コード例 #1
0
// Write
void cohesiveLawFvPatchVectorField::write(Ostream& os) const
{
    fvPatchVectorField::write(os);
    traction_.writeEntry("traction", os);
    os.writeKeyword("cohesiveLaw") << law().type()
        << token::END_STATEMENT << nl;
    os.writeKeyword("relaxationFactor") << relaxationFactor_
        << token::END_STATEMENT << nl;
    law().writeDict(os);
    writeEntry("value", os);
}
コード例 #2
0
ファイル: main.cpp プロジェクト: Elytum/PISCINE_CPP
int			main(void)
{
	Form			paper("Piece of paper", 150, 150);
	Bureaucrat		barneyStinson("Barney Stinson", 2);

	std::cout << "Printing \"paper(\"Piece of paper\", 150, 150);\": " << paper;
	barneyStinson.signForm(paper);
	std::cout << "Printing \"paper(\"Piece of paper\", 150, 150);\": " << paper;

	Form			law("Law", 1, 1);
	std::cout << "Printing \"paper(\"Law\", 1, 1);\": " << law;
	barneyStinson.signForm(law);
	std::cout << "Printing \"paper(\"Law\", 1, 1);\": " << law;

	try {
		std::cout << "Trying to create \"something(\"something\", 151, 151);\"" << std::endl;
		Form			something("something", 151, 151);
	} catch (Form::GradeTooLowException & e) {
		std::cout << "Exception: " << e.what() << std::endl;
	}

	try {
		std::cout << "Trying to create \"something(\"something\", 0, 0);\"" << std::endl;
		Form			something("something", 0, 0);
	} catch (Form::GradeTooHighException & e) {
		std::cout << "Exception: " << e.what() << std::endl;
	}
}
    // with stretch (and stretch-rate) independent contraction models the implicit and explicit schemes
    // are identical
    void TestCompareImplicitAndExplicitWithStretchIndependentContractionModel() throw(Exception)
    {
        QuadraticMesh<2> mesh(0.25, 1.0, 1.0);

        MooneyRivlinMaterialLaw<2> law(1);
        std::vector<unsigned> fixed_nodes
          = NonlinearElasticityTools<2>::GetNodesByComponentValue(mesh,0,0.0);

        ElectroMechanicsProblemDefinition<2> problem_defn(mesh);
        problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
        problem_defn.SetZeroDisplacementNodes(fixed_nodes);
        problem_defn.SetContractionModel(NONPHYSIOL1,0.01);
        problem_defn.SetMechanicsSolveTimestep(0.01); //This is only set to make ElectroMechanicsProblemDefinition::Validate pass

        //The following lines are not relevant to this test but need to be there
        TetrahedralMesh<2,2>* p_fine_mesh = new TetrahedralMesh<2,2>();//unused in this test
        p_fine_mesh->ConstructRegularSlabMesh(0.25, 1.0, 1.0);
        TetrahedralMesh<2,2>* p_coarse_mesh = new TetrahedralMesh<2,2>();//unused in this test
        p_coarse_mesh->ConstructRegularSlabMesh(0.25, 1.0, 1.0);
        FineCoarseMeshPair<2>* p_pair = new FineCoarseMeshPair<2>(*p_fine_mesh, *p_coarse_mesh);//also unused in this test
        p_pair->SetUpBoxesOnFineMesh();
        /////////////////////////////////////////////////////////////////////

        // NONPHYSIOL 1 - contraction model is of the form sin(t)
        IncompressibleExplicitSolver2d expl_solver(mesh,problem_defn,""/*"TestCompareExplAndImplCardiacSolvers_Exp"*/);
        p_pair->ComputeFineElementsAndWeightsForCoarseQuadPoints(*(expl_solver.GetQuadratureRule()), false);
        p_pair->DeleteFineBoxCollection();
        expl_solver.SetFineCoarseMeshPair(p_pair);
        expl_solver.Initialise();

        IncompressibleImplicitSolver2d impl_solver(mesh,problem_defn,""/*"TestCompareExplAndImplCardiacSolvers_Imp"*/);
        impl_solver.SetFineCoarseMeshPair(p_pair);
        impl_solver.Initialise();

        double dt = 0.25;
        for(double t=0; t<3; t+=dt)
        {
            expl_solver.Solve(t,t+dt,dt);
            impl_solver.Solve(t,t+dt,dt);

            // computations should be identical
            TS_ASSERT_EQUALS(expl_solver.GetNumNewtonIterations(), impl_solver.GetNumNewtonIterations());
            for(unsigned i=0; i<mesh.GetNumNodes(); i++)
            {
                TS_ASSERT_DELTA(expl_solver.rGetDeformedPosition()[i](0),  impl_solver.rGetDeformedPosition()[i](0), 1e-9);
                TS_ASSERT_DELTA(expl_solver.rGetDeformedPosition()[i](1),  impl_solver.rGetDeformedPosition()[i](1), 1e-9);
            }
        }

        //in need of deletion even if all these 3 have no influence at all on this test
        delete p_fine_mesh;
        delete p_coarse_mesh;
        delete p_pair;
    }
    void TestWithSimpleContractionModel() throw(Exception)
    {
        QuadraticMesh<2> mesh(0.25, 1.0, 1.0);
        MooneyRivlinMaterialLaw<2> law(1);

        std::vector<unsigned> fixed_nodes
          = NonlinearElasticityTools<2>::GetNodesByComponentValue(mesh,0,0.0);

        ElectroMechanicsProblemDefinition<2> problem_defn(mesh);
        problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
        problem_defn.SetZeroDisplacementNodes(fixed_nodes);
        problem_defn.SetContractionModel(NONPHYSIOL1,0.01);
        problem_defn.SetMechanicsSolveTimestep(0.01); //This is only set to make ElectroMechanicsProblemDefinition::Validate pass

        // NONPHYSIOL1 => NonphysiologicalContractionModel 1
        IncompressibleExplicitSolver2d solver(mesh,problem_defn,"TestExplicitCardiacMech");

        //The following lines are not relevant to this test but need to be there
        TetrahedralMesh<2,2>* p_fine_mesh = new TetrahedralMesh<2,2>();//unused in this test
        p_fine_mesh->ConstructRegularSlabMesh(0.25, 1.0, 1.0);
        TetrahedralMesh<2,2>* p_coarse_mesh = new TetrahedralMesh<2,2>();//unused in this test
        p_coarse_mesh->ConstructRegularSlabMesh(0.25, 1.0, 1.0);
        FineCoarseMeshPair<2>* p_pair = new FineCoarseMeshPair<2>(*p_fine_mesh, *p_coarse_mesh);//also unused in this test
        p_pair->SetUpBoxesOnFineMesh();
        p_pair->ComputeFineElementsAndWeightsForCoarseQuadPoints(*(solver.GetQuadratureRule()), false);
        p_pair->DeleteFineBoxCollection();
        solver.SetFineCoarseMeshPair(p_pair);
        ///////////////////////////////////////////////////////////////////////////
        solver.Initialise();

        // coverage
        QuadraturePointsGroup<2> quad_points(mesh, *(solver.GetQuadratureRule()));

        std::vector<double> calcium_conc(solver.GetTotalNumQuadPoints(), 0.0);
        std::vector<double> voltages(solver.GetTotalNumQuadPoints(), 0.0);

        solver.SetCalciumAndVoltage(calcium_conc, voltages);

        // solve UP TO t=0. So Ta(lam_n,t_{n+1})=5*sin(0)=0, ie no deformation
        solver.Solve(-0.01,0.0,0.01);
        TS_ASSERT_EQUALS(solver.GetNumNewtonIterations(),0u);

        solver.Solve(0.24,0.25,0.01);

        TS_ASSERT_DELTA(solver.rGetDeformedPosition()[4](0),  0.9732, 1e-2);
        TS_ASSERT_DELTA(solver.rGetDeformedPosition()[4](1), -0.0156, 1e-2);

        //in need of deletion even if all these 3 have no influence at all on this test
        delete p_fine_mesh;
        delete p_coarse_mesh;
        delete p_pair;
    }
    /* == Sliding boundary conditions ==
     *
     * It is common to require a Dirichlet boundary condition where the displacement/position in one dimension
     * is fixed, but the displacement/position in the others are free. This can be easily done when
     * collecting the new locations for the fixed nodes, as shown in the following example. Here, we
     * take a unit square, apply gravity downward, and suppose the Y=0 surface is like a frictionless boundary,
     * so that, for the nodes on Y=0, we specify y=0 but leave x free (Here (X,Y)=old position, (x,y)=new position).
     * (Note though that this wouldn't be enough to uniquely specify the final solution - an arbitrary
     * translation in the Y direction could be added a solution to obtain another valid solution, so we
     * fully fix the node at the origin.)
     */
    void TestWithSlidingDirichletBoundaryConditions() throw(Exception)
    {
        QuadraticMesh<2> mesh;
        mesh.ConstructRegularSlabMesh(0.1 /*stepsize*/, 1.0 /*width*/, 1.0 /*height*/);

        ExponentialMaterialLaw<2> law(1.0, 0.5); // First parameter is 'a', second 'b', in W=a*exp(b(I1-3))

        /* Create fixed nodes and locations... */
        std::vector<unsigned> fixed_nodes;
        std::vector<c_vector<double,2> > locations;

        /* Fix node 0 (the node at the origin) */
        fixed_nodes.push_back(0);
        locations.push_back(zero_vector<double>(2));

        /* For the rest, if the node is on the Y=0 surface.. */
        for (unsigned i=1; i<mesh.GetNumNodes(); i++)
        {
            if ( fabs(mesh.GetNode(i)->rGetLocation()[1])<1e-6)
            {
                /* ..add it to the list of fixed nodes.. */
                fixed_nodes.push_back(i);
                /* ..and define y to be 0 but x is fixed */
                c_vector<double,2> new_location;
                new_location(0) = SolidMechanicsProblemDefinition<2>::FREE;
                new_location(1) = 0.0;
                locations.push_back(new_location);
            }
        }

        /* Set the material law and fixed nodes, add some gravity, and solve */
        SolidMechanicsProblemDefinition<2> problem_defn(mesh);
        problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
        problem_defn.SetFixedNodes(fixed_nodes, locations);
        c_vector<double,2> gravity = zero_vector<double>(2);
        gravity(1) = -0.5;
        problem_defn.SetBodyForce(gravity);

        IncompressibleNonlinearElasticitySolver<2> solver(mesh,
                                                          problem_defn,
                                                          "ElasticitySlidingBcsExample");
        solver.Solve();
        solver.CreateCmguiOutput();

        /* Check the node at (1,0) has moved but has stayed on Y=0 */
        TS_ASSERT_LESS_THAN(1.0, solver.rGetDeformedPosition()[10](0));
        TS_ASSERT_DELTA(solver.rGetDeformedPosition()[10](1), 0.0, 1e-3);
    }
コード例 #6
0
// Update the coefficients associated with the patch field
void cohesiveLawFvPatchVectorField::updateCoeffs()
{
    if (updated())
    {
        return;
    }

    // Looking up rheology

    const fvPatchField<scalar>& mu =
        patch().lookupPatchField<volScalarField, scalar>("mu");

    const fvPatchField<scalar>& lambda =
      patch().lookupPatchField<volScalarField, scalar>("lambda");

    vectorField n = patch().nf();

    const fvPatchField<tensor>& gradU =
        patch().lookupPatchField<volTensorField, tensor>("grad(U)");

    // Patch displacement
    const vectorField& U = *this;

    // Patch stress
    tensorField sigma = mu*(gradU + gradU.T()) + I*(lambda*tr(gradU));

    // Normal stress component
    scalarField sigmaN = (n & (n & sigma));

    scalarField delta = -(n & U);

    label sizeByTwo = patch().size()/2;

    for(label i = 0; i < sizeByTwo; i++)
    {
        scalar tmp = delta[i];
        delta[i] += delta[sizeByTwo + i];
        delta[sizeByTwo + i] += tmp;
    }

    forAll (traction_, faceI)
    {
        if (delta[faceI] < 0)
        {
            // Return from traction to symmetryPlane??
            traction_[faceI] = law().sigmaMax().value()*n[faceI];
        }
        else if(delta[faceI] > law().deltaC().value())
        {
            // Traction free
            traction_[faceI] = vector::zero;
        }
        else
        {
            // Calculate cohesive traction from cohesive zone model
            traction_[faceI] = law().traction(delta[faceI])*n[faceI];
        }
    }

    gradient() =
    (
        traction_
      - (n & (mu*gradU.T() - (mu + lambda)*gradU))
      - n*lambda*tr(gradU)
    )/(2.0*mu + lambda);

    fixedGradientFvPatchVectorField::updateCoeffs();
}
    /* == Incompressible deformation: non-zero displacement boundary conditions, functional tractions ==
     *
     * We now consider a more complicated example. We prescribe particular new locations for the nodes
     * on the Dirichlet boundary, and also show how to prescribe a traction that is given in functional form
     * rather than prescribed for each boundary element.
     */
    void TestIncompressibleProblemMoreComplicatedExample() throw(Exception)
    {
        /* Create a mesh */
        QuadraticMesh<2> mesh;
        mesh.ConstructRegularSlabMesh(0.1 /*stepsize*/, 1.0 /*width*/, 1.0 /*height*/);

        /* Use a different material law this time, an exponential material law.
         * The material law needs to inherit from `AbstractIncompressibleMaterialLaw`,
         * and there are a few implemented, see `continuum_mechanics/src/problem/material_laws` */
        ExponentialMaterialLaw<2> law(1.0, 0.5); // First parameter is 'a', second 'b', in W=a*exp(b(I1-3))
        /* Now specify the fixed nodes, and their new locations. Create `std::vector`s for each. */
        std::vector<unsigned> fixed_nodes;
        std::vector<c_vector<double,2> > locations;
        /* Loop over the mesh nodes */
        for (unsigned i=0; i<mesh.GetNumNodes(); i++)
        {
            /* If the node is on the Y=0 surface (the LHS) */
            if ( fabs(mesh.GetNode(i)->rGetLocation()[1])<1e-6)
            {
                /* Add it to the list of fixed nodes */
                fixed_nodes.push_back(i);
                /* and define a new position x=(X,0.1*X^2^) */
                c_vector<double,2> new_location;
                double X = mesh.GetNode(i)->rGetLocation()[0];
                new_location(0) = X;
                new_location(1) = 0.1*X*X;
                locations.push_back(new_location);
            }
        }

        /* Now collect all the boundary elements on the top surface, as before, except
         * here we don't create the tractions for each element
         */
        std::vector<BoundaryElement<1,2>*> boundary_elems;
        for (TetrahedralMesh<2,2>::BoundaryElementIterator iter = mesh.GetBoundaryElementIteratorBegin();
             iter != mesh.GetBoundaryElementIteratorEnd();
             ++iter)
        {
            /* If Y=1, have found a boundary element */
            if (fabs((*iter)->CalculateCentroid()[1] - 1.0)<1e-6)
            {
                BoundaryElement<1,2>* p_element = *iter;
                boundary_elems.push_back(p_element);
            }
        }

        /* Create a problem definition object, and this time calling `SetFixedNodes`
         * which takes in the new locations of the fixed nodes.
         */
        SolidMechanicsProblemDefinition<2> problem_defn(mesh);
        problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
        problem_defn.SetFixedNodes(fixed_nodes, locations);
        /* Now call `SetTractionBoundaryConditions`, which takes in a vector of
         * boundary elements as in the previous test. However this time the second argument
         * is a ''function pointer'' (just the name of the function) to a
         * function returning traction in terms of position (and time [see below]).
         * This function is defined above, before the tests. It has to take in a `c_vector` (position)
         *  and a double (time), and returns a `c_vector` (traction), and will only be called
         * using points in the boundary elements being passed in. The function `MyTraction`
         * (defined above, before the tests) above defines a horizontal traction (ie a shear stress, since it is
         * applied to the top surface) which increases in magnitude across the object.
          */
        problem_defn.SetTractionBoundaryConditions(boundary_elems, MyTraction);
        /* Note: You can also call `problem_defn.SetBodyForce(MyBodyForce)`, passing in a function
         * instead of a vector, although isn't really physically useful, it is only really useful
         * for constructing problems with exact solutions.
         *
         * Create the solver as before */
        IncompressibleNonlinearElasticitySolver<2> solver(mesh,
                                                          problem_defn,
                                                          "IncompressibleElasticityMoreComplicatedExample");


        /* Call `Solve()` */
        solver.Solve();

        /* Another quick check */
        TS_ASSERT_EQUALS(solver.GetNumNewtonIterations(), 6u);
        /* Visualise as before.
         *
         * '''Advanced:''' Note that the function `MyTraction` takes in time, which it didn't use. In the above it would have been called
         * with t=0. The current time can be set using `SetCurrentTime()`. The idea is that the user may want to solve a
         * sequence of static problems with time-dependent tractions (say), for which they should allow `MyTraction` to
         * depend on time, and put the solve inside a time-loop, for example:
         */
        //for (double t=0; t<T; t+=dt)
        //{
        //    solver.SetCurrentTime(t);
        //    solver.Solve();
        //}
        /* In this the current time would be passed through to `MyTraction`
         *
         * Create Cmgui output
         */
        solver.CreateCmguiOutput();

        /* This is just to check that nothing has been accidentally changed in this test */
        TS_ASSERT_DELTA(solver.rGetDeformedPosition()[98](0), 1.4543, 1e-3);
        TS_ASSERT_DELTA(solver.rGetDeformedPosition()[98](1), 0.5638, 1e-3);
    }
    /* == Compressible deformation, and other bits and pieces ==
     *
     * In this test, we will show the (very minor) changes required to solve a compressible nonlinear
     * elasticity problem, we will describe and show how to specify 'pressure on deformed body'
     * boundary conditions, we illustrate how a quadratic mesh can be generated using a linear mesh
     * input files, and we also illustrate how `Solve()` can be called repeatedly, with loading
     * changing between the solves.
     *
     * Note: for other examples of compressible solves, including problems with an exact solution, see the
     * file `continuum_mechanics/test/TestCompressibleNonlinearElasticitySolver.hpp`
     */
    void TestSolvingCompressibleProblem() throw (Exception)
    {
        /* All mechanics problems must take in quadratic meshes, but the mesh files for
         * (standard) linear meshes in Triangles/Tetgen can be automatically converted
         * to quadratic meshes, by simply doing the following. (The mesh loaded here is a disk
         * centred at the origin with radius 1).
         */
        QuadraticMesh<2> mesh;
        TrianglesMeshReader<2,2> reader("mesh/test/data/disk_522_elements");
        mesh.ConstructFromLinearMeshReader(reader);

        /* Compressible problems require a compressible material law, ie one that
         * inherits from `AbstractCompressibleMaterialLaw`. The `CompressibleMooneyRivlinMaterialLaw`
         * is one such example; instantiate one of these
         */
        CompressibleMooneyRivlinMaterialLaw<2> law(1.0, 0.5);

        /* For this problem, we fix the nodes on the surface for which Y < -0.9 */
        std::vector<unsigned> fixed_nodes;
        for ( TetrahedralMesh<2,2>::BoundaryNodeIterator iter = mesh.GetBoundaryNodeIteratorBegin();
              iter != mesh.GetBoundaryNodeIteratorEnd();
              ++iter)
        {
            double Y = (*iter)->rGetLocation()[1];
            if(Y < -0.9)
            {
                fixed_nodes.push_back((*iter)->GetIndex());
            }
        }

        /* We will (later) apply Neumann boundary conditions to surface elements which lie below Y=0,
         * and these are collected here. (Minor, subtle, comment: we don't bother here checking Y>-0.9,
         * so the surface elements collected here include the ones on the Dirichlet boundary. This doesn't
         * matter as the Dirichlet boundary conditions to the nonlinear system essentially overwrite
         * an Neumann-related effects).
         */
        std::vector<BoundaryElement<1,2>*> boundary_elems;
        for (TetrahedralMesh<2,2>::BoundaryElementIterator iter
              = mesh.GetBoundaryElementIteratorBegin();
            iter != mesh.GetBoundaryElementIteratorEnd();
            ++iter)
        {
           BoundaryElement<1,2>* p_element = *iter;
           if(p_element->CalculateCentroid()[1]<0.0)
           {
               boundary_elems.push_back(p_element);
           }
        }
        assert(boundary_elems.size()>0);

        /* Create the problem definition class, and set the law again, this time
         * stating that the law is compressible
         */
        SolidMechanicsProblemDefinition<2> problem_defn(mesh);
        problem_defn.SetMaterialLaw(COMPRESSIBLE,&law);

        /* Set the fixed nodes and gravity */
        problem_defn.SetZeroDisplacementNodes(fixed_nodes);

        /* The elasticity solvers have two nonlinear solvers implemented, one hand-coded and one which uses PETSc's SNES
         * solver. The latter is not the default but can be more robust (and will probably be the default in later
         * versions). This is how it can be used. (This option can also be called if the compiled binary is run from
         * the command line (see ChasteGuides/RunningBinariesFromCommandLine) using the option "-mech_use_snes").
         */
        problem_defn.SetSolveUsingSnes();
        /* This line tells the solver to output info about the nonlinear solve as it progresses, and can be used with
         * or without the SNES option above. The corresponding command line option is "-mech_verbose"
         */
        problem_defn.SetVerboseDuringSolve();

        c_vector<double,2> gravity;
        gravity(0) = 0;
        gravity(1) = 0.1;
        problem_defn.SetBodyForce(gravity);

        /* Declare the compressible solver, which has the same interface as the incompressible
         * one, and call `Solve()`
         */
        CompressibleNonlinearElasticitySolver<2> solver(mesh,
                                                        problem_defn,
                                                        "CompressibleSolidMechanicsExample");
        solver.Solve();

        /* Now we call add additional boundary conditions, and call `Solve() again. Firstly: these
         * Neumann conditions here are not specified traction boundary conditions (such BCs are specified
         * on the undeformed body), but instead, the (more natural) specification of a pressure
         * exactly in the ''normal direction on the deformed body''. We have to provide a set of boundary
         * elements of the mesh, and a pressure to act on those elements. The solver will automatically
         * compute the deformed normal directions on which the pressure acts. Note: with this type of
         * BC, the ordering of the nodes on the boundary elements needs to be consistent, otherwise some
         * normals will be computed to be inward and others outward. The solver will check this on the
         * original mesh and throw an exception if this is not the case. (The required ordering is such that:
         * in 2D, surface element nodes are ordered anticlockwise (looking at the whole mesh); in 3D, looking
         * at any surface element from outside the mesh, the three nodes are ordered anticlockwise. (Triangle/tetgen
         * automatically create boundary elements like this)).
         */
        double external_pressure = -0.4; // negative sign => inward pressure
        problem_defn.SetApplyNormalPressureOnDeformedSurface(boundary_elems, external_pressure);
        /* Call `Solve()` again, so now solving with fixed nodes, gravity, and pressure. The solution from
         * the previous solve will be used as the initial guess. Although at the moment the solution from the
         * previous call to `Solve()` will be over-written, calling `Solve()` repeatedly may be useful for
         * some problems: sometimes, Newton's method will fail to converge for given force/pressures etc, and it can
         * be (very) helpful to ''increment'' the loading. For example, set the gravity to be (0,-9.81/3), solve,
         * then set it to be (0,-2*9.81/3), solve again, and finally set it to be (0,-9.81) and solve for a
         * final time
         */
        solver.Solve();
        solver.CreateCmguiOutput();
    }
コード例 #9
0
    /* == Incompressible deformation: 2D shape hanging under gravity with a balancing traction ==
     *
     * We now repeat the above test but include a traction on the bottom surface (Y=0). We apply this
     * in the inward direction so that is counters (somewhat) the effect of gravity. We also show how stresses
     * and strains can be written to file.
     */
    void TestIncompressibleProblemWithTractions() throw(Exception)
    {
        /* All of this is exactly as above */
        QuadraticMesh<2> mesh;
        mesh.ConstructRegularSlabMesh(0.1 /*stepsize*/, 0.8 /*width*/, 1.0 /*height*/);

        MooneyRivlinMaterialLaw<2> law(1.0);

        c_vector<double,2> body_force;
        body_force(0) =  0.0;
        body_force(1) = -2.0;

        std::vector<unsigned> fixed_nodes = NonlinearElasticityTools<2>::GetNodesByComponentValue(mesh, 1, 1.0);

        /* Now the traction boundary conditions. We need to collect all the boundary elements on the surface which we want to
         * apply non-zero tractions, put them in a `std::vector`, and create a corresponding `std::vector` of the tractions
         * for each of the boundary elements. Note that the each traction is a 2D vector with dimensions of pressure.
         *
         * First, declare the data structures:
         */
        std::vector<BoundaryElement<1,2>*> boundary_elems;
        std::vector<c_vector<double,2> > tractions;
        /* Create a constant traction */
        c_vector<double,2> traction;
        traction(0) = 0;
        traction(1) = 1.0; // this choice of sign corresponds to an inward force (if applied to the bottom surface)
        /* Loop over boundary elements */
        for (TetrahedralMesh<2,2>::BoundaryElementIterator iter = mesh.GetBoundaryElementIteratorBegin();
             iter != mesh.GetBoundaryElementIteratorEnd();
             ++iter)
        {
            /* If the centre of the element has Y value of 0.0, it is on the surface we need */
            if (fabs((*iter)->CalculateCentroid()[1] - 0.0) < 1e-6)
            {
                /* Put the boundary element and the constant traction into the stores. */
                BoundaryElement<1,2>* p_element = *iter;
                boundary_elems.push_back(p_element);
                tractions.push_back(traction);
            }
        }
        /* A quick check */
        assert(boundary_elems.size() == 8u);

        /* Now create the problem definition object, setting the material law, fixed nodes and body force as
         * before (this time not calling `SetDensity()`, so using the default density of 1.0,
         * and also calling a method for setting tractions, which takes in the boundary elements
         * and tractions for each of those elements.
         */
        SolidMechanicsProblemDefinition<2> problem_defn(mesh);
        problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
        problem_defn.SetZeroDisplacementNodes(fixed_nodes);
        problem_defn.SetBodyForce(body_force);
        problem_defn.SetTractionBoundaryConditions(boundary_elems, tractions);

        /* Create solver as before */
        IncompressibleNonlinearElasticitySolver<2> solver(mesh,
                                                          problem_defn,
                                                          "IncompressibleElasticityWithTractionsTutorial");

        /* In this test we also output the stress and strain. For the former, we have to tell the solver to store
         * the stresses that are computed during the solve.
         */
        solver.SetComputeAverageStressPerElementDuringSolve();


        /* Call `Solve()` */
        solver.Solve();

        /* If VTK output is written (discussed above) strains can be visualised. Alternatively, we can create text files
         * for strains and stresses by doing the following.
         *
         * Write the final deformation gradients to file. The i-th line of this file provides the deformation gradient F,
         * written as 'F(0,0) F(0,1) F(1,0) F(1,1)', evaluated at the centroid of the i-th element. The first variable
         * can also be DEFORMATION_TENSOR_C or LAGRANGE_STRAIN_E to write C or E. The second parameter is the file name.
         */
        solver.WriteCurrentStrains(DEFORMATION_GRADIENT_F,"deformation_grad");

        /* Since we called `SetComputeAverageStressPerElementDuringSolve`, we can write the stresses to file too. However,
         * note that for each element this is not the stress evaluated at the centroid, but the mean average of the stresses
         * evaluated at the quadrature points - for technical cardiac electromechanics reasons, it is difficult to
         * define the stress at non-quadrature points.
         */
        solver.WriteCurrentAverageElementStresses("2nd_PK_stress");


        /* Another quick check */
        TS_ASSERT_EQUALS(solver.GetNumNewtonIterations(), 4u);

        /* Visualise as before by going to the output directory and doing
         * `x=load('solution.nodes'); plot(x(:,1),x(:,2),'m*')` in Matlab/octave, or by using Cmgui.
         * The effect of the traction should be clear (especially when compared to
         * the results of the first test).
         *
         * Create Cmgui output
         */
        solver.CreateCmguiOutput();

        /* This is just to check that nothing has been accidentally changed in this test */
        TS_ASSERT_DELTA(solver.rGetDeformedPosition()[8](0), 0.8561, 1e-3);
        TS_ASSERT_DELTA(solver.rGetDeformedPosition()[8](1), 0.0310, 1e-3);
    }
コード例 #10
0
    /* In the first test we use INCOMPRESSIBLE nonlinear elasticity. For incompressible elasticity, there
     * is a constraint on the deformation, which results in a pressure field (a Lagrange multiplier)
     * which is solved for together with the deformation.
     *
     * All the mechanics solvers solve for the deformation using the finite element method with QUADRATIC
     * basis functions for the deformation. This necessitates the use of a `QuadraticMesh` - such meshes have
     * extra nodes that aren't vertices of elements, in this case midway along each edge. (The displacement
     * is solved for at ''each node'' in the mesh (including internal [non-vertex] nodes), whereas the pressure
     * is only solved for at each vertex - in FEM terms, quadratic interpolation for displacement, linear
     * interpolation for pressure, which is required for stability. The pressure at internal nodes is computed
     * by linear interpolation).
     *
     */
    void TestSimpleIncompressibleProblem() throw(Exception)
    {
        /* First, define the geometry. This should be specified using the `QuadraticMesh` class, which inherits from `TetrahedralMesh`
         * and has mostly the same interface. Here we define a 0.8 by 1 rectangle, with elements 0.1 wide.
         * (`QuadraticMesh`s can also be read in using `TrianglesMeshReader`; see next tutorial/rest of code base for examples of this).
         */
        QuadraticMesh<2> mesh;
        mesh.ConstructRegularSlabMesh(0.1 /*stepsize*/, 0.8 /*width*/, 1.0 /*height*/);

        /* We use a Mooney-Rivlin material law, which applies to isotropic materials and has two parameters.
         * Restricted to 2D however, it only has one parameter, which can be thought of as the total
         * stiffness. We declare a Mooney-Rivlin law, setting the parameter to 1.
         */
        MooneyRivlinMaterialLaw<2> law(1.0);

        /* Next, the body force density. In realistic problems this will either be
         * acceleration due to gravity (ie b=(0,-9.81)) or zero if the effect of gravity can be neglected.
         * In this problem we apply a gravity-like downward force.
         */
        c_vector<double,2> body_force;
        body_force(0) =  0.0;
        body_force(1) = -2.0;


        /* Two types of boundary condition are required: displacement and traction. As with the other PDE solvers,
         * the displacement (Dirichlet) boundary conditions are specified at nodes, whereas traction (Neumann) boundary
         * conditions are specified on boundary elements.
         *
         * In this test we apply displacement boundary conditions on one surface of the mesh, the upper (Y=1.0) surface.
         * We are going to specify zero-displacement at these nodes.
         * We do not specify any traction boundary conditions, which means that (effectively) zero-traction boundary
         * conditions (ie zero pressures) are applied on the three other surfaces.
         *
         * We need to get a `std::vector` of all the node indices that we want to fix. The `NonlinearElasticityTools`
         * has a static method for helping do this: the following gets all the nodes for which Y=1.0. The second
         * argument (the '1') indicates Y . (So, for example, `GetNodesByComponentValue(mesh, 0, 10)` would get the nodes on X=10).
         */
        std::vector<unsigned> fixed_nodes = NonlinearElasticityTools<2>::GetNodesByComponentValue(mesh, 1, 1.0);

        /*
         * Before creating the solver we create a `SolidMechanicsProblemDefinition` object,  which contains
         * everything that defines the problem: mesh, material law, body force,
         * the fixed nodes and their locations, any traction boundary conditions, and the density
         * (which multiplies the body force, otherwise isn't used).
         */
        SolidMechanicsProblemDefinition<2> problem_defn(mesh);

        /* Set the material problem on the problem definition object, saying that the problem, and
         * the material law, is incompressible. All material law files can be found in
         * `continuum_mechanics/src/problem/material_laws`. */
        problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);

        /* Set the fixed nodes, choosing zero displacement for these nodes (see later for how
         * to provide locations for the fixed nodes). */
        problem_defn.SetZeroDisplacementNodes(fixed_nodes);
        /* Set the body force and the density. (Note that the second line isn't technically
         * needed, as internally the density is initialised to 1)
         */
        problem_defn.SetBodyForce(body_force);
        problem_defn.SetDensity(1.0);

        /* Now we create the (incompressible) solver, passing in the mesh, problem definition
         * and output directory
         */
        IncompressibleNonlinearElasticitySolver<2> solver(mesh,
                                                          problem_defn,
                                                          "SimpleIncompressibleElasticityTutorial");

        /* .. and to compute the solution, just call `Solve()` */
        solver.Solve();


        /* '''Visualisation'''. Go to the folder `SimpleIncompressibleElasticityTutorial` in your test-output directory.
         * There should be 2 files, initial.nodes and solution.nodes. These are the original nodal positions and the deformed
         * positions. Each file has two columns, the x and y locations of each node. To visualise the solution in say
         * Matlab or Octave, you could do: `x=load('solution.nodes'); plot(x(:,1),x(:,2),'k*')`. For Cmgui output, see below.
         *
         * To get the actual solution from the solver, use these two methods. Note that the first
         * gets the deformed position (ie the new location, not the displacement). They are both of size
         * num_total_nodes.
         */
        std::vector<c_vector<double,2> >& r_deformed_positions = solver.rGetDeformedPosition();
        std::vector<double>& r_pressures = solver.rGetPressures();
        /* Let us obtain the values of the new position, and the pressure, at the bottom right corner node. */
        unsigned node_index = 8;
        assert( fabs(mesh.GetNode(node_index)->rGetLocation()[0] - 0.8) < 1e-6); // check that X=0.8, ie that we have the correct node,
        assert( fabs(mesh.GetNode(node_index)->rGetLocation()[1] - 0.0) < 1e-6); // check that Y=0.0, ie that we have the correct node,
        std::cout << "New position: " << r_deformed_positions[node_index](0) << " " << r_deformed_positions[node_index](1) << "\n";
        std::cout << "Pressure: " << r_pressures[node_index] << "\n";

        /* HOW_TO_TAG Continuum mechanics
         * Visualise nonlinear elasticity problems solutions, including visualisng strains
         */

        /* One visualiser is Cmgui. This method can be used to convert all the output files to Cmgui format.
         * They are placed in `[OUTPUT_DIRECTORY]/cmgui`. A script is created to easily load the data: in a
         * terminal cd to this directory and call `cmgui LoadSolutions.com`. (In this directory, the initial position is given by
         * solution_0.exnode, the deformed by solution_1.exnode).
         */
        solver.CreateCmguiOutput();

        /* The recommended visualiser is Paraview, for which Chaste must be installed with VTK. With paraview, strains (and in the future
         * stresses) can be visualised on the undeformed/deformed geometry). We can create VTK output using
         * the `VtkNonlinearElasticitySolutionWriter` class. The undeformed geometry, solution displacement, and pressure (if incompressible
         * problem) are written to file, and below we also choose to write the deformation tensor C for each element.
         */
        VtkNonlinearElasticitySolutionWriter<2> vtk_writer(solver);
        vtk_writer.SetWriteElementWiseStrains(DEFORMATION_TENSOR_C); // other options are DEFORMATION_GRADIENT_F and LAGRANGE_STRAIN_E
        vtk_writer.Write();


        /* These are just to check that nothing has been accidentally changed in this test.
         * Newton's method (with damping) was used to solve the nonlinear problem, and we check that
         * 4 iterations were needed to converge.
         */
        TS_ASSERT_DELTA(r_deformed_positions[node_index](0),  0.7980, 1e-3);
        TS_ASSERT_DELTA(r_deformed_positions[node_index](1), -0.1129, 1e-3);
        TS_ASSERT_EQUALS(solver.GetNumNewtonIterations(), 4u);
    }
コード例 #11
0
// Solve a problem where some pressure is applied in the outward direction on the bottom (Z=0) surface
//
// Returns the number of newton iterations taken
unsigned SolvePressureOnUnderside(QuadraticMesh<3>& rMesh, std::string outputDirectory,
                                  std::vector<double>& rSolution,
                                  bool useSolutionAsGuess,
                                  double scaleFactor = 1.0)
{
    MooneyRivlinMaterialLaw<3> law(1.0, 0.0);

    std::vector<unsigned> fixed_nodes = NonlinearElasticityTools<3>::GetNodesByComponentValue(rMesh, 0, 0.0);

    std::vector<BoundaryElement<2,3>*> boundary_elems;

    double pressure = 0.001;

    for (TetrahedralMesh<3,3>::BoundaryElementIterator iter
           = rMesh.GetBoundaryElementIteratorBegin();
         iter != rMesh.GetBoundaryElementIteratorEnd();
         ++iter)
    {
        BoundaryElement<2,3>* p_element = *iter;
        double Z = p_element->CalculateCentroid()[2];
        if(fabs(Z)<1e-6)
        {
            boundary_elems.push_back(p_element);
        }
    }

    SolidMechanicsProblemDefinition<3> problem_defn(rMesh);
    problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
    problem_defn.SetZeroDisplacementNodes(fixed_nodes);

    problem_defn.SetApplyNormalPressureOnDeformedSurface(boundary_elems, pressure*scaleFactor);
    problem_defn.SetVerboseDuringSolve();

    IncompressibleNonlinearElasticitySolver<3> solver(rMesh,problem_defn,outputDirectory);
    solver.SetWriteOutputEachNewtonIteration();

    // cover the SetTakeFullFirstNewtonStep() method, and the SetUsePetscDirectSolve() method
    solver.SetTakeFullFirstNewtonStep();
    solver.SetUsePetscDirectSolve();

    if(useSolutionAsGuess)
    {
        if(solver.rGetCurrentSolution().size()!=rSolution.size())
        {
            EXCEPTION("Badly-sized input");
        }
        for(unsigned i=0; i<rSolution.size(); i++)
        {
            solver.rGetCurrentSolution()[i] = rSolution[i];
        }
    }

    if(scaleFactor < 1.0)
    {
        try
        {
            solver.Solve();
        }
        catch (Exception& e)
        {
            // not final Solve, so don't quit
            WARNING(e.GetMessage());
        }
    }
    else
    {
        solver.Solve();
        solver.CreateCmguiOutput();

        VtkNonlinearElasticitySolutionWriter<3> vtk_writer(solver);
        vtk_writer.SetWriteElementWiseStrains(DEFORMATION_TENSOR_C);
        vtk_writer.Write();
    }

    rSolution.clear();
    rSolution.resize(solver.rGetCurrentSolution().size());
    for(unsigned i=0; i<rSolution.size(); i++)
    {
        rSolution[i] = solver.rGetCurrentSolution()[i];
    }

    return solver.GetNumNewtonIterations();
}
    // cover all other contraction model options which are allowed but not been used in a test so far
    void TestCoverage() throw(Exception)
    {
        QuadraticMesh<2> mesh(1.0, 1.0, 1.0);

        MooneyRivlinMaterialLaw<2> law(1);
        std::vector<unsigned> fixed_nodes
          = NonlinearElasticityTools<2>::GetNodesByComponentValue(mesh,0,0.0);

        ElectroMechanicsProblemDefinition<2> problem_defn(mesh);
        problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
        problem_defn.SetZeroDisplacementNodes(fixed_nodes);
        problem_defn.SetContractionModel(NONPHYSIOL3,0.01);
        problem_defn.SetMechanicsSolveTimestep(0.01); //This is only set to make ElectroMechanicsProblemDefinition::Validate pass

        TS_ASSERT_THROWS_THIS(problem_defn.SetApplyAnisotropicCrossFibreTension(true,1.0,1.0),
                              "You can only apply anisotropic cross fibre tensions in a 3D simulation.");

        TetrahedralMesh<2,2>* p_fine_mesh = new TetrahedralMesh<2,2>();
        p_fine_mesh->ConstructRegularSlabMesh(1.0, 1.0, 1.0);
        TetrahedralMesh<2,2>* p_coarse_mesh = new TetrahedralMesh<2,2>();
        p_coarse_mesh->ConstructRegularSlabMesh(1.0, 1.0, 1.0);
        FineCoarseMeshPair<2>* p_pair = new FineCoarseMeshPair<2>(*p_fine_mesh, *p_coarse_mesh);
        p_pair->SetUpBoxesOnFineMesh();

        TetrahedralMesh<2,2>* p_coarse_mesh_big = new TetrahedralMesh<2,2>();
        p_coarse_mesh_big->ConstructRegularSlabMesh(1.0, 3.0, 3.0);
        FineCoarseMeshPair<2>* p_pair_wrong = new FineCoarseMeshPair<2>(*p_fine_mesh, *p_coarse_mesh_big);

        // Some strange memory thing happens if we don't have the test with the
        // exceptions below in a separate block. I have no idea why.
        {
            IncompressibleExplicitSolver2d expl_solver(mesh,problem_defn,"");
            p_pair->ComputeFineElementsAndWeightsForCoarseQuadPoints(*(expl_solver.GetQuadratureRule()), false);
            p_pair->DeleteFineBoxCollection();
            expl_solver.SetFineCoarseMeshPair(p_pair);
            expl_solver.Initialise();

            // Prevent an assertion being thrown about setting the cell factory more than once.
            delete problem_defn.mpContractionCellFactory;
            problem_defn.mpContractionCellFactory = NULL;

            problem_defn.SetContractionModel(NASH2004,0.01);
            IncompressibleExplicitSolver2d expl_solver_with_nash(mesh,problem_defn,"");
            expl_solver_with_nash.SetFineCoarseMeshPair(p_pair);
            expl_solver_with_nash.Initialise();

            // Prevent an assertion being thrown about setting the cell factory more than once.
            delete problem_defn.mpContractionCellFactory;
            problem_defn.mpContractionCellFactory = NULL;

            problem_defn.SetContractionModel(KERCHOFFS2003,0.01);
            IncompressibleExplicitSolver2d expl_solver_with_kerchoffs(mesh,problem_defn,"");
            expl_solver_with_kerchoffs.SetFineCoarseMeshPair(p_pair);
            expl_solver_with_kerchoffs.Initialise();

        }

        {
            // bad contraction model
            ElectroMechanicsProblemDefinition<2> problem_defn2(mesh);
            problem_defn2.SetMaterialLaw(INCOMPRESSIBLE,&law);
            problem_defn2.SetContractionModel(NHS,0.01);
            IncompressibleExplicitSolver2d solver(mesh,problem_defn2,"");
            TS_ASSERT_THROWS_THIS(solver.SetFineCoarseMeshPair(p_pair_wrong),
                    "When setting a mesh pair into the solver, the coarse mesh of the mesh pair must be the same as the quadratic mesh");
            solver.SetFineCoarseMeshPair(p_pair);

            TS_ASSERT_THROWS_THIS(solver.Initialise(),
                    "stretch-rate-dependent contraction model requires an IMPLICIT cardiac mechanics solver.");
        }

        delete p_fine_mesh;
        delete p_coarse_mesh;
        delete p_pair;
        delete p_coarse_mesh_big;
        delete p_pair_wrong;
    }
    // with stretch-dependent contraction models the implicit and explicit schemes can be similar
    void TestCompareImplicitAndExplicitWithStretchDependentContractionModel() throw(Exception)
    {
        QuadraticMesh<2> mesh(0.25, 1.0, 1.0);

        MooneyRivlinMaterialLaw<2> law(1);
        std::vector<unsigned> fixed_nodes
          = NonlinearElasticityTools<2>::GetNodesByComponentValue(mesh,0,0.0);

        ElectroMechanicsProblemDefinition<2> problem_defn(mesh);
        problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
        problem_defn.SetZeroDisplacementNodes(fixed_nodes);
        problem_defn.SetContractionModel(NONPHYSIOL2,0.01);
        problem_defn.SetMechanicsSolveTimestep(0.01); //This is only set to make ElectroMechanicsProblemDefinition::Validate pass

        //The following lines are not relevant to this test but need to be there
        TetrahedralMesh<2,2>* p_fine_mesh = new TetrahedralMesh<2,2>();//unused in this test
        p_fine_mesh->ConstructRegularSlabMesh(0.25, 1.0, 1.0);
        TetrahedralMesh<2,2>* p_coarse_mesh = new TetrahedralMesh<2,2>();//unused in this test
        p_coarse_mesh->ConstructRegularSlabMesh(0.25, 1.0, 1.0);
        FineCoarseMeshPair<2>* p_pair = new FineCoarseMeshPair<2>(*p_fine_mesh, *p_coarse_mesh);//also unused in this test
        p_pair->SetUpBoxesOnFineMesh();
        /////////////////////////////////////////////////////////////////////

        // NONPHYSIOL 2 - contraction model is of the form lam*sin(t)
        IncompressibleExplicitSolver2d expl_solver(mesh,problem_defn,"TestCompareExplAndImplCardiacSolversStretch_Exp");
        p_pair->ComputeFineElementsAndWeightsForCoarseQuadPoints(*(expl_solver.GetQuadratureRule()), false);
        p_pair->DeleteFineBoxCollection();
        expl_solver.SetFineCoarseMeshPair(p_pair);
        expl_solver.Initialise();

        IncompressibleImplicitSolver2d impl_solver(mesh,problem_defn,"TestCompareExplAndImplCardiacSolversStretch_Imp");
        impl_solver.SetFineCoarseMeshPair(p_pair);
        impl_solver.Initialise();

        expl_solver.WriteCurrentSpatialSolution("solution","nodes",0);
        impl_solver.WriteCurrentSpatialSolution("solution","nodes",0);

        unsigned counter = 1;

        double t0 = 0.0;
        double t1 = 0.25; // to be quite quick (min stretch ~=0.88), make this 5/4 (?) say for min stretch < 0.7
        double dt = 0.025;

        for(double t=t0; t<t1; t+=dt)
        {
            //std::cout << "\n **** t = " << t << " ****\n" << std::flush;

            expl_solver.SetWriteOutput(false);
            expl_solver.Solve(t,t+dt,dt);
            expl_solver.SetWriteOutput();
            expl_solver.WriteCurrentSpatialSolution("solution","nodes",counter);

            impl_solver.SetWriteOutput(false);
            impl_solver.Solve(t,t+dt,dt);
            impl_solver.SetWriteOutput();
            impl_solver.WriteCurrentSpatialSolution("solution","nodes",counter);

            // the solutions turn out to be very close to each other
            for(unsigned i=0; i<mesh.GetNumNodes(); i++)
            {
                TS_ASSERT_DELTA(expl_solver.rGetDeformedPosition()[i](0),  impl_solver.rGetDeformedPosition()[i](0), 2e-3);
                TS_ASSERT_DELTA(expl_solver.rGetDeformedPosition()[i](1),  impl_solver.rGetDeformedPosition()[i](1), 2e-3);
            }

            // visualisation in matlab or octave
            // run from CHASTETESTOUTPUT
            //
            // close all; figure; hold on
            // for i=0:10, x1 = load(['TestCompareExplAndImplCardiacSolversStretch_Exp/solution_',num2str(i),'.nodes']); plot(i,x1(5,1),'b*'); end
            // for i=0:10, x2 = load(['TestCompareExplAndImplCardiacSolversStretch_Imp/solution_',num2str(i),'.nodes']); plot(i,x2(5,1),'r*'); end
            //
            // close all; figure; hold on
            // for i=0:10, x2 = load(['TestCompareExplAndImplCardiacSolversStretch_Imp/solution_',num2str(i),'.nodes']); plot(x2(:,1),x2(:,2),'r*'); end

            counter++;
        }

        // check there was significant deformation - node 4 is (1,0)
        TS_ASSERT_DELTA(mesh.GetNode(4)->rGetLocation()[0], 1.0, 1e-12);
        TS_ASSERT_LESS_THAN(impl_solver.rGetDeformedPosition()[4](0), 0.9);

        //in need of deletion even if all these 3 have no influence at all on this test
        delete p_fine_mesh;
        delete p_coarse_mesh;
        delete p_pair;
    }
    /**
     *  Solve a problem in which the traction boundary condition is a normal pressure
     *  applied to a surface of the deformed body.
     *
     *  The initial body is the unit cube. The deformation is given by x=Rx', where
     *  R is a rotation matrix and x'=[X/(lambda^2)  lambda*Y lambda*Z], ie simple stretching
     *  followed by a rotation.
     *
     *  Ignoring R for the time being, the deformation gradient would be
     *  F=diag(1/lambda^2, lambda, lambda).
     *  Assuming a Neo-Hookean material law, the first Piola-Kirchoff tensor is
     *
     *   S = 2c F^T - p F^{-1}
     *     = diag ( 2c lam^{-2} - p lam^2,  2c lam - p lam^{-1},  2c lam - p lam^{-1}
     *
     *  We choose the internal pressure (p) to be 2clam^2, so that
     *
     *  S = diag( 2c (lam^{-2} - lam^4), 0, 0)
     *
     *  To obtain this deformation as the solution, we can specify fixed location boundary conditions
     *  on X=0 and specify a traction of t=[2c(lam^{-2} - lam^4) 0 0] on the X=1 surface.
     *
     *  Now, including the rotation matrix, we can specify appropriate fixed location boundary conditions
     *  on the X=0 surface, and specify that a normal pressure should act on the *deformed* X=1 surface,
     *  with value P = 2c(lam^{-2} - lam^4)/(lambda^2) [divided by lambda^2 as the deformed surface
     *  has a smaller area than the undeformed surface.
     *
     */
    void TestWithPressureOnDeformedSurfaceBoundaryCondition3d() throw (Exception)
    {
        double lambda = 0.85;

        unsigned num_elem_each_dir = 5;
        QuadraticMesh<3> mesh(1.0/num_elem_each_dir, 1.0, 1.0, 1.0);

        // Neo-Hookean material law
        double c1 = 1.0;
        MooneyRivlinMaterialLaw<3> law(c1, 0.0);

        // anything will do here
        c_matrix<double,3,3> rotation_matrix = identity_matrix<double>(3);
        rotation_matrix(0,0)=1.0/sqrt(2.0);
        rotation_matrix(0,1)=-1.0/sqrt(2.0);
        rotation_matrix(1,0)=1.0/sqrt(2.0);
        rotation_matrix(1,1)=1.0/sqrt(2.0);


        // Define displacement boundary conditions
        std::vector<unsigned> fixed_nodes;
        std::vector<c_vector<double,3> > locations;

        for (unsigned i=0; i<mesh.GetNumNodes(); i++)
        {
            double X = mesh.GetNode(i)->rGetLocation()[0];
            double Y = mesh.GetNode(i)->rGetLocation()[1];
            double Z = mesh.GetNode(i)->rGetLocation()[2];

            // if X=0
            if ( fabs(X)<1e-6)
            {
                fixed_nodes.push_back(i);
                c_vector<double,3> new_position_before_rotation;
                new_position_before_rotation(0) = 0.0;
                new_position_before_rotation(1) = lambda*Y;
                new_position_before_rotation(2) = lambda*Z;
                locations.push_back(prod(rotation_matrix, new_position_before_rotation));
            }
        }
        assert(fixed_nodes.size()==(2*num_elem_each_dir+1)*(2*num_elem_each_dir+1));

        // Define pressure boundary conditions X=1 surface
        std::vector<BoundaryElement<2,3>*> boundary_elems;

        double pressure_bc = 2*c1*((pow(lambda,-2.0)-pow(lambda,4.0)))/(lambda*lambda);

        for (TetrahedralMesh<3,3>::BoundaryElementIterator iter
              = mesh.GetBoundaryElementIteratorBegin();
            iter != mesh.GetBoundaryElementIteratorEnd();
            ++iter)
        {
            if (fabs((*iter)->CalculateCentroid()[0]-1)<1e-6)
            {
                BoundaryElement<2,3>* p_element = *iter;
                boundary_elems.push_back(p_element);
            }
        }
        assert(boundary_elems.size()==2*num_elem_each_dir*num_elem_each_dir);

        SolidMechanicsProblemDefinition<3> problem_defn(mesh);
        problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
        problem_defn.SetFixedNodes(fixed_nodes, locations);
        problem_defn.SetApplyNormalPressureOnDeformedSurface(boundary_elems, pressure_bc);


        IncompressibleNonlinearElasticitySolver<3> solver(mesh,
                                                          problem_defn,
                                                          "nonlin_elas_3d_pressure_on_deformed");

        solver.Solve();

        // Compare
        std::vector<c_vector<double,3> >& r_solution = solver.rGetDeformedPosition();
        for (unsigned i=0; i<mesh.GetNumNodes(); i++)
        {
            double X = mesh.GetNode(i)->rGetLocation()[0];
            double Y = mesh.GetNode(i)->rGetLocation()[1];
            double Z = mesh.GetNode(i)->rGetLocation()[2];

            c_vector<double,3> new_position_before_rotation;
            new_position_before_rotation(0) = X/(lambda*lambda);
            new_position_before_rotation(1) = lambda*Y;
            new_position_before_rotation(2) = lambda*Z;

            c_vector<double,3> new_position = prod(rotation_matrix, new_position_before_rotation);

            TS_ASSERT_DELTA(r_solution[i](0), new_position(0), 1e-2);
            TS_ASSERT_DELTA(r_solution[i](1), new_position(1), 1e-2);
            TS_ASSERT_DELTA(r_solution[i](2), new_position(2), 1e-2);
        }

        // test the pressures
        std::vector<double>& r_pressures = solver.rGetPressures();
        for (unsigned i=0; i<r_pressures.size(); i++)
        {
            TS_ASSERT_DELTA(r_pressures[i], 2*c1*lambda*lambda, 0.05);
        }
    }
    /**
     * Solve 3D nonlinear elasticity problem with an exact solution.
     *
     * For full details see Pathmanathan, Gavaghan, Whiteley "A comparison of numerical
     * methods used in finite element modelling of soft tissue deformation", J. Strain
     * Analysis, to appear.
     *
     * We solve a 3d problem on a cube with a Neo-Hookean material, assuming the solution
     * will be
     *   x = X+aX^2/2
     *   y = Y+bY^2/2
     *   z = Z/(1+aX)(1+bY)
     * with p=2c (c the material parameter),
     * which, note, has been constructed to be an incompressible. We assume displacement
     * boundary conditions on X=0 and traction boundary conditions on the remaining 5 surfaces.
     * It is then possible to determine the body force and surface tractions required for
     * this deformation, and they are defined in the above class.
     */
    void TestSolve3d() throw(Exception)
    {
        unsigned num_runs=4;
        double l2_errors[4];
        unsigned num_elem_each_dir[4] = {1,2,5,10};

        for(unsigned run=0; run<num_runs; run++)
        {
            QuadraticMesh<3> mesh(1.0/num_elem_each_dir[run], 1.0, 1.0, 1.0);

            // Neo-Hookean material law
            MooneyRivlinMaterialLaw<3> law(ThreeDimensionalModelProblem::c1, 0.0);

            // Define displacement boundary conditions
            std::vector<unsigned> fixed_nodes;
            std::vector<c_vector<double,3> > locations;
            for (unsigned i=0; i<mesh.GetNumNodes(); i++)
            {
                double X = mesh.GetNode(i)->rGetLocation()[0];
                double Y = mesh.GetNode(i)->rGetLocation()[1];
                double Z = mesh.GetNode(i)->rGetLocation()[2];

                // if X=0
                if ( fabs(X)<1e-6)
                {
                    fixed_nodes.push_back(i);
                    c_vector<double,3> new_position;
                    new_position(0) = 0.0;
                    new_position(1) = Y + Y*Y*ThreeDimensionalModelProblem::b/2.0;
                    new_position(2) = Z/((1+X*ThreeDimensionalModelProblem::a)*(1+Y*ThreeDimensionalModelProblem::b));
                    locations.push_back(new_position);
                }
            }
            assert(fixed_nodes.size()==(2*num_elem_each_dir[run]+1)*(2*num_elem_each_dir[run]+1));

            // Define traction boundary conditions on all boundary elems that are not on X=0
            std::vector<BoundaryElement<2,3>*> boundary_elems;
            for (TetrahedralMesh<3,3>::BoundaryElementIterator iter
                  = mesh.GetBoundaryElementIteratorBegin();
                iter != mesh.GetBoundaryElementIteratorEnd();
                ++iter)
            {
                if (fabs((*iter)->CalculateCentroid()[0])>1e-6)
                {
                    BoundaryElement<2,3>* p_element = *iter;
                    boundary_elems.push_back(p_element);
                }
            }
            assert(boundary_elems.size()==10*num_elem_each_dir[run]*num_elem_each_dir[run]);

            SolidMechanicsProblemDefinition<3> problem_defn(mesh);
            problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
            problem_defn.SetFixedNodes(fixed_nodes, locations);
            problem_defn.SetBodyForce(ThreeDimensionalModelProblem::GetBodyForce);
            problem_defn.SetTractionBoundaryConditions(boundary_elems, ThreeDimensionalModelProblem::GetTraction);

            IncompressibleNonlinearElasticitySolver<3> solver(mesh,
                                                              problem_defn,
                                                              "nonlin_elas_3d_10");

            solver.Solve(1e-12); // note newton tolerance of 1e-12 needed for convergence to occur

            solver.CreateCmguiOutput();

            // Compare

            l2_errors[run] = 0;

            std::vector<c_vector<double,3> >& r_solution = solver.rGetDeformedPosition();
            for (unsigned i=0; i<mesh.GetNumNodes(); i++)
            {
                double X = mesh.GetNode(i)->rGetLocation()[0];
                double Y = mesh.GetNode(i)->rGetLocation()[1];
                double Z = mesh.GetNode(i)->rGetLocation()[2];

                double exact_x = X + X*X*ThreeDimensionalModelProblem::a/2.0;
                double exact_y = Y + Y*Y*ThreeDimensionalModelProblem::b/2.0;
                double exact_z = Z/((1+X*ThreeDimensionalModelProblem::a)*(1+Y*ThreeDimensionalModelProblem::b));

                c_vector<double,3> error;
                error(0) = r_solution[i](0) - exact_x;
                error(1) = r_solution[i](1) - exact_y;
                error(2) = r_solution[i](2) - exact_z;

                l2_errors[run] += norm_2(error);

                if(num_elem_each_dir[run]==5u)
                {
                    TS_ASSERT_DELTA(r_solution[i](0), exact_x, 1e-2);
                    TS_ASSERT_DELTA(r_solution[i](1), exact_y, 1e-2);
                    TS_ASSERT_DELTA(r_solution[i](2), exact_z, 1e-2);
                }
            }

            l2_errors[run] /= mesh.GetNumNodes();

            std::vector<double>& r_pressures = solver.rGetPressures();
            for (unsigned i=0; i<r_pressures.size(); i++)
            {
                TS_ASSERT_DELTA(r_pressures[i]/(2*ThreeDimensionalModelProblem::c1), 1.0, 2e-1);
            }
        }

        //for(unsigned run=0; run<num_runs; run++)
        //{
        //    std::cout << 1.0/num_elem_each_dir[run] << " " << l2_errors[run] << "\n";
        //}

        TS_ASSERT_LESS_THAN(l2_errors[0], 0.0005)
        TS_ASSERT_LESS_THAN(l2_errors[1], 5e-5);
        TS_ASSERT_LESS_THAN(l2_errors[2], 2.1e-6);
        TS_ASSERT_LESS_THAN(l2_errors[3], 4e-7);
    }
    /**
     * This time we will make x (fibres) and z (sheet-normal) contract,
     * and y will not contract (so nodes will expand out for y, shrink in for x,z).
     */
    void TestAnisotropicCrossFibreTensions() throw(Exception)
    {
        /*
         * Expected resulting deformed location of Nodes 4, 24, 104, 124:
         * 4: 1, 0, 0
         * 24: 1, 1, 0
         * 104: 1, 0, 1
         * 124: 1, 1, 1
         */
        c_vector<double, 4> x;
        c_vector<double, 4> y;
        c_vector<double, 4> z;
        x[0] = 0.9905;
        x[1] = 0.9908;
        x[2] = 0.9904;
        x[3] = 0.9907;
        y[0] = -0.0113;
        y[1] = 1.0105;
        y[2] = -0.0113;
        y[3] = 1.0105;
        z[0] = 0.0056;
        z[1] = 0.0056;
        z[2] = 0.9946;
        z[3] = 0.9946;

        QuadraticMesh<3> mesh(0.25, 1.0, 1.0, 1.0);
        MooneyRivlinMaterialLaw<3> law(1,1);

        std::vector<unsigned> fixed_nodes
        = NonlinearElasticityTools<3>::GetNodesByComponentValue(mesh,0,0.0);

        ElectroMechanicsProblemDefinition<3> problem_defn(mesh);
        problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
        problem_defn.SetZeroDisplacementNodes(fixed_nodes);
        problem_defn.SetContractionModel(NONPHYSIOL1,0.01);
        problem_defn.SetMechanicsSolveTimestep(0.01); //This is only set to make ElectroMechanicsProblemDefinition::Validate pass
        double sheet_tension_fraction=0;
        double sheet_normal_tension_fraction=1;
        problem_defn.SetApplyAnisotropicCrossFibreTension(true,sheet_tension_fraction, sheet_normal_tension_fraction);

        // NONPHYSIOL1 => NonphysiologicalContractionModel 1
        IncompressibleExplicitSolver3d solver(mesh,problem_defn,"TestAnisotropicCrossFibreExplicit");

        // The following lines are not relevant to this test but need to be there
        // as the solver is expecting an electrics node to be paired up with each mechanics node.
        TetrahedralMesh<3,3>* p_fine_mesh = new TetrahedralMesh<3,3>();//electrics ignored in this test
        p_fine_mesh->ConstructRegularSlabMesh(0.25, 1.0, 1.0, 1.0);
        FineCoarseMeshPair<3>* p_pair = new FineCoarseMeshPair<3>(*p_fine_mesh, mesh);
        p_pair->SetUpBoxesOnFineMesh();
        p_pair->ComputeFineElementsAndWeightsForCoarseQuadPoints(*(solver.GetQuadratureRule()), false);
        p_pair->DeleteFineBoxCollection();
        solver.SetFineCoarseMeshPair(p_pair);
        ///////////////////////////////////////////////////////////////////////////
        solver.Initialise();

        // coverage
        QuadraturePointsGroup<3> quad_points(mesh, *(solver.GetQuadratureRule()));

        std::vector<double> calcium_conc(solver.GetTotalNumQuadPoints(), 0.0);
        std::vector<double> voltages(solver.GetTotalNumQuadPoints(), 0.0);

        solver.SetCalciumAndVoltage(calcium_conc, voltages);

        // solve UP TO t=0. So Ta(lam_n,t_{n+1})=5*sin(0)=0, ie no deformation
        solver.Solve(-0.01,0.0,0.01);
        TS_ASSERT_EQUALS(solver.GetNumNewtonIterations(),0u);

        solver.Solve(0.24,0.25,0.01);

        std::vector<unsigned> nodes;
        nodes.push_back(4);
        nodes.push_back(24);
        nodes.push_back(104);
        nodes.push_back(124);

        for (unsigned node=0; node<4; node++)
        {
            std::cout << "Node: " << nodes[node] << "\n";
            TS_ASSERT_DELTA(solver.rGetDeformedPosition()[nodes[node]](0), x[node], 1e-3);
            TS_ASSERT_DELTA(solver.rGetDeformedPosition()[nodes[node]](1), y[node], 1e-3);
            TS_ASSERT_DELTA(solver.rGetDeformedPosition()[nodes[node]](2), z[node], 1e-3);
        }

        // tidy up memory
        delete p_fine_mesh;
        delete p_pair;
    }
    void TestCrossFibreTensionWithSimpleContractionModel() throw(Exception)
    {
        QuadraticMesh<2> mesh(0.25, 1.0, 1.0);
        MooneyRivlinMaterialLaw<2> law(1);

        std::vector<unsigned> fixed_nodes
        = NonlinearElasticityTools<2>::GetNodesByComponentValue(mesh,0,0.0);

        ElectroMechanicsProblemDefinition<2> problem_defn(mesh);
        problem_defn.SetMaterialLaw(INCOMPRESSIBLE,&law);
        problem_defn.SetZeroDisplacementNodes(fixed_nodes);
        problem_defn.SetContractionModel(NONPHYSIOL1,0.01);
        problem_defn.SetMechanicsSolveTimestep(0.01); //This is only set to make ElectroMechanicsProblemDefinition::Validate pass

        //Cross fibre tension fractions to be tested
        c_vector<double, 4> tension_fractions;
        tension_fractions[0] = 0.0;
        tension_fractions[1] = 0.1;
        tension_fractions[2] = 0.5;
        tension_fractions[3] = 1.0;

        //Expected resulting deformed location of Node 4.
        c_vector<double, 4> x;
        c_vector<double, 4> y;
        x[0] = 0.9732;
        x[1] = 0.9759;
        x[2] = 0.9865;
        x[3] = 1.0; //Note, for cross_tension == 1.0 there should be no deformation of the tissue square (tensions balance)
        y[0] = -0.0156;
        y[1] = -0.0140;
        y[2] = -0.0077;
        y[3] = 0.0;

        for(unsigned i=0; i < tension_fractions.size();i++)
        {
            problem_defn.SetApplyIsotropicCrossFibreTension(true,tension_fractions[i]);

            TS_ASSERT_EQUALS(problem_defn.GetApplyCrossFibreTension(), true);
            TS_ASSERT_DELTA(problem_defn.GetSheetTensionFraction(),tension_fractions[i], 1e-6);
            TS_ASSERT_DELTA(problem_defn.GetSheetNormalTensionFraction(),tension_fractions[i], 1e-6);

            // NONPHYSIOL1 => NonphysiologicalContractionModel 1
            IncompressibleExplicitSolver2d solver(mesh,problem_defn,"TestExplicitCardiacMech");

            // The following lines are not relevant to this test but need to be there
            // as the solver is expecting an electrics node to be paired up with each mechanics node.
            TetrahedralMesh<2,2>* p_fine_mesh = new TetrahedralMesh<2,2>();//electrics ignored in this test
            p_fine_mesh->ConstructRegularSlabMesh(0.25, 1.0, 1.0);
            FineCoarseMeshPair<2>* p_pair = new FineCoarseMeshPair<2>(*p_fine_mesh, mesh);
            p_pair->SetUpBoxesOnFineMesh();
            p_pair->ComputeFineElementsAndWeightsForCoarseQuadPoints(*(solver.GetQuadratureRule()), false);
            p_pair->DeleteFineBoxCollection();
            solver.SetFineCoarseMeshPair(p_pair);
            ///////////////////////////////////////////////////////////////////////////
            solver.Initialise();

            // coverage
            QuadraturePointsGroup<2> quad_points(mesh, *(solver.GetQuadratureRule()));

            std::vector<double> calcium_conc(solver.GetTotalNumQuadPoints(), 0.0);
            std::vector<double> voltages(solver.GetTotalNumQuadPoints(), 0.0);

            solver.SetCalciumAndVoltage(calcium_conc, voltages);

            // solve UP TO t=0. So Ta(lam_n,t_{n+1})=5*sin(0)=0, ie no deformation
            solver.Solve(-0.01,0.0,0.01);
            TS_ASSERT_EQUALS(solver.GetNumNewtonIterations(),0u);

            solver.Solve(0.24,0.25,0.01);

//// These fail due to changes from #2185 but no point fixing as these numbers will change later anyway (#2180)
            TS_ASSERT_DELTA(solver.rGetDeformedPosition()[4](0), x[i], 1e-3);
            TS_ASSERT_DELTA(solver.rGetDeformedPosition()[4](1), y[i], 1e-3);

            //in need of deletion even if all these 3 have no influence at all on this test
            delete p_fine_mesh;
            delete p_pair;
        }
    }