tests
    opts.tolerance = max( 60., opts.tolerance );
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    // test all combinations of input parameters
    magma_side_t  side [] = { MagmaLeft,       MagmaRight   };
    magma_trans_t trans[] = { Magma_ConjTrans, MagmaNoTrans };

    printf("%%   M     N     K   side   trans   CPU Gflop/s (sec)   GPU Gflop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("%%==============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            nb  = magma_get_cgelqf_nb( m, n );
            ldc = m;
            // A is k x m (left) or k x n (right)
            mm = (side[iside] == MagmaLeft ? m : n);
            lda = k;
            gflops = FLOPS_CUNMLQ( m, n, k, side[iside] ) / 1e9;
            
            if ( side[iside] == MagmaLeft && m < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=left  and m < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            if ( side[iside] == MagmaRight && n < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=right and n < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            
            // need at least 2*nb*nb for gelqf
            lwork_max = max( max( m*nb, n*nb ), 2*nb*nb );
            // this rounds it up slightly if needed to agree with lwork query
            lwork_max = int( real( magma_cmake_lwork( lwork_max )));
            
            TESTING_MALLOC_CPU( C,   magmaFloatComplex, ldc*n );
            TESTING_MALLOC_CPU( R,   magmaFloatComplex, ldc*n );
            TESTING_MALLOC_CPU( A,   magmaFloatComplex, lda*mm );
            TESTING_MALLOC_CPU( W,   magmaFloatComplex, lwork_max );
            TESTING_MALLOC_CPU( tau, magmaFloatComplex, k );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_clarnv( &ione, ISEED, &size, C );
            lapackf77_clacpy( "Full", &m, &n, C, &ldc, R, &ldc );
            
            size = lda*mm;
            lapackf77_clarnv( &ione, ISEED, &size, A );
            
            // compute LQ factorization to get Householder vectors in A, tau
            magma_cgelqf( k, mm, A, lda, tau, W, lwork_max, &info );
            if (info != 0) {
                printf("magma_cgelqf returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_cunmlq( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, W, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0) {
                printf("lapackf77_cunmlq returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_cunmlq( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            if (info != 0) {
                printf("magma_cunmlq (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            lwork = (magma_int_t) MAGMA_C_REAL( W[0] );
            if ( lwork < 0 || lwork > lwork_max ) {
                printf("Warning: optimal lwork %d > allocated lwork_max %d\n", (int) lwork, (int) lwork_max );
                lwork = lwork_max;
            }
            
            gpu_time = magma_wtime();
            magma_cunmlq( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            gpu_time = magma_wtime() - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0) {
                printf("magma_cunmlq returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            size = ldc*n;
            blasf77_caxpy( &size, &c_neg_one, C, &ione, R, &ione );
            Cnorm = lapackf77_clange( "Fro", &m, &n, C, &ldc, work );
            error = lapackf77_clange( "Fro", &m, &n, R, &ldc, work ) / (magma_ssqrt(m*n) * Cnorm);
            
            printf( "%5d %5d %5d   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( W );
            TESTING_FREE_CPU( tau );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}  // end iside, itran
      printf( "\n" );
    }
    
    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
コード例 #3
0
ファイル: testing_blas_z.cpp プロジェクト: XapaJIaMnu/magma
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, t1, t2;
    magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    magma_int_t ione = 1;
    magma_trans_t trans[] = { MagmaNoTrans, MagmaConjTrans, MagmaTrans };
    magma_uplo_t  uplo [] = { MagmaLower, MagmaUpper };
    magma_diag_t  diag [] = { MagmaUnit, MagmaNonUnit };
    magma_side_t  side [] = { MagmaLeft, MagmaRight };
    
    magmaDoubleComplex  *A,  *B,  *C,   *C2, *LU;
    magmaDoubleComplex *dA, *dB, *dC1, *dC2;
    magmaDoubleComplex alpha = MAGMA_Z_MAKE( 0.5, 0.1 );
    magmaDoubleComplex beta  = MAGMA_Z_MAKE( 0.7, 0.2 );
    double dalpha = 0.6;
    double dbeta  = 0.8;
    double work[1], error, total_error;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t m, n, k, size, maxn, ld, info;
    magma_int_t *piv;
    magma_int_t err;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    printf( "Compares magma wrapper function to cublas function; all diffs should be exactly 0.\n\n" );
    
    total_error = 0.;
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        m = opts.msize[itest];
        n = opts.nsize[itest];
        k = opts.ksize[itest];
        printf("=========================================================================\n");
        printf( "m=%d, n=%d, k=%d\n", (int) m, (int) n, (int) k );
        
        // allocate matrices
        // over-allocate so they can be any combination of {m,n,k} x {m,n,k}.
        maxn = max( max( m, n ), k );
        ld = max( 1, maxn );
        size = ld*maxn;
        err = magma_malloc_cpu( (void**) &piv, maxn*sizeof(magma_int_t) );  assert( err == 0 );
        err = magma_zmalloc_pinned( &A,  size );  assert( err == 0 );
        err = magma_zmalloc_pinned( &B,  size );  assert( err == 0 );
        err = magma_zmalloc_pinned( &C,  size );  assert( err == 0 );
        err = magma_zmalloc_pinned( &C2, size );  assert( err == 0 );
        err = magma_zmalloc_pinned( &LU, size );  assert( err == 0 );
        err = magma_zmalloc( &dA,  size );        assert( err == 0 );
        err = magma_zmalloc( &dB,  size );        assert( err == 0 );
        err = magma_zmalloc( &dC1, size );        assert( err == 0 );
        err = magma_zmalloc( &dC2, size );        assert( err == 0 );
        
        // initialize matrices
        size = maxn*maxn;
        lapackf77_zlarnv( &ione, ISEED, &size, A  );
        lapackf77_zlarnv( &ione, ISEED, &size, B  );
        lapackf77_zlarnv( &ione, ISEED, &size, C  );
        
        printf( "========== Level 1 BLAS ==========\n" );
        
        // ----- test ZSWAP
        // swap columns 2 and 3 of dA, then copy to C2 and compare with A
        if ( n >= 3 ) {
            magma_zsetmatrix( m, n, A, ld, dA, ld );
            magma_zsetmatrix( m, n, A, ld, dB, ld );
            magma_zswap( m, dA(0,1), 1, dA(0,2), 1 );
            magma_zswap( m, dB(0,1), 1, dB(0,2), 1 );
            
            // check results, storing diff between magma and cuda calls in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dA, 1, dB, 1 );
            magma_zgetmatrix( m, n, dB, ld, C2, ld );
            error = lapackf77_zlange( "F", &m, &k, C2, &ld, work );
            total_error += error;
            printf( "zswap             diff %.2g\n", error );
        }
        else {
            printf( "zswap skipped for n < 3\n" );
        }
        
        // ----- test IZAMAX
        // get argmax of column of A
        magma_zsetmatrix( m, k, A, ld, dA, ld );
        error = 0;
        for( int j = 0; j < k; ++j ) {
            magma_int_t i1 = magma_izamax( m, dA(0,j), 1 );
            int i2;  // NOT magma_int_t, for cublas
            cublasIzamax( handle, m, dA(0,j), 1, &i2 );
            // todo need sync here?
            assert( i1 == i2 );
            error += abs( i1 - i2 );
        }
        total_error += error;
        gflops = (double)m * k / 1e9;
        printf( "izamax            diff %.2g\n", error );
        printf( "\n" );
        
        printf( "========== Level 2 BLAS ==========\n" );
        
        // ----- test ZGEMV
        // c = alpha*A*b + beta*c,  with A m*n; b,c m or n-vectors
        // try no-trans/trans
        for( int ia = 0; ia < 3; ++ia ) {
            magma_zsetmatrix( m, n, A,  ld, dA,  ld );
            magma_zsetvector( maxn, B, 1, dB,  1 );
            magma_zsetvector( maxn, C, 1, dC1, 1 );
            magma_zsetvector( maxn, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_zgemv( trans[ia], m, n, alpha, dA, ld, dB, 1, beta, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZgemv( handle, cublas_trans_const(trans[ia]),
                         m, n, &alpha, dA, ld, dB, 1, &beta, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            size = (trans[ia] == MagmaNoTrans ? m : n);
            cublasZaxpy( handle, size, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetvector( size, dC2, 1, C2, 1 );
            error = lapackf77_zlange( "F", &size, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZGEMV( m, n ) / 1e9;
            printf( "zgemv( %c )        diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_trans_const(trans[ia]), error, gflops/t1, gflops/t2 );
        }
        printf( "\n" );
        
        // ----- test ZHEMV
        // c = alpha*A*b + beta*c,  with A m*m symmetric; b,c m-vectors
        // try upper/lower
        for( int iu = 0; iu < 2; ++iu ) {
            magma_zsetmatrix( m, m, A, ld, dA, ld );
            magma_zsetvector( m, B, 1, dB,  1 );
            magma_zsetvector( m, C, 1, dC1, 1 );
            magma_zsetvector( m, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_zhemv( uplo[iu], m, alpha, dA, ld, dB, 1, beta, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZhemv( handle, cublas_uplo_const(uplo[iu]),
                         m, &alpha, dA, ld, dB, 1, &beta, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, m, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetvector( m, dC2, 1, C2, 1 );
            error = lapackf77_zlange( "F", &m, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZHEMV( m ) / 1e9;
            printf( "zhemv( %c )        diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), error, gflops/t1, gflops/t2 );
        }
        printf( "\n" );
        
        // ----- test ZTRSV
        // solve A*c = c,  with A m*m triangular; c m-vector
        // try upper/lower, no-trans/trans, unit/non-unit diag
        // Factor A into LU to get well-conditioned triangles, else solve yields garbage.
        // Still can give garbage if solves aren't consistent with LU factors,
        // e.g., using unit diag for U, so copy lower triangle to upper triangle.
        // Also used for trsm later.
        lapackf77_zlacpy( "Full", &maxn, &maxn, A, &ld, LU, &ld );
        lapackf77_zgetrf( &maxn, &maxn, LU, &ld, piv, &info );
        for( int j = 0; j < maxn; ++j ) {
            for( int i = 0; i < j; ++i ) {
                *LU(i,j) = *LU(j,i);
            }
        }
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            magma_zsetmatrix( m, m, LU, ld, dA, ld );
            magma_zsetvector( m, C, 1, dC1, 1 );
            magma_zsetvector( m, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_ztrsv( uplo[iu], trans[it], diag[id], m, dA, ld, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZtrsv( handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                         cublas_diag_const(diag[id]), m, dA, ld, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, m, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetvector( m, dC2, 1, C2, 1 );
            error = lapackf77_zlange( "F", &m, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZTRSM( MagmaLeft, m, 1 ) / 1e9;
            printf( "ztrsv( %c, %c, %c )  diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]), lapacke_diag_const(diag[id]),
                    error, gflops/t1, gflops/t2 );
        }}}
        printf( "\n" );
        
        printf( "========== Level 3 BLAS ==========\n" );
        
        // ----- test ZGEMM
        // C = alpha*A*B + beta*C,  with A m*k or k*m; B k*n or n*k; C m*n
        // try combinations of no-trans/trans
        for( int ia = 0; ia < 3; ++ia ) {
        for( int ib = 0; ib < 3; ++ib ) {
            bool nta = (trans[ia] == MagmaNoTrans);
            bool ntb = (trans[ib] == MagmaNoTrans);
            magma_zsetmatrix( (nta ? m : k), (nta ? m : k), A, ld, dA,  ld );
            magma_zsetmatrix( (ntb ? k : n), (ntb ? n : k), B, ld, dB,  ld );
            magma_zsetmatrix( m, n, C, ld, dC1, ld );
            magma_zsetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_zgemm( trans[ia], trans[ib], m, n, k, alpha, dA, ld, dB, ld, beta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZgemm( handle, cublas_trans_const(trans[ia]), cublas_trans_const(trans[ib]),
                         m, n, k, &alpha, dA, ld, dB, ld, &beta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &m, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZGEMM( m, n, k ) / 1e9;
            printf( "zgemm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_trans_const(trans[ia]), lapacke_trans_const(trans[ib]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test ZHEMM
        // C = alpha*A*B + beta*C  (left)  with A m*m symmetric; B,C m*n; or
        // C = alpha*B*A + beta*C  (right) with A n*n symmetric; B,C m*n
        // try left/right, upper/lower
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
            magma_zsetmatrix( m, m, A, ld, dA,  ld );
            magma_zsetmatrix( m, n, B, ld, dB,  ld );
            magma_zsetmatrix( m, n, C, ld, dC1, ld );
            magma_zsetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_zhemm( side[is], uplo[iu], m, n, alpha, dA, ld, dB, ld, beta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZhemm( handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         m, n, &alpha, dA, ld, dB, ld, &beta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &m, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZHEMM( side[is], m, n ) / 1e9;
            printf( "zhemm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_side_const(side[is]), lapacke_uplo_const(uplo[iu]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test ZHERK
        // C = alpha*A*A^H + beta*C  (no-trans) with A m*k and C m*m symmetric; or
        // C = alpha*A^H*A + beta*C  (trans)    with A k*m and C m*m symmetric
        // try upper/lower, no-trans/trans
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
            magma_zsetmatrix( n, k, A, ld, dA,  ld );
            magma_zsetmatrix( n, n, C, ld, dC1, ld );
            magma_zsetmatrix( n, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_zherk( uplo[iu], trans[it], n, k, dalpha, dA, ld, dbeta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZherk( handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                         n, k, &dalpha, dA, ld, &dbeta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( n, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZHERK( k, n ) / 1e9;
            printf( "zherk( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test ZHER2K
        // C = alpha*A*B^H + ^alpha*B*A^H + beta*C  (no-trans) with A,B n*k; C n*n symmetric; or
        // C = alpha*A^H*B + ^alpha*B^H*A + beta*C  (trans)    with A,B k*n; C n*n symmetric
        // try upper/lower, no-trans/trans
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
            bool nt = (trans[it] == MagmaNoTrans);
            magma_zsetmatrix( (nt ? n : k), (nt ? n : k), A, ld, dA,  ld );
            magma_zsetmatrix( n, n, C, ld, dC1, ld );
            magma_zsetmatrix( n, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_zher2k( uplo[iu], trans[it], n, k, alpha, dA, ld, dB, ld, dbeta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZher2k( handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                          n, k, &alpha, dA, ld, dB, ld, &dbeta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( n, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZHER2K( k, n ) / 1e9;
            printf( "zher2k( %c, %c )    diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test ZTRMM
        // C = alpha*A*C  (left)  with A m*m triangular; C m*n; or
        // C = alpha*C*A  (right) with A n*n triangular; C m*n
        // try left/right, upper/lower, no-trans/trans, unit/non-unit
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            bool left = (side[is] == MagmaLeft);
            magma_zsetmatrix( (left ? m : n), (left ? m : n), A, ld, dA,  ld );
            magma_zsetmatrix( m, n, C, ld, dC1, ld );
            magma_zsetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_ztrmm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            // note cublas does trmm out-of-place (i.e., adds output matrix C),
            // but allows C=B to do in-place.
            t2 = magma_sync_wtime( 0 );
            cublasZtrmm( handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         cublas_trans_const(trans[it]), cublas_diag_const(diag[id]),
                         m, n, &alpha, dA, ld, dC2, ld, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZTRMM( side[is], m, n ) / 1e9;
            printf( "ztrmm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}}}
        printf( "\n" );
        
        // ----- test ZTRSM
        // solve A*X = alpha*B  (left)  with A m*m triangular; B m*n; or
        // solve X*A = alpha*B  (right) with A n*n triangular; B m*n
        // try left/right, upper/lower, no-trans/trans, unit/non-unit
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            bool left = (side[is] == MagmaLeft);
            magma_zsetmatrix( (left ? m : n), (left ? m : n), LU, ld, dA,  ld );
            magma_zsetmatrix( m, n, C, ld, dC1, ld );
            magma_zsetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_ztrsm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZtrsm( handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         cublas_trans_const(trans[it]), cublas_diag_const(diag[id]),
                         m, n, &alpha, dA, ld, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZTRSM( side[is], m, n ) / 1e9;
            printf( "ztrsm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}}}
        printf( "\n" );
        
        // cleanup
        magma_free_cpu( piv );
        magma_free_pinned( A  );
        magma_free_pinned( B  );
        magma_free_pinned( C  );
        magma_free_pinned( C2 );
        magma_free_pinned( LU );
        magma_free( dA  );
        magma_free( dB  );
        magma_free( dC1 );
        magma_free( dC2 );
        fflush( stdout );
    }
    
    if ( total_error != 0. ) {
        printf( "total error %.2g -- ought to be 0 -- some test failed (see above).\n",
                total_error );
    }
    else {
        printf( "all tests passed\n" );
    }
    
    TESTING_FINALIZE();
    
    int status = (total_error != 0.);
    return status;
}
コード例 #4
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing clarfb_gpu
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    magmaFloatComplex c_zero    = MAGMA_C_ZERO;
    magmaFloatComplex c_one     = MAGMA_C_ONE;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magma_int_t M, N, K, size, ldc, ldv, ldt, ldw, nv;
    magma_int_t ione =  1;
    magma_int_t ISEED[4] = {0,0,0,1};
    float error, work[1];
    magma_int_t status = 0;
    
    // test all combinations of input parameters
    magma_side_t   side  [] = { MagmaLeft,       MagmaRight    };
    magma_trans_t  trans [] = { MagmaConjTrans,  MagmaNoTrans  };
    magma_direct_t direct[] = { MagmaForward,    MagmaBackward };
    magma_storev_t storev[] = { MagmaColumnwise, MagmaRowwise  };

    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    printf("    M     N     K   storev   side   direct   trans    ||R||_F / ||HC||_F\n");
    printf("========================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      M = opts.msize[itest];
      N = opts.nsize[itest];
      K = opts.ksize[itest];
      if ( M < K || N < K || K <= 0 ) {
          printf( "%5d %5d %5d   skipping because clarfb requires M >= K, N >= K, K >= 0\n",
                  (int) M, (int) N, (int) K );
          continue;
      }
      for( int istor = 0; istor < 2; ++istor ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int idir  = 0; idir  < 2; ++idir  ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {            
            ldc = ((M+31)/32)*32;
            ldt = ((K+31)/32)*32;
            ldw = (side[iside] == MagmaLeft ? N : M);
            // (ldv, nv) get swapped later if rowwise
            ldv = (side[iside] == MagmaLeft ? M : N);
            nv  = K;
            
            // Allocate memory for matrices
            magmaFloatComplex *C, *R, *V, *T, *W;
            TESTING_MALLOC_CPU( C, magmaFloatComplex, ldc*N );
            TESTING_MALLOC_CPU( R, magmaFloatComplex, ldc*N );
            TESTING_MALLOC_CPU( V, magmaFloatComplex, ldv*K );
            TESTING_MALLOC_CPU( T, magmaFloatComplex, ldt*K );
            TESTING_MALLOC_CPU( W, magmaFloatComplex, ldw*K );
            
            magmaFloatComplex_ptr dC, dV, dT, dW;
            TESTING_MALLOC_DEV( dC, magmaFloatComplex, ldc*N );
            TESTING_MALLOC_DEV( dV, magmaFloatComplex, ldv*K );
            TESTING_MALLOC_DEV( dT, magmaFloatComplex, ldt*K );
            TESTING_MALLOC_DEV( dW, magmaFloatComplex, ldw*K );
            
            // C is M x N.
            size = ldc*N;
            lapackf77_clarnv( &ione, ISEED, &size, C );
            //printf( "C=" );  magma_cprint( M, N, C, ldc );
            
            // V is ldv x nv. See larfb docs for description.
            // if column-wise and left,  M x K
            // if column-wise and right, N x K
            // if row-wise and left,     K x M
            // if row-wise and right,    K x N
            size = ldv*nv;
            lapackf77_clarnv( &ione, ISEED, &size, V );
            if ( storev[istor] == MagmaColumnwise ) {
                if ( direct[idir] == MagmaForward ) {
                    lapackf77_claset( MagmaUpperStr, &K, &K, &c_zero, &c_one, V, &ldv );
                }
                else {
                    lapackf77_claset( MagmaLowerStr, &K, &K, &c_zero, &c_one, &V[(ldv-K)], &ldv );
                }
            }
            else {
                // rowwise, swap V's dimensions
                std::swap( ldv, nv );
                if ( direct[idir] == MagmaForward ) {
                    lapackf77_claset( MagmaLowerStr, &K, &K, &c_zero, &c_one, V, &ldv );
                }
                else {
                    lapackf77_claset( MagmaUpperStr, &K, &K, &c_zero, &c_one, &V[(nv-K)*ldv], &ldv );
                }
            }
            //printf( "# ldv %d, nv %d\n", ldv, nv );
            //printf( "V=" );  magma_cprint( ldv, nv, V, ldv );
            
            // T is K x K, upper triangular for forward, and lower triangular for backward
            magma_int_t k1 = K-1;
            size = ldt*K;
            lapackf77_clarnv( &ione, ISEED, &size, T );
            if ( direct[idir] == MagmaForward ) {
                lapackf77_claset( MagmaLowerStr, &k1, &k1, &c_zero, &c_zero, &T[1], &ldt );
            }
            else {
                lapackf77_claset( MagmaUpperStr, &k1, &k1, &c_zero, &c_zero, &T[1*ldt], &ldt );
            }
            //printf( "T=" );  magma_cprint( K, K, T, ldt );
            
            magma_csetmatrix( M,   N,  C, ldc, dC, ldc );
            magma_csetmatrix( ldv, nv, V, ldv, dV, ldv );
            magma_csetmatrix( K,   K,  T, ldt, dT, ldt );
            
            lapackf77_clarfb( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              lapack_direct_const( direct[idir] ), lapack_storev_const( storev[istor] ),
                              &M, &N, &K,
                              V, &ldv, T, &ldt, C, &ldc, W, &ldw );
            //printf( "HC=" );  magma_cprint( M, N, C, ldc );
            
            magma_clarfb_gpu( side[iside], trans[itran], direct[idir], storev[istor],
                              M, N, K,
                              dV, ldv, dT, ldt, dC, ldc, dW, ldw );
            magma_cgetmatrix( M, N, dC, ldc, R, ldc );
            //printf( "dHC=" );  magma_cprint( M, N, R, ldc );
            
            // compute relative error |HC_magma - HC_lapack| / |HC_lapack|
            error = lapackf77_clange( "Fro", &M, &N, C, &ldc, work );
            size = ldc*N;
            blasf77_caxpy( &size, &c_neg_one, C, &ione, R, &ione );
            error = lapackf77_clange( "Fro", &M, &N, R, &ldc, work ) / error;
            printf( "%5d %5d %5d      %c       %c       %c       %c      %8.2e   %s\n",
                    (int) M, (int) N, (int) K,
                    lapacke_storev_const(storev[istor]), lapacke_side_const(side[iside]),
                    lapacke_direct_const(direct[idir]), lapacke_trans_const(trans[itran]),
                   error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( V );
            TESTING_FREE_CPU( T );
            TESTING_FREE_CPU( W );
            
            TESTING_FREE_DEV( dC );
            TESTING_FREE_DEV( dV );
            TESTING_FREE_DEV( dT );
            TESTING_FREE_DEV( dW );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}}}
      printf( "\n" );
    }
    
    TESTING_FINALIZE();
    return status;
}
コード例 #5
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing cunmqr_gpu
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float error, work[1];
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t m, n, k, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max, dt_size;
    magmaFloatComplex *C, *R, *A, *W, *tau;
    magmaFloatComplex_ptr dC, dA, dT;
    magma_int_t status = 0;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    float tol = 2. * opts.tolerance * lapackf77_slamch("E");
    
    // test all combinations of input parameters
    magma_side_t  side [] = { MagmaLeft,       MagmaRight   };
    magma_trans_t trans[] = { Magma_ConjTrans, MagmaNoTrans };

    printf("    M     N     K   side   trans   CPU GFlop/s (sec)   GPU GFlop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("===============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {        
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            nb  = magma_get_cgeqrf_nb( m );
            ldc = ((m + 31)/32)*32;
            lda = ((max(m,n) + 31)/32)*32;
            gflops = FLOPS_CUNMQR( m, n, k, side[iside] ) / 1e9;
            
            if ( side[iside] == MagmaLeft && m < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=left  and m < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            if ( side[iside] == MagmaRight && n < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=right and n < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            
            if ( side[iside] == MagmaLeft ) {
                // side = left
                lwork_max = (m - k + nb)*(n + nb) + n*nb;
                dt_size = ( 2*min(m,k) + ((max(m,n) + 31)/32)*32 )*nb;
            }
            else {
                // side = right
                lwork_max = (n - k + nb)*(m + nb) + m*nb;
                dt_size = ( 2*min(n,k) + ((max(m,n) + 31)/32)*32 )*nb;
            }
            
            TESTING_MALLOC_CPU( C,   magmaFloatComplex, ldc*n );
            TESTING_MALLOC_CPU( R,   magmaFloatComplex, ldc*n );
            TESTING_MALLOC_CPU( A,   magmaFloatComplex, lda*k );
            TESTING_MALLOC_CPU( W,   magmaFloatComplex, lwork_max );
            TESTING_MALLOC_CPU( tau, magmaFloatComplex, k );
            
            TESTING_MALLOC_DEV( dC, magmaFloatComplex, ldc*n );
            TESTING_MALLOC_DEV( dA, magmaFloatComplex, lda*k );
            TESTING_MALLOC_DEV( dT, magmaFloatComplex, dt_size );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_clarnv( &ione, ISEED, &size, C );
            magma_csetmatrix( m, n, C, ldc, dC, ldc );
            
            // A is m x k (left) or n x k (right)
            lda = (side[iside] == MagmaLeft ? m : n);
            size = lda*k;
            lapackf77_clarnv( &ione, ISEED, &size, A );
            
            // compute QR factorization to get Householder vectors in dA, tau, dT
            magma_csetmatrix( lda, k, A,  lda, dA, lda );
            magma_cgeqrf_gpu( lda, k, dA, lda, tau, dT, &info );
            magma_cgetmatrix( lda, k, dA, lda, A,  lda );
            if (info != 0)
                printf("magma_cgeqrf_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_cunmqr( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, W, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0)
                printf("lapackf77_cunmqr returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_cunmqr_gpu( side[iside], trans[itran],
                              m, n, k,
                              dA, lda, tau, dC, ldc, W, lwork, dT, nb, &info );
            if (info != 0)
                printf("magma_cunmqr_gpu (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            lwork = (magma_int_t) MAGMA_C_REAL( W[0] );
            if ( lwork < 0 || lwork > lwork_max )
                printf("invalid lwork %d, lwork_max %d\n", (int) lwork, (int) lwork_max );
            
            gpu_time = magma_sync_wtime( 0 );  // sync needed for L,N and R,T cases
            magma_cunmqr_gpu( side[iside], trans[itran],
                              m, n, k,
                              dA, lda, tau, dC, ldc, W, lwork, dT, nb, &info );
            gpu_time = magma_sync_wtime( 0 ) - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0)
                printf("magma_cunmqr_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            magma_cgetmatrix( m, n, dC, ldc, R, ldc );
            
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            error = lapackf77_clange( "Fro", &m, &n, C, &ldc, work );
            size = ldc*n;
            blasf77_caxpy( &size, &c_neg_one, C, &ione, R, &ione );
            error = lapackf77_clange( "Fro", &m, &n, R, &ldc, work ) / error;
            
            printf( "%5d %5d %5d   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( W );
            TESTING_FREE_CPU( tau );
            
            TESTING_FREE_DEV( dC );
            TESTING_FREE_DEV( dA );
            TESTING_FREE_DEV( dT );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}  // end iside, itran
      printf( "\n" );
    }
    
    TESTING_FINALIZE();
    return status;
}
コード例 #6
0
ファイル: testing_dormqr_gpu.cpp プロジェクト: xulunfan/magma
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing dormqr_gpu
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    double Cnorm, error, work[1];
    double c_neg_one = MAGMA_D_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t mm, m, n, k, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max, dt_size;
    double *C, *R, *A, *hwork, *tau;
    magmaDouble_ptr dC, dA, dT;
    magma_int_t status = 0;
    
    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    // need slightly looser bound (60*eps instead of 30*eps) for some tests
    opts.tolerance = max( 60., opts.tolerance );
    double tol = opts.tolerance * lapackf77_dlamch("E");
    
    // test all combinations of input parameters
    magma_side_t  side [] = { MagmaLeft,       MagmaRight   };
    magma_trans_t trans[] = { MagmaTrans, MagmaNoTrans };

    printf("%%   M     N     K   side   trans   CPU Gflop/s (sec)   GPU Gflop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("%%==============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            ldc = magma_roundup( m, opts.align );  // multiple of 32 by default
            // A is m x k (left) or n x k (right)
            mm = (side[iside] == MagmaLeft ? m : n);
            nb  = magma_get_dgeqrf_nb( mm, k );
            lda = magma_roundup( mm, opts.align );  // multiple of 32 by default
            gflops = FLOPS_DORMQR( m, n, k, side[iside] ) / 1e9;
            
            if ( side[iside] == MagmaLeft && m < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=left  and m < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            if ( side[iside] == MagmaRight && n < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=right and n < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            
            if ( side[iside] == MagmaLeft ) {
                // side = left
                lwork_max = (m - k + nb)*(n + nb) + n*nb;
                dt_size = ( 2*min(m,k) + magma_roundup( max(m,n), 32) )*nb;
            }
            else {
                // side = right
                lwork_max = (n - k + nb)*(m + nb) + m*nb;
                dt_size = ( 2*min(n,k) + magma_roundup( max(m,n), 32 ) )*nb;
            }
            // this rounds it up slightly if needed to agree with lwork query below
            lwork_max = int( real( magma_dmake_lwork( lwork_max )));
            
            TESTING_MALLOC_CPU( C,     double, ldc*n );
            TESTING_MALLOC_CPU( R,     double, ldc*n );
            TESTING_MALLOC_CPU( A,     double, lda*k );
            TESTING_MALLOC_CPU( hwork, double, lwork_max );
            TESTING_MALLOC_CPU( tau,   double, k );
            
            TESTING_MALLOC_DEV( dC, double, ldc*n );
            TESTING_MALLOC_DEV( dA, double, lda*k );
            TESTING_MALLOC_DEV( dT, double, dt_size );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_dlarnv( &ione, ISEED, &size, C );
            magma_dsetmatrix( m, n, C, ldc, dC, ldc );
            
            // A is m x k (left) or n x k (right)
            size = lda*k;
            lapackf77_dlarnv( &ione, ISEED, &size, A );
            
            // compute QR factorization to get Householder vectors in dA, tau, dT
            magma_dsetmatrix( mm, k, A,  lda, dA, lda );
            magma_dgeqrf_gpu( mm, k, dA, lda, tau, dT, &info );
            magma_dgetmatrix( mm, k, dA, lda, A,  lda );
            if (info != 0) {
                printf("magma_dgeqrf_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_dormqr( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, hwork, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0) {
                printf("lapackf77_dormqr returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_dormqr_gpu( side[iside], trans[itran],
                              m, n, k,
                              dA, lda, tau, dC, ldc, hwork, lwork, dT, nb, &info );
            if (info != 0) {
                printf("magma_dormqr_gpu (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            lwork = (magma_int_t) MAGMA_D_REAL( hwork[0] );
            if ( lwork < 0 || lwork > lwork_max  ) {
                printf("Warning: optimal lwork %d > allocated lwork_max %d\n", (int) lwork, (int) lwork_max );
                lwork = lwork_max;
            }
            
            // dormqr2 takes a copy of dA in CPU memory
            if ( opts.version == 2 ) {
                magma_dgetmatrix( mm, k, dA, lda, A, lda );
            }
            
            magmablasSetKernelStream( opts.queue );
            gpu_time = magma_sync_wtime( opts.queue );  // sync needed for L,N and R,T cases
            if ( opts.version == 1 ) {
                magma_dormqr_gpu( side[iside], trans[itran],
                                  m, n, k,
                                  dA, lda, tau, dC, ldc, hwork, lwork, dT, nb, &info );
            }
            else if ( opts.version == 2 ) {
                magma_dormqr2_gpu( side[iside], trans[itran],
                                   m, n, k,
                                   dA, lda, tau, dC, ldc, A, lda, &info );
            }
            gpu_time = magma_sync_wtime( opts.queue ) - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0) {
                printf("magma_dormqr_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            magma_dgetmatrix( m, n, dC, ldc, R, ldc );
            
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            size = ldc*n;
            blasf77_daxpy( &size, &c_neg_one, C, &ione, R, &ione );
            Cnorm = lapackf77_dlange( "Fro", &m, &n, C, &ldc, work );
            error = lapackf77_dlange( "Fro", &m, &n, R, &ldc, work ) / (magma_dsqrt(m*n) * Cnorm);
            
            printf( "%5d %5d %5d   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( hwork );
            TESTING_FREE_CPU( tau );
            
            TESTING_FREE_DEV( dC );
            TESTING_FREE_DEV( dA );
            TESTING_FREE_DEV( dT );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}  // end iside, itran
      printf( "\n" );
    }
    
    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
コード例 #7
0
ファイル: sgetrf_msub.cpp プロジェクト: kjbartel/clmagma
extern "C" magma_int_t
magma_sgetrf_msub(
    magma_trans_t trans, magma_int_t num_subs, magma_int_t num_gpus, 
    magma_int_t m, magma_int_t n, 
    magmaFloat_ptr *d_lA, size_t dlA_offset, magma_int_t ldda,
    magma_int_t *ipiv,
    magma_queue_t *queues,
    magma_int_t *info)
{
/*  -- clMAGMA (version 1.3.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       @date November 2014

    Purpose
    =======
    SGETRF computes an LU factorization of a general M-by-N matrix A
    using partial pivoting with row interchanges.

    The factorization has the form
       A = P * L * U
    where P is a permutation matrix, L is lower triangular with unit
    diagonal elements (lower trapezoidal if m > n), and U is upper
    triangular (upper trapezoidal if m < n).

    This is the right-looking Level 3 BLAS version of the algorithm.

    Arguments
    =========
    NUM_GPUS 
            (input) INTEGER
            The number of GPUS to be used for the factorization.

    M       (input) INTEGER
            The number of rows of the matrix A.  M >= 0.

    N       (input) INTEGER
            The number of columns of the matrix A.  N >= 0.

    A       (input/output) REAL array on the GPU, dimension (LDDA,N).
            On entry, the M-by-N matrix to be factored.
            On exit, the factors L and U from the factorization
            A = P*L*U; the unit diagonal elements of L are not stored.

    LDDA     (input) INTEGER
            The leading dimension of the array A.  LDDA >= max(1,M).

    IPIV    (output) INTEGER array, dimension (min(M,N))
            The pivot indices; for 1 <= i <= min(M,N), row i of the
            matrix was interchanged with row IPIV(i).

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
                  or another error occured, such as memory allocation failed.
            > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
                  has been completed, but the factor U is exactly
                  singular, and division by zero will occur if it is used
                  to solve a system of equations.
    =====================================================================    */

    #define d_lAT(id,i,j)  d_lAT[(id)], (((i)*nb)*lddat + (j)*nb)
    #define d_lA( id,i,j)  d_lA[(id)],  (((i)*nb)+ldda  * (j)*nb)

    magma_int_t maxm, tot_subs = num_subs*num_gpus;
    magma_int_t i, j, d, lddat;
    /* submatrix info */
    magma_int_t nb, n_local[ MagmaMaxSubs * MagmaMaxGPUs ];
    magmaFloat_ptr d_lAT[ MagmaMaxSubs * MagmaMaxGPUs ];
    /* local workspace per GPU */
    magmaFloat_ptr d_panel[ MagmaMaxGPUs ];
    magmaFloat_ptr d_lAP[ MagmaMaxGPUs ];
    float *work;

    /* Check arguments */
    *info = 0;
    if (m < 0)
        *info = -2;
    else if (n < 0)
        *info = -3;
    else if (trans == MagmaTrans && ldda < max(1,m))
        *info = -5;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0)
        return *info;

    /* Function Body */
    nb = magma_get_sgetrf_nb(m);

    if (nb <= 1 || nb >= n) {
        /* Use CPU code. */
        magma_smalloc_cpu( &work, m * n );
        if (work == NULL) {
            *info = MAGMA_ERR_HOST_ALLOC;
            return *info;
        }
        printf( "trans %c, m %d, n %d\n", lapacke_trans_const(trans), m, n );
        magma_sgetmatrix( m, n, d_lA[0], 0, ldda, work, m, queues[0] );
        lapackf77_sgetrf( &m, &n, work, &m, ipiv, info );
        magma_ssetmatrix( m, n, work, m, d_lA[0], 0, ldda, queues[0] );
        magma_free_cpu( work );
    } else {
        /* Use hybrid blocked code. */
        maxm = ((m + 31)/32)*32;
        if (tot_subs > ceil((float)n/nb)) {
            printf( " * too many GPUs for the matrix size, using %d GPUs\n", (int) tot_subs );
            *info = -1;
            return *info;
        }

        /* allocate workspace for each GPU */
        lddat = n/nb;           /* number of block columns         */
        lddat = lddat/tot_subs; /* number of block columns per GPU */
        lddat = nb*lddat;       /* number of columns per GPU       */
        if (lddat * tot_subs < n) {
            /* left over */
            if (n-lddat*tot_subs >= nb) {
                lddat += nb;
            } else {
                lddat += (n-lddat*tot_subs)%nb;
            }
        }
        lddat = ((lddat+31)/32)*32; /* make it a multiple of 32 */
        /* allocating workspace */
        for (d=0; d < num_gpus; d++) {
            //#define SINGLE_GPU_PER_CONTEXT
            #ifdef SINGLE_GPU_PER_CONTEXT
            if ((MAGMA_SUCCESS != magma_smalloc_mgpu( d, &d_panel[d], (2+num_gpus)*nb*maxm ))  ||
                (MAGMA_SUCCESS != magma_smalloc_mgpu( d, &d_lAP[d],   (2+num_gpus)*nb*maxm )) ) {
            #else
            if ((MAGMA_SUCCESS != magma_smalloc( &d_panel[d], (2+num_gpus)*nb*maxm ))  ||
                (MAGMA_SUCCESS != magma_smalloc( &d_lAP[d], (2+num_gpus)*nb*maxm )) ) {
            #endif
                for( i=0; i < d; i++ ) {
                    magma_free( d_panel[i] );
                    magma_free( d_lAP[i] );
                }
                *info = MAGMA_ERR_DEVICE_ALLOC;
                return *info;
            }
        }
        /* transposing the local matrix */
        for (i=0; i < tot_subs; i++) {
            /* local-n and local-ld */
            n_local[i] = ((n/nb)/tot_subs)*nb;
            if (i < (n/nb)%tot_subs)
               n_local[i] += nb;
            else if (i == (n/nb)%tot_subs)
               n_local[i] += n%nb;

            /* local-matrix storage */
            if (trans == MagmaNoTrans) {
                d_lAT[i] = d_lA[i];
            } else {
                if ( m == n_local[i] ) {
                    d_lAT[i] = d_lA[i];
                    magmablas_stranspose_inplace( m, d_lA[i], 0, ldda, queues[2*(i%num_gpus)+1] );
                } else {
                    #ifdef SINGLE_GPU_PER_CONTEXT
                    if (MAGMA_SUCCESS != magma_smalloc_mgpu( i%num_gpus, &d_lAT[i], lddat*maxm )) {
                    #else
                    if (MAGMA_SUCCESS != magma_smalloc( &d_lAT[i], lddat*maxm )) {
                    #endif
                        for (j=0; j <= i; j++) {
                            magma_free( d_panel[j] );
                            magma_free( d_lAP[j] );
                        }
                        for (j=0; j < i; j++) {
                            if (d_lAT[j] != d_lA[j]) magma_free( d_lAT[j] );
                        }
                        *info = MAGMA_ERR_DEVICE_ALLOC;
                        return *info;
                    }
                    magmablas_stranspose( m, n_local[i], d_lA[i], 0, ldda, d_lAT[i], 0, lddat, queues[2*(i%num_gpus)+1]);
                }
            }
        }
        if (trans == MagmaNoTrans) {
            for (d=0; d < num_gpus; d++){
                magma_queue_sync(queues[2*d+1]);
            }
        }

        /* cpu workspace */
        #ifdef USE_PINNED_CLMEMORY
        cl_mem buffer = clCreateBuffer(gContext, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, sizeof(float)*maxm*nb*(1+num_gpus), NULL, NULL);
        for (d=0; d < num_gpus; d++) {
            work = (float*)clEnqueueMapBuffer(queues[2*d], buffer, CL_TRUE, CL_MAP_READ | CL_MAP_WRITE, 0,
                                                           sizeof(float)*maxm*nb*(1+num_gpus), 0, NULL, NULL, NULL);
        }
        #else
        if (MAGMA_SUCCESS != magma_smalloc_cpu( &work, maxm*nb*(1+num_gpus) )) {
            for(d=0; d < num_gpus; d++ ) magma_free( d_panel[d] );
            for(d=0; d < tot_subs; d++ ) {
                if( d_lAT[d] != d_lA[d] ) magma_free( d_lAT[d] );
            }
            *info = MAGMA_ERR_HOST_ALLOC;
            return *info;
        }
        #endif

        /* calling multi-gpu interface with allocated workspaces and streams */
        magma_sgetrf2_msub(num_subs, num_gpus, m, n, nb, 0, d_lAT, 0, lddat, ipiv, d_lAP, d_panel, 0, work, maxm,
                           queues, info);

        /* save on output */
        for (d=0; d < tot_subs; d++) {
            if (trans == MagmaNoTrans) {
                //magma_scopymatrix( n_local[d], m, d_lAT[d], 0, lddat, d_lA[d], 0, ldda, queues[2*d+1] );
            } else {
                if (d_lAT[d] == d_lA[d]) {
                    magmablas_stranspose_inplace( m, d_lA[d], 0, ldda, queues[2*(d%num_gpus)+1] );
                } else {
                    magmablas_stranspose( n_local[d], m, d_lAT[d], 0, lddat, d_lA[d], 0, ldda, queues[2*(d%num_gpus)+1] );
                }
            }
        }
        /* clean up */
        for (d=0; d < num_gpus; d++) {
            magma_queue_sync(queues[2*d+1]);
            magma_free( d_panel[d] );
            magma_free( d_lAP[d] );
            d_panel[d] = d_lAP[d] = NULL;
        } 
        for (d=0; d < tot_subs; d++) {
            if (d_lAT[d] != d_lA[d]) {
                magma_free( d_lAT[d] ); 
                d_lAT[d] = NULL;
            }
        }
        #ifdef USE_PINNED_CLMEMORY
        for (d=0; d < num_gpus; d++) {
            clEnqueueUnmapMemObject(queues[2*d], buffer, work, 0, NULL, NULL);
        }
        clReleaseMemObject( buffer );
        #else
        magma_free_cpu( work );
        #endif
        work = NULL;
      }
      return *info;       
      /* End of MAGMA_SGETRF_MSUB */
}
コード例 #8
0
ファイル: testing_dormql.cpp プロジェクト: XapaJIaMnu/magma
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing dormql
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    double error, work[1];
    double c_neg_one = MAGMA_D_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t mm, m, n, k, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max;
    double *C, *R, *A, *W, *tau;
    magma_int_t status = 0;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    // need slightly looser bound (60*eps instead of 30*eps) for some tests
    opts.tolerance = max( 60., opts.tolerance );
    double tol = opts.tolerance * lapackf77_dlamch("E");
    
    // test all combinations of input parameters
    magma_side_t  side [] = { MagmaLeft,       MagmaRight   };
    magma_trans_t trans[] = { MagmaTrans, MagmaNoTrans };

    printf("    M     N     K   side   trans   CPU GFlop/s (sec)   GPU GFlop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("===============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            nb  = magma_get_dgeqlf_nb( m );
            ldc = m;
            // A is m x k (left) or n x k (right)
            mm = (side[iside] == MagmaLeft ? m : n);
            lda = mm;
            gflops = FLOPS_DORMQL( m, n, k, side[iside] ) / 1e9;
            
            if ( side[iside] == MagmaLeft && m < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=left  and m < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            if ( side[iside] == MagmaRight && n < k ) {
                printf( "%5d %5d %5d  %4c   %5c    skipping because side=right and n < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            
            // need at least 2*nb*nb for geqlf
            lwork_max = max( max( m*nb, n*nb ), 2*nb*nb );
            
            TESTING_MALLOC_CPU( C,   double, ldc*n );
            TESTING_MALLOC_CPU( R,   double, ldc*n );
            TESTING_MALLOC_CPU( A,   double, lda*k );
            TESTING_MALLOC_CPU( W,   double, lwork_max );
            TESTING_MALLOC_CPU( tau, double, k );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_dlarnv( &ione, ISEED, &size, C );
            lapackf77_dlacpy( "Full", &m, &n, C, &ldc, R, &ldc );
            
            size = lda*k;
            lapackf77_dlarnv( &ione, ISEED, &size, A );
            
            // compute QL factorization to get Householder vectors in A, tau
            magma_dgeqlf( mm, k, A, lda, tau, W, lwork_max, &info );
            if (info != 0)
                printf("magma_dgeqlf returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_dormql( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, W, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0)
                printf("lapackf77_dormql returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_dormql( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            if (info != 0)
                printf("magma_dormql (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            lwork = (magma_int_t) MAGMA_D_REAL( W[0] );
            if ( lwork < 0 || lwork > lwork_max ) {
                printf("optimal lwork %d > lwork_max %d\n", (int) lwork, (int) lwork_max );
                lwork = lwork_max;
            }
            
            gpu_time = magma_wtime();
            magma_dormql( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            gpu_time = magma_wtime() - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0)
                printf("magma_dormql returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
                        
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            error = lapackf77_dlange( "Fro", &m, &n, C, &ldc, work );
            size = ldc*n;
            blasf77_daxpy( &size, &c_neg_one, C, &ione, R, &ione );
            error = lapackf77_dlange( "Fro", &m, &n, R, &ldc, work ) / error;
            
            printf( "%5d %5d %5d   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( W );
            TESTING_FREE_CPU( tau );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}  // end iside, itran
      printf( "\n" );
    }
    
    TESTING_FINALIZE();
    return status;
}
コード例 #9
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing ctranspose
   Code is very similar to testing_csymmetrize.cpp
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    // OpenCL use:  cl_mem  , offset  (two arguments);
    // else   use:  pointer + offset  (one argument).
    #ifdef HAVE_clBLAS
        #define d_A(i_, j_)   d_A, ((i_) + (j_)*ldda)
        #define d_B(i_, j_)   d_B, ((i_) + (j_)*lddb)
    #else
        #define d_A(i_, j_)  (d_A + (i_) + (j_)*ldda)
        #define d_B(i_, j_)  (d_B + (i_) + (j_)*lddb)
    #endif
    
    real_Double_t    gbytes, gpu_perf, gpu_time, gpu_perf2=0, gpu_time2=0, cpu_perf, cpu_time;
    float           error, error2, work[1];
    magmaFloatComplex  c_neg_one = MAGMA_C_NEG_ONE;
    magmaFloatComplex *h_A, *h_B, *h_R;
    magmaFloatComplex_ptr d_A, d_B;
    magma_int_t M, N, size, lda, ldda, ldb, lddb;
    magma_int_t ione     = 1;
    magma_int_t status = 0;
    
    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    #ifdef COMPLEX
    magma_int_t ntrans = 2;
    magma_trans_t trans[] = { Magma_ConjTrans, MagmaTrans };
    #else
    magma_int_t ntrans = 1;
    magma_trans_t trans[] = { MagmaTrans };
    #endif

    printf("%% Inplace transpose requires M == N.\n");
    printf("%% Trans     M     N   CPU GByte/s (ms)    GPU GByte/s (ms)  check   Inplace GB/s (ms)  check\n");
    printf("%%=========================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int itran = 0; itran < ntrans; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            M = opts.msize[itest];
            N = opts.nsize[itest];
            lda    = M;
            ldda   = magma_roundup( M, opts.align );  // multiple of 32 by default
            ldb    = N;
            lddb   = magma_roundup( N, opts.align );  // multiple of 32 by default
            // load entire matrix, save entire matrix
            gbytes = sizeof(magmaFloatComplex) * 2.*M*N / 1e9;
            
            TESTING_MALLOC_CPU( h_A, magmaFloatComplex, lda*N  );  // input:  M x N
            TESTING_MALLOC_CPU( h_B, magmaFloatComplex, ldb*M  );  // output: N x M
            TESTING_MALLOC_CPU( h_R, magmaFloatComplex, ldb*M  );  // output: N x M
            
            TESTING_MALLOC_DEV( d_A, magmaFloatComplex, ldda*N );  // input:  M x N
            TESTING_MALLOC_DEV( d_B, magmaFloatComplex, lddb*M );  // output: N x M
            
            /* Initialize the matrix */
            for( int j = 0; j < N; ++j ) {
                for( int i = 0; i < M; ++i ) {
                    h_A[i + j*lda] = MAGMA_C_MAKE( i + j/10000., j );
                }
            }
            for( int j = 0; j < M; ++j ) {
                for( int i = 0; i < N; ++i ) {
                    h_B[i + j*ldb] = MAGMA_C_MAKE( i + j/10000., j );
                }
            }
            magma_csetmatrix( N, M, h_B, ldb, d_B(0,0), lddb, opts.queue );
            
            /* =====================================================================
               Performs operation using naive out-of-place algorithm
               (LAPACK doesn't implement transpose)
               =================================================================== */
            cpu_time = magma_wtime();
            //for( int j = 1; j < N-1; ++j ) {      // inset by 1 row & col
            //    for( int i = 1; i < M-1; ++i ) {  // inset by 1 row & col
            if ( trans[itran] == MagmaTrans ) {
                for( int j = 0; j < N; ++j ) {
                    for( int i = 0; i < M; ++i ) {
                        h_B[j + i*ldb] = h_A[i + j*lda];
                    }
                }
            }
            else {
                for( int j = 0; j < N; ++j ) {
                    for( int i = 0; i < M; ++i ) {
                        h_B[j + i*ldb] = conj( h_A[i + j*lda] );
                    }
                }
            }
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gbytes / cpu_time;
            
            /* ====================================================================
               Performs operation using MAGMA, out-of-place
               =================================================================== */
            magma_csetmatrix( M, N, h_A, lda, d_A(0,0), ldda, opts.queue );
            magma_csetmatrix( N, M, h_B, ldb, d_B(0,0), lddb, opts.queue );
            
            gpu_time = magma_sync_wtime( opts.queue );
            if ( trans[itran] == MagmaTrans ) {
                //magmablas_ctranspose( M-2, N-2, d_A(1,1), ldda, d_B(1,1), lddb, opts.queue );  // inset by 1 row & col
                magmablas_ctranspose( M, N, d_A(0,0), ldda, d_B(0,0), lddb, opts.queue );
            }
            #ifdef HAVE_CUBLAS
            else {
                //magmablas_ctranspose_conj( M-2, N-2, d_A(1,1), ldda, d_B(1,1), lddb, opts.queue );  // inset by 1 row & col
                magmablas_ctranspose_conj( M, N, d_A(0,0), ldda, d_B(0,0), lddb, opts.queue );
            }
            #endif
            gpu_time = magma_sync_wtime( opts.queue ) - gpu_time;
            gpu_perf = gbytes / gpu_time;
            
            /* ====================================================================
               Performs operation using MAGMA, in-place
               =================================================================== */
            if ( M == N ) {
                magma_csetmatrix( M, N, h_A, lda, d_A(0,0), ldda, opts.queue );
                
                gpu_time2 = magma_sync_wtime( opts.queue );
                if ( trans[itran] == MagmaTrans ) {
                    //magmablas_ctranspose_inplace( N-2, d_A(1,1), ldda, opts.queue );  // inset by 1 row & col
                    magmablas_ctranspose_inplace( N, d_A(0,0), ldda, opts.queue );
                }
                #ifdef HAVE_CUBLAS
                else {
                    //magmablas_ctranspose_conj_inplace( N-2, d_A(1,1), ldda, opts.queue );  // inset by 1 row & col
                    magmablas_ctranspose_conj_inplace( N, d_A(0,0), ldda, opts.queue );
                }
                #endif
                gpu_time2 = magma_sync_wtime( opts.queue ) - gpu_time2;
                gpu_perf2 = gbytes / gpu_time2;
            }
            
            /* =====================================================================
               Check the result
               =================================================================== */
            // check out-of-place transpose (d_B)
            size = ldb*M;
            magma_cgetmatrix( N, M, d_B(0,0), lddb, h_R, ldb, opts.queue );
            blasf77_caxpy( &size, &c_neg_one, h_B, &ione, h_R, &ione );
            error = lapackf77_clange("f", &N, &M, h_R, &ldb, work );
            
            if ( M == N ) {
                // also check in-place tranpose (d_A)
                magma_cgetmatrix( N, M, d_A(0,0), ldda, h_R, ldb, opts.queue );
                blasf77_caxpy( &size, &c_neg_one, h_B, &ione, h_R, &ione );
                error2 = lapackf77_clange("f", &N, &M, h_R, &ldb, work );
    
                printf("%5c %5d %5d   %7.2f (%7.2f)   %7.2f (%7.2f)  %6s  %7.2f (%7.2f)  %s\n",
                       lapacke_trans_const( trans[itran] ),
                       (int) M, (int) N,
                       cpu_perf, cpu_time*1000., gpu_perf, gpu_time*1000.,
                       (error  == 0. ? "ok" : "failed"),
                       gpu_perf2, gpu_time2,
                       (error2 == 0. ? "ok" : "failed") );
                status += ! (error == 0. && error2 == 0.);
            }
            else {
                printf("%5c %5d %5d   %7.2f (%7.2f)   %7.2f (%7.2f)  %6s    ---   (  ---  )\n",
                       lapacke_trans_const( trans[itran] ),
                       (int) M, (int) N,
                       cpu_perf, cpu_time*1000., gpu_perf, gpu_time*1000.,
                       (error  == 0. ? "ok" : "failed") );
                status += ! (error == 0.);
            }
            
            TESTING_FREE_CPU( h_A );
            TESTING_FREE_CPU( h_B );
            TESTING_FREE_CPU( h_R );
            
            TESTING_FREE_DEV( d_A );
            TESTING_FREE_DEV( d_B );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }
    }

    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}